0.1 14. Hausaufgabe

0.1.1 Zusammenfassung der Seite 198

Plattenkondensator

Ein Plattenkondensator besteht aus zwei parallelen Metallplatten. Die Metallplatten müssen durch einen Isolator getrennt sein.

Kapazität

Durch Versuche erkennt man, dass die Ladung Q, die auf einen Kondensator fließt, der angelegten Spannung U direkt proportional ist. Den Proportionalitätsfaktor C nennt man die Kapazität eines Kondensators.

$$C = \frac{Q}{U};$$

Die Einheit der Kapazität ist $\frac{C}{V}$ oder F (Faraday). "Nimmt ein Kondensator bei einer angelegten Spannung von 1V 1C an Ladung auf, so hat er eine Kapazität von 1F.

Kapazität eines Plattenkondensators

Durch Einsetzung der Gleichungen $U = \mathcal{E}d$ und $\frac{Q}{A} = \varepsilon_0 \mathcal{E}$ in $C = \frac{Q}{U}$ ergibt sich $C = \varepsilon_0 \frac{A}{d}$, d.h. die Kapazität ist dem Quotienten aus der Größe und dem Abstand der Platten proportional.

0.1.2 Buch Seite 199, Aufgabe 1

Ein Kondensator nimmt bei der Spannung $U=3\,\mathrm{kV}$ die Ladung $Q=24\,\mathrm{nC}$ auf. Berechnen Sie die Kapazität.

$$C = \frac{Q}{U} = 8 \cdot 10^{-12} \,\mathrm{F};$$

0.1.3 Buch Seite 199, Aufgabe 2

Ein Platttenkondensator wird aufgeladen und dann von der Spannungsquelle getrennt. Wie ändern sich die Feldstärke \mathcal{E} und die Spannung U, wenn man den Plattenabstand halbiert?

$$\mathcal{E} = \frac{U}{d} = \frac{Q}{Cd} = \frac{Qd}{\varepsilon_0 Ad} = \frac{Q}{\varepsilon_0 A};$$

$$U = \frac{Q}{C} = \frac{Qd}{\varepsilon_0 A};$$

- $\Rightarrow \mathcal{E}$ ändert sich nicht, wenn man den Plattenabstand halbiert.
- $\Rightarrow U$ ist nach Halbierung des Plattenabstandes nur noch halb so groß.

(Benötigte Zeit: 37 min)