
Research statement Ingo Blechschmidt

I’m exploring applications of the internal language of toposes in algebraic geometry and

commutative algebra. These uncover certain speci�c relations between logic, algebra, and

geometry, and open up new and unique perspectives.

Toposes are special kinds of categories, an important example being the category Sh(X)
of set-valued sheaves on a topological space X . Their internal language allows to speak and

reason about the objects and morphisms of a topos in a naive element-based language: From

the internal perspective, objects of the topos look like sets, morphisms look like maps between

sets, epimorphisms look like surjective maps, monomorphisms look like injective maps, group

objects look like plain groups, and so on; and any theorem which has a constructive proof

also holds in the internal universe of a topos.

A basic example is as follows. One can check that a sheaf of modules on a scheme X
is of �nite type if and only if, from the internal point of view of the topos Sh(X), it is a

�nitely generated module. The standard proof of the theorem “if the two outer modules

in a short exact sequence of modules are �nitely generated, then so is the middle one” is

constructive. Therefore the theorem holds in any topos. Interpreted in the topos Sh(X) it

yields the theorem “if the two outer sheaves of modules in a short exact sequence of sheaves

of modules are of �nite type, then so is the middle one”.

In this way, the internal language of toposes gives a precise connection between commuta-

tive algebra and algebraic geometry: (Some) concepts and statements of algebraic geometry

are simply interpretations of concepts and statements of commutative algebra in the internal

language of a suitable topos. This observation allows to skip over routine proofs, brings

conceptual clarity, and rigorously justi�es certain kinds of “fast and loose reasoning” – ver-

ifying a theorem only in the a�ne case without properly working out the general case or

constructing a sheaf only over a�ne open subsets without meticulously verifying the gluing

condition.

I believe that these kinds of applications are already useful to working algebraic geometers.

However, more advanced applications are also possible. They result from considering internal

statements whose logical form is more complex and whose external meaning is therefore not

obvious, and from internal statements whose proofs exploit unique features of the internal

universes.

For instance, if X is a reduced scheme, the internal universe of Sh(X) has the peculiar

feature that the structure sheafOX is Noetherian and a �eld, even ifX is not locally Noetherian

and (as will almost always be the case) the local rings OX,x are not �elds. This fact has no

simple external counterpart; it’s rather an intricate statement about the interplay between

the rings Γ(U,OX) for varying open subsets U ⊆ X .

Thanks to this particular feature, linear and commutative algebra over OX are particularly

simple from the internal point of view. For instance, Grothendieck’s generic freeness lemma,

which is usually proved using a somewhat involved series of reduction steps, admits a short,

easy, and conceptual proof with this technique [2, Section 11.5], since the freeness lemma

is trivial for �elds. This new proof is even constructive, which is quite surprising, since the

previously known proofs didn’t suggest at all that a constructive proof would be possible.

It is in this way that the internal language unlocks new approaches: by making concepts

accessible which would otherwise be too unwieldy to manage and by allowing to import a

huge corpus of prior work, namely the entire literature on constructive algebra.
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Building a dictionary
There was a �urry of activity on the internal language machinery in the 1970s, when it

was worked out and applications were discovered; a very accessible introduction to the

internal language of that time is written by Mulvey [9], culminating in an internal proof of

the Serre–Swan theorem. However, for the internal language to be truly useful in algebraic

geometry, one needs to have an extensive dictionary relating internal and external notions.

In the 1970s, only few such dictionary entries were known; a notable exception is an internal

characterization of the étale topos by Wraith [17].

A major task of my PhD studies was therefore to systematically search for internal transla-

tions of well-known external concepts. Some were easy to obtain; others required creative

work, were surprising, and depended on certain subtleties. An excerpt of the now-known

dictionary pertaining to a scheme X is as follows:

externally internally to Sh(X)

sheaf of sets set

morphism of sheaves map of sets

monomorphism injective map

epimorphism surjective map

sheaf of rings ring

sheaf of modules module

sheaf of �nite type �nitely generated module

�nite locally free sheaf �nite free module

coherent sheaf coherent module

quasicoherent sheaf module satisfying certain sheaf conditions

injective sheaf injective module

tensor product of sheaves tensor product of modules

rank function of a sheaf of modules minimal number of generators

dimension of X Krull dimension of OX

sheaf of rational functions total quotient ring of OX

relative spectrum of a sheaf of algebras variant of the ordinary absolute spectrum

big Zariski topos of X topos classifying local OX-algebras which

are local over OX

fppf topos of X topos classifying fppf-local OX-algebras which

are local over OX

Finding the internal translation of the quasicoherence condition turned out to be quite

important for the theory, because it paved the way for the discovery of the internal transla-

tion of the relative spectrum construction (the �rst step in reinterpreting relative algebraic

geometry over a base scheme as absolute algebraic geometry over a point) and because it

explained the proper background of the fact that OX looks like a �eld from the internal point

of view (if X is reduced). The �eld property was already observed in the 1970s, by Mulvey;

however, its full potential wasn’t realized. Tierney commented at that time [15, page 209]:

2



“[It] is surely important, though its precise signi�cance is still somewhat obscure”. We now

know that the �eld property is an immediate consequence of the deeper fact thatOX satis�es

the internal translation of being quasicoherent.

I also found a general metatheorem relating properties of an A-module M with the internal

properties of the induced quasicoherent sheaf M∼
on Spec(A) and I found a way of using

the internal language of a topos to speak about its subtoposes; the latter is useful for studying

spreading of properties from points to open neighborhoods.

In the future, I want to extend this dictionary, in particular to terms of intersection theory

and of the theory of derived categories of coherent sheaves; to study the properties of the

internal universe in case not the Zariski topology, but �ner topologies such as the étale, fppf,

or ph topologies are employed; to determine explicit descriptions of the geometric theories

which the various big toposes of a scheme classify (for the Zariski and the étale topology,

these are well-known; for the fppf and the surjective topology, I obtained descriptions in my

PhD studies, subsuming some aspects of [13] and [5]; and all other cases are unknown); to

�nd applications in algebraic geometry and commutative algebra; and to further develop a

constructive account of algebraic geometry.

Synthetic algebraic geometry
The internal language machinery also allows to develop a synthetic account of algebraic

geometry, similar to the existing synthetic accounts of di�erential geometry [7], domain

theory [6], computability theory [1], and more recently and very successfully homotopy

theory [16] and related subjects [11, 12, 10]. The synthetic approaches allow in each case to

encode the objects of study directly as (nonclassical) sets, with geometric, domain-theoretic,

computability-theoretic, or homotopy-theoretic structure being automatically provided for.

The home for synthetic algebraic geometry over a base scheme S is the internal universe

of the big Zariski topos of S. In the toposes used for synthetic di�erential geometry, the

statement “any set-theoretic map R→ R is smooth” is true, appropriately formulated. In the

big Zariski topos, the statement “any set-theoretic map A1
S → A1

S is a polynomial function”

is true. This property of the a�ne line over S endows the internal universe with a distinctive

algebraic �avor and neatly captures the general intuition we have about algebraic geometry:

“Everything is polynomial.”

In my PhD studies, I found internal de�nitions of the concepts of a�ne schemes and

general schemes, open and closed immersions, quasicompact and quasiseparated morphisms,

universally closed and proper morphisms, and several related notions. Central to the theory

is “synthetic quasicoherence”, an internal rendition of what it means for a sheaf of modules to

be quasicoherent; all other notions depend on this, and all known internal properties of A1
S

(such as its �eld property – �rst discovered by Kock [8] – or that it is algebraically closed in a

weak sense) follow from the fact that A1
S is synthetically quasicoherent.

The synthetic account is not nearly as well-developed as the synthetic account of di�erential

geometry, its closest cousin. In the future, I want to further the theory with the goal of

interpreting a nontrivial amount of algebraic geometry in the synthetic setting; to �nd

additional interesting properties of A1
S ; to understand whether it’s indeed the case that all

properties of A1
S follow from its synthetic quasicoherence and if so, in which precise sense; to

internally characterize subtoposes of the big Zariski topos, corresponding to �ner topologies;

and to extract applications in algebraic geometry, particularly pertaining to topologies other

than the Zariski topology.
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