

♥ P vs. NP ♥

the biggest open question in computer science

- an invitation -

37th Chaos Communication Congress *Questions are very much welcome! Please interrupt me mid-sentence.*

Ingo Blechschmidt

Def. An algorithm *A* **runs in polynomial time** if and only if there is some polynomial *p* such that, for every input *I*

number of steps for computing $A(I) \leq p(|I|)$,

where |I| is the length of an encoding of I in bits.

Def. An algorithm *A* **runs in polynomial time** if and only if there is some polynomial *p* such that, for every input *I*

number of steps for computing $A(I) \leq p(|I|)$,

where |I| is the length of an encoding of I in bits.

Def. A problem is **in P** if and only if there is is a decision algorithm which **runs in polynomial time**.

Ex. Primality testing, node reachability, ...

Def. An algorithm *A* **runs in polynomial time** if and only if there is some polynomial *p* such that, for every input *I*

number of steps for computing $A(I) \leq p(|I|)$,

where |I| is the length of an encoding of I in bits.

Def. A problem is **in P** if and only if there is is a decision algorithm which **runs in polynomial time**.

Ex. Primality testing, node reachability, ...

Def. A problem is **in NP** if and only if there is an algorithm which verifies **wannabe certificates for a positi-ve answer** in polynomial time.

Ex. 3SAT, Sudoku, TSP, graph coloring, proof search, ...

Def. An algorithm *A* **runs in polynomial time** if and only if there is some polynomial *p* such that, for every input *I*

number of steps for computing $A(I) \leq p(|I|)$,

where |I| is the length of an encoding of I in bits.

Def. A problem is **in P** if and only if there is is a decision algorithm which **runs in polynomial time**.

Ex. Primality testing, node reachability, ...

Def. A problem is **in NP** if and only if there is an algorithm which verifies **wannabe certificates for a positi-ve answer** in polynomial time.

Ex. 3SAT, Sudoku, TSP, graph coloring, proof search, ...

Prop. Every P-problem is also in NP: $P \subseteq NP$.

 $\begin{array}{rcl} P & \subseteq & NP & \subseteq & PSPACE & \subseteq & EXP \\ & & & & \cup I & & \\ & & NP-C & PSPACE-C \end{array}$

- **P** iff there is a **polynomial-time** decision algorithm.
- **NP** iff there is a polynomial-time algorithm which verifies wannabe certificates for a positive answer.

 $\begin{array}{rcl} P & \subseteq & NP & \subseteq & PSPACE & \subseteq & EXP \\ & & & & \cup I & & \\ & & NP-C & PSPACE-C \end{array}$

- P iff there is a **polynomial-time** decision algorithm.
- **NP** iff there is a polynomial-time algorithm which verifies wannabe certificates for a positive answer.
- **NP-C** iff it is in NP and if every NP-problem is **reducible** to *T* in polynomial time.

 $\begin{array}{rcl} P & \subseteq & NP & \subseteq & PSPACE & \subseteq & EXP \\ & & & & \cup I & & \\ & & NP-C & PSPACE-C \end{array}$

- P iff there is a **polynomial-time** decision algorithm.
- **NP** iff there is a polynomial-time algorithm which verifies wannabe certificates for a positive answer.
- **NP-C** iff it is in NP and if every NP-problem is **reducible** to *T* in polynomial time.
- **PSPACE** iff there is a **polynomial-space** decision algorithm.

 $\begin{array}{rcl} P & \subseteq & NP & \subseteq & PSPACE & \subseteq & EXP \\ & & & & \cup I & & \\ & & NP-C & PSPACE-C \end{array}$

- P iff there is a **polynomial-time** decision algorithm.
- **NP** iff there is a polynomial-time algorithm which verifies wannabe certificates for a positive answer.
- **NP-C** iff it is in NP and if every NP-problem is **reducible** to *T* in polynomial time.
- **PSPACE** iff there is a **polynomial-space** decision algorithm.
- **PSPACE-C** iff it is in PSPACE and if every PSPACE-problem is reducible to *T* in polynomial time.

 $\begin{array}{rcl} P \ \subseteq \ NP \ \subseteq \ PSPACE \ \subseteq \ EXP \\ \cup I & \cup I \\ NP-C & PSPACE-C \end{array}$

- **P** iff there is a **polynomial-time** decision algorithm.
- **NP** iff there is a polynomial-time algorithm which verifies wannabe certificates for a positive answer.
- **NP-C** iff it is in NP and if every NP-problem is **reducible** to *T* in polynomial time.
- **PSPACE** iff there is a **polynomial-space** decision algorithm.
- **PSPACE-C** iff it is in PSPACE and if every PSPACE-problem is reducible to *T* in polynomial time.
- **EXP** iff there is an **exponential-time** decision algorithm.

 $\begin{array}{rcl} P \ \subseteq \ NP \ \subseteq \ PSPACE \ \subseteq \ EXP \\ \cup I & \cup I \\ NP-C & PSPACE-C \end{array}$

- **P** iff there is a **polynomial-time** decision algorithm.
- **NP** iff there is a polynomial-time algorithm which verifies wannabe certificates for a positive answer.
- **NP-C** iff it is in NP and if every NP-problem is **reducible** to *T* in polynomial time.
- **PSPACE** iff there is a **polynomial-space** decision algorithm.
- **PSPACE-C** iff it is in PSPACE and if every PSPACE-problem is reducible to *T* in polynomial time.
- **EXP** iff there is an **exponential-time** decision algorithm.
- $P \neq EXP$, hence $P \neq NP$ or $NP \neq PSPACE$ or $PSPACE \neq EXP$.

Let *B* be a problem. A *B*-algorithm is an algorithm which has access to an oracle for *B*.

Let *B* be a problem. A *B*-algorithm is an algorithm which has access to an oracle for *B*.

Def. A problem is in P^B iff there is a polynomial-time decision *B*-algorithm. **Def.** A problem is in NP^B iff there is a polynomial-time *B*-algorithm which verifies wannabe certificates for a positive answer.

Let *B* be a problem. A *B*-algorithm is an algorithm which has access to an oracle for *B*.

Def. A problem is in P^B iff there is a polynomial-time decision *B*-algorithm. **Def.** A problem is in NP^B iff there is a polynomial-time *B*-algorithm which verifies wannabe certificates for a positive answer.

Prop. $P^B \subseteq NP^B \subseteq PSPACE^B$.

Let *B* be a problem. A *B*-algorithm is an algorithm which has access to an oracle for *B*.

Def. A problem is in P^B iff there is a polynomial-time decision *B*-algorithm. **Def.** A problem is in NP^B iff there is a polynomial-time *B*-algorithm which verifies wannabe certificates for a positive answer.

Prop. $P^B \subseteq NP^B \subseteq PSPACE^B$. **Prop.** If *B* is in NP-C, then $NP \subseteq P^B$.

Let *B* be a problem. A *B*-algorithm is an algorithm which has access to an oracle for *B*.

Def. A problem is in P^B iff there is a polynomial-time decision *B*-algorithm. **Def.** A problem is in NP^B iff there is a polynomial-time *B*-algorithm which verifies wannabe certificates for a positive answer.

Prop. $P^B \subseteq NP^B \subseteq PSPACE^B$. **Prop.** If *B* is in NP-C, then $NP \subseteq P^B$.

Thm. For some *B*, $P^B = NP^B$; and for some *B*, $P^B \neq NP^B$.

Let *B* be a problem. A *B*-algorithm is an algorithm which has access to an oracle for *B*.

Def. A problem is in P^B iff there is a polynomial-time decision *B*-algorithm. **Def.** A problem is in NP^B iff there is a polynomial-time *B*-algorithm which verifies wannabe certificates for a positive answer.

Prop. $P^B \subseteq NP^B \subseteq PSPACE^B$. **Prop.** If *B* is in NP-C, then $NP \subseteq P^B$.

Thm. For some B, $P^B = NP^B$; and for some B, $P^B \neq NP^B$. **Proof, first part.** Pick for *B* some problem in PSPACE-C. Then PSPACE $\subseteq P^B \subseteq NP^B \subseteq PSPACE^B \subseteq PSPACE$.

Let *B* be a problem. A *B*-algorithm is an algorithm which has access to an oracle for *B*.

Def. A problem is in P^B iff there is a polynomial-time decision *B*-algorithm. **Def.** A problem is in NP^B iff there is a polynomial-time *B*-algorithm which verifies wannabe certificates for a positive answer.

Prop. $P^B \subseteq NP^B \subseteq PSPACE^B$. **Prop.** If *B* is in NP-C, then $NP \subseteq P^B$.

Thm. For some B, $P^B = NP^B$; and for some B, $P^B \neq NP^B$. **Proof, first part.** Pick for B some problem in PSPACE-C. Then PSPACE $\subseteq P^B \subseteq NP^B \subseteq PSPACE^B \subseteq PSPACE$. **Proof, second part.** Pick for B a zero/one **random oracle**. Then the problem "do *n* consecutive ones occur in the first 2^n drawings of B?" is in NP^B but not in P^B.