0.1 74. Hausaufgabe

0.1.1 Geometrie-Buch Seite 129, Aufgabe 3

Warum ist die Menge aller Polynome von genau zweitem Grad (Koeffizient $a_2 \neq 0$) kein Vektorraum mit den Verknüpfungen vom [Vektorraum aller Polynome dritten Grades]?

Weil es keinen Nullvektor gibt $(0x^2 + 0x + 0$ wegen der Bedingung $a_2 \neq 0$ ausgeschlossen).

0.1.2 Geometrie-Buch Seite 129, Aufgabe 6

Sind folgende Mengen von Tripeln Vektorräume mit den Verknüpfungen vom [dreidimensionalen arithmetischen Vektorraum]?

- **a)** $M = \{(a, b, c) | a = 2b \land a, b, c \in \mathbb{R}\};$ Ja.
- **b)** $M = \{(a, b, c) | a \le b \le c \land a, b, c \in \mathbb{R}\};$ Nein: (1, 2, 3) hat kein Inverses $((-1, -2, -3) \notin M)$.
- **c)** $M=\{(a,b,c)|ab=0 \land a,b,c \in \mathbb{R}\};$ Nein: $(a,0,c)+(0,\beta,\gamma)=(a,\beta,c+\gamma) \not\in M;$ ($a\beta$ nicht allgemein 0)
- **d)** $M = \{(a, b, c) | a = b = c \land a, b, c \in \mathbb{R}\};$ Ja, M ist isomorph zu \mathbb{R}^1 .
- **e)** $M=\{(a,b,c)|a=b^2\wedge a,b,c\in\mathbb{R}\};$ Nein. $-(b^2,b,c)=(-b^2,-b,-c)\not\in M; \{(-b)^2=b^2\neq -b^2\}.$
- **f)** $M=\{(a,b,c)|k_1a+k_2b+k_3c=0 \land a,b,c\in\mathbb{R}\};\ k_i \text{ seien feste reelle Zahlen.}$

Ja, da $k_i = 0$ möglich, ist $M = \mathbb{R}^3$ und bildet damit mit den üblichen Verknüpfungen einen Vektorraum.

0.1.3 Geometrie-Buch Seite 130, Aufgabe 7

M sei die Menge alle Paare reeller Zahlen.

Zeige: M ist kein Vektorraum über \mathbb{R} , wenn die Verknüpfungen (+) und (\cdot) so definiert werden:

- **a)** $(a,b)+(c,d)=(a+c,b+d); \quad \mu\cdot(a,b)=(\mu a,b);$ Nein: $(0,0)=0\cdot(a,b)\neq(-1+1)\cdot(a,b)=(-1)\cdot(a,b)+(a,b)=(-a,b)+(a,b)=(0,2b);$ (Verletzung des Distributivgesetzes für Skalare)
- **b)** $(a,b)+(c,d)=(a,b); \quad \mu\cdot(a,b)=(\mu a,\mu b);$ Nein: $a+b=a\neq b=b+a$ (Verletzung des Kommutativgesetzes)
- **c)** $(a,b)+(c,d)=(a+c,b+d); \quad \mu\cdot(a,b)=(\mu^2a,\mu^2b);$ Nein: $(-1)\cdot(a,b)=(a,b)=1\cdot(a,b);$ (Mehrere neutrale Elemente)