- an invitation -

Exploring hypercomputation with the effective topos

Antwerp Logic Adventures December 2th, 2024

Ingo Blechschmidt University of Antwerp

1 Crash course on ordinal numbers

2 (Super) Turing machines

- Basics on Turing machines
- Bacis on super Turing machines
- The power of super Turing machines
- Outlook on the larger theory

3 The effective topos

- First steps in the effective topos
- Curious size phenomena
- Wrapping up

Part I

A crash course on ordinal numbers

Part II

(Super) Turing machines

Basics on Turing machines

- Turing machines are idealized computers operating on an infinite tape according to a finite list of rules.
- The concept is astoundingly robust.
- A subset of \mathbb{N} is enumerable by a Turing machine if and only if it is a Σ_1 -set.

Alan Turing (* 1912, † 1954)

worth watching

Alison Bechdel (* 1960)

Super Turing machines

With super Turing machines, the time axis is more interesting:

- normal: 0, 1, 2, ...
- super: 0, 1, 2, ..., ω , $\omega + 1$, ..., $\omega \cdot 2$, $\omega \cdot 2 + 1$,

On reaching a limit ordinal time step like ω or $\omega\cdot 2,\ldots$

Super Turing machines

With super Turing machines, the time axis is more interesting:

- normal: 0, 1, 2, ...
- super: 0, 1, 2, ..., ω , $\omega + 1$, ..., $\omega \cdot 2$, $\omega \cdot 2 + 1$,

On reaching a limit ordinal time step like ω or $\omega\cdot 2,\ldots$

- the machine is put into a designated state,
- the read/write head is moved to the start of the tape, and
- the tape is set to the "lim sup" of all its previous contents.

Joel David Hamkins

Andy Lewis

A question for you

What's the behaviour of this super Turing machine?

In the start state and the limit state, check whether the current cell contains a "1".

- If yes, then stop.
- If not, then flash that cell: set it to "1", then reset it to "0". Then unremittingly move the head rightwards.

A question for you

What's the behaviour of this super Turing machine?

In the start state and the limit state, check whether the current cell contains a "1".

- If yes, then stop.
- If not, then flash that cell: set it to "1", then reset it to "0". Then unremittingly move the head rightwards.

This machine halts after time step ω^2 .

Super Turing machines can break out of (some kinds of) infinite loops.

What can super Turing machines do?

- Everything ordinary Turing machines can do.
- Verify number-theoretic statements.
- Decide whether a given ordinary Turing machine halts.
- Simulate super Turing machines.
- Decide Π_1^1 and Σ_1^1 -statements:
 - "For every function $\mathbb{N} \to \mathbb{N}$ it holds that ..."
 - "There is a function $\mathbb{N} \to \mathbb{N}$ such that ..."

What can super Turing machines do?

- Everything ordinary Turing machines can do.
- Verify number-theoretic statements.
- Decide whether a given ordinary Turing machine halts.
- Simulate super Turing machines.
- Decide Π_1^1 and Σ_1^1 -statements:
 - "For every function $\mathbb{N} \to \mathbb{N}$ it holds that ..."
 - "There is a function $\mathbb{N} \to \mathbb{N}$ such that ..."

But: Super Turing machines can't compute all functions and can't write every 0/1-sequence to the tape.

Fun facts

- Every super Turing machine either halts or gets caught in an unbreakable infinite loop after countably many steps.
- An ordinal number α is clockable iff there is a super Turing machine which halts precisely after time step α.
 - Speed-up Lemma: If $\alpha + n$ is clockable, then so is α .
 - Big Gaps Theorem
 - Many Gaps Theorem
 - Gapless Blocks Theorem
- Lost Melody Theorem: There are 0/1-sequences which a super Turing machine can recognize, but not write to the tape.

Part III

The effective topos

	statement	in Set	in $\mathrm{Eff}(\mathrm{TM})$	in Eff(STM)
1	Every number is prime or not prime.	🗸 (trivially)	1	1
2	Beyond every number there is a prime.	1	1	1
3	Every map $\mathbb{N} \to \mathbb{N}$ has a zero or not.	🗸 (trivially)	×	1
4	Every map $\mathbb{N} \to \mathbb{N}$ is computable.	×	?	?
5	Every map $\mathbb{R} o \mathbb{R}$ is continuous.	×	?	?
6	Markov's principle holds.	🗸 (trivially)	?	?
7	Countable choice holds.	1	?	?
8	There is an injection $\mathbb{R} \hookrightarrow \mathbb{N}$.	×	?	?

statement	in Set	in Eff(TM)	in Eff(STM)
Every number is prime or not prime.	🗸 (trivially)	1	1
2 Beyond every number there is a prime.	1	1	1
3 Every map $\mathbb{N} \to \mathbb{N}$ has a zero or not.	🗸 (trivially)	×	1
4 Every map $\mathbb{N} o \mathbb{N}$ is computable.	×	?	?
5 Every map $\mathbb{R} o \mathbb{R}$ is continuous.	×	?	?
6 Markov's principle holds.	🗸 (trivially)	?	?
7 Countable choice holds.	1	?	?
8 There is an injection $\mathbb{R} \hookrightarrow \mathbb{N}$.	×	?	?

"Eff(TM) $\models 1$ " amounts to: There is a Turing machine which determines of any given number whether it is prime or not.

statement	in Set	in Eff(TM)	in Eff(STM)
Every number is prime or not prime.	🗸 (trivially)	1	1
2 Beyond every number there is a prime.	1	1	1
3 Every map $\mathbb{N} \to \mathbb{N}$ has a zero or not.	🗸 (trivially)	×	1
4 Every map $\mathbb{N} ightarrow \mathbb{N}$ is computable.	×	?	?
5 Every map $\mathbb{R} o \mathbb{R}$ is continuous.	×	?	?
6 Markov's principle holds.	🗸 (trivially)	?	?
7 Countable choice holds.	1	?	?
8 There is an injection $\mathbb{R} \hookrightarrow \mathbb{N}$.	×	?	?

"Eff(TM) $\models 2$ " amounts to: There is a Turing machine which, given a number *n*, computes a prime larger than *n*.

statement	in Set	in Eff(TM)	in Eff(STM)
Every number is prime or not prime.	✓ (trivially)	1	1
2 Beyond every number there is a prime.	1	1	1
3 Every map $\mathbb{N} \to \mathbb{N}$ has a zero or not.	🗸 (trivially)	×	1
4 Every map $\mathbb{N} \to \mathbb{N}$ is computable.	×	?	?
5 Every map $\mathbb{R} o \mathbb{R}$ is continuous.	×	?	?
6 Markov's principle holds.	🗸 (trivially)	?	?
7 Countable choice holds.	1	?	?
8 There is an injection $\mathbb{R} \hookrightarrow \mathbb{N}$.	×	?	?

"Eff(TM) $\models 3$ " amounts to: There is a Turing machine which, given a Turing machine computing a map $f : \mathbb{N} \to \mathbb{N}$, determines whether f has a zero or not.

statement	in Set	in Eff(TM)	in Eff(STM)
Every number is prime or not prime.	🗸 (trivially)	1	1
2 Beyond every number there is a prime.	1	1	1
3 Every map $\mathbb{N} \to \mathbb{N}$ has a zero or not.	🗸 (trivially)	×	1
4 Every map $\mathbb{N} o \mathbb{N}$ is computable.	×	🗸 (trivially)	?
5 Every map $\mathbb{R} o \mathbb{R}$ is continuous.	×	?	?
6 Markov's principle holds.	🗸 (trivially)	?	?
7 Countable choice holds.	\checkmark	?	?
8 There is an injection $\mathbb{R} \hookrightarrow \mathbb{N}$.	×	?	?

"Eff(TM) $\models \blacksquare$ " amounts to: There is a Turing machine which, given a Turing machine computing a map $f : \mathbb{N} \to \mathbb{N}$, outputs a Turing machine computing f.

statement	in Set	in Eff(TM)	in Eff(STM)
Every number is prime or not prime.	🗸 (trivially)	1	1
2 Beyond every number there is a prime.	1	1	1
3 Every map $\mathbb{N} \to \mathbb{N}$ has a zero or not.	🗸 (trivially)	×	1
4 Every map $\mathbb{N} o \mathbb{N}$ is computable.	×	🗸 (trivially)	×
5 Every map $\mathbb{R} o \mathbb{R}$ is continuous.	×	?	?
6 Markov's principle holds.	🗸 (trivially)	?	?
7 Countable choice holds.	\checkmark	?	?
8 There is an injection $\mathbb{R} \hookrightarrow \mathbb{N}$.	×	?	?

"Eff(STM) $\models \blacksquare$ " amounts to: There is a super Turing machine which, given a *super* Turing machine computing a map $f : \mathbb{N} \to \mathbb{N}$, outputs an (*ordinary*) Turing machine computing f.

	statement	in Set	in $\operatorname{Eff}(\mathrm{TM})$	in $\operatorname{Eff}(\operatorname{STM})$
1	Every number is prime or not prime.	🗸 (trivially)	1	1
2	Beyond every number there is a prime.	1	1	1
3	Every map $\mathbb{N} \to \mathbb{N}$ has a zero or not.	🗸 (trivially)	×	1
4	Every map $\mathbb{N} \to \mathbb{N}$ is computable.	×	🗸 (trivially)	×
5	Every map $\mathbb{R} o \mathbb{R}$ is continuous.	×	🗸 (if MP)	?
6	Markov's principle holds.	🗸 (trivially)	?	?
7	Countable choice holds.	1	?	?
8	There is an injection $\mathbb{R} \hookrightarrow \mathbb{N}$.	×	?	?

A real number of Eff(TM) is externally represented by a Turing machine M which on input n outputs a rational approximation M(n). These approximations need to be compatible in that $|M(n) - M(m)| \le 2^{-n} + 2^{-m}$ for all n, m.

Two such machines M and M' represent the same real number iff $|M(n) - M'(m)| \le 2^{-n} + 2^{-m}$ for all n, m.

	statement	in Set	in $\operatorname{Eff}(\mathrm{TM})$	in $\operatorname{Eff}(\operatorname{STM})$
1	Every number is prime or not prime.	🗸 (trivially)	1	1
2	Beyond every number there is a prime.	1	1	1
3	Every map $\mathbb{N} \to \mathbb{N}$ has a zero or not.	🗸 (trivially)	×	1
4	Every map $\mathbb{N} o \mathbb{N}$ is computable.	×	🗸 (trivially)	X
5	Every map $\mathbb{R} o \mathbb{R}$ is continuous.	×	🗸 (if MP)	X
6	Markov's principle holds.	🗸 (trivially)	?	?
7	Countable choice holds.	1	?	?
8	There is an injection $\mathbb{R} \hookrightarrow \mathbb{N}$.	×	?	?

A real number of Eff(TM) is externally represented by a Turing machine M which on input n outputs a rational approximation M(n). These approximations need to be compatible in that $|M(n) - M(m)| \le 2^{-n} + 2^{-m}$ for all n, m.

Two such machines M and M' represent the same real number iff $|M(n) - M'(m)| \le 2^{-n} + 2^{-m}$ for all n, m.

statement	in Set	in Eff(TM)	in Eff(STM)
Every number is prime or not prime.	🗸 (trivially)	1	1
2 Beyond every number there is a prime.	1	1	1
3 Every map $\mathbb{N} \to \mathbb{N}$ has a zero or not.	🗸 (trivially)	×	1
4 Every map $\mathbb{N} o \mathbb{N}$ is computable.	×	🗸 (trivially)	×
5 Every map $\mathbb{R} o \mathbb{R}$ is continuous.	×	🗸 (if MP)	×
6 Markov's principle holds.	🗸 (trivially)	🗸 (if MP)	?
7 Countable choice holds.	1	?	?
8 There is an injection $\mathbb{R} \hookrightarrow \mathbb{N}$.	×	?	?

Markov's principle states: $\forall f : \mathbb{N} \to \mathbb{N}$. $\neg \neg (\exists n \in \mathbb{N}. f(n) = 0) \Rightarrow (\exists n \in \mathbb{N}. f(n) = 0)$.

"Eff(TM) $\models \mathbf{\overline{o}}$ " amounts to: There is a Turing machine which, given a Turing machine computing a map $f : \mathbb{N} \to \mathbb{N}$ and given the promise that it is *not not* the case that f has a zero, determines a zero of f.

statement	in Set	in Eff(TM)	in Eff(STM)
Every number is prime or not prime.	🗸 (trivially)	1	1
2 Beyond every number there is a prime.	1	1	1
3 Every map $\mathbb{N} \to \mathbb{N}$ has a zero or not.	🗸 (trivially)	×	1
4 Every map $\mathbb{N} o \mathbb{N}$ is computable.	×	🗸 (trivially)	×
5 Every map $\mathbb{R} o \mathbb{R}$ is continuous.	×	🗸 (if MP)	×
6 Markov's principle holds.	🗸 (trivially)	🗸 (if MP)	🗸 (if MP)
7 Countable choice holds.	1	?	?
8 There is an injection $\mathbb{R} \hookrightarrow \mathbb{N}$.	×	?	?

Markov's principle states: $\forall f : \mathbb{N} \to \mathbb{N}$. $\neg \neg (\exists n \in \mathbb{N}. f(n) = 0) \Rightarrow (\exists n \in \mathbb{N}. f(n) = 0)$.

"Eff(TM) $\models \mathbf{\overline{o}}$ " amounts to: There is a Turing machine which, given a Turing machine computing a map $f : \mathbb{N} \to \mathbb{N}$ and given the promise that it is *not not* the case that f has a zero, determines a zero of f.

statement	in Set	in Eff(TM)	in Eff(STM)
Every number is prime or not prime.	🗸 (trivially)	1	1
2 Beyond every number there is a prime.	1	1	1
3 Every map $\mathbb{N} \to \mathbb{N}$ has a zero or not.	🗸 (trivially)	×	1
4 Every map $\mathbb{N} o \mathbb{N}$ is computable.	×	🗸 (trivially)	×
5 Every map $\mathbb{R} o \mathbb{R}$ is continuous.	×	🗸 (if MP)	×
6 Markov's principle holds.	🗸 (trivially)	🗸 (if MP)	🗸 (if MP)
7 Countable choice holds.	1	🗸 (always!)	?
8 There is an injection $\mathbb{R} \hookrightarrow \mathbb{N}$.	×	?	?

Countable choice states: $(\forall x \in \mathbb{N}. \exists y \in A. \varphi(x, y)) \Rightarrow (\exists f : \mathbb{N} \to A. \forall x \in \mathbb{N}. \varphi(x, f(x))).$

"Eff(TM) \models "2" amounts to: There is a Turing machine which, given a Turing machine computing for every $x \in \mathbb{N}$ some $y \in A$ together with a witness of $\varphi(x, y)$, outputs a Turing machine computing a suitable choice function $\mathbb{N} \to A$.

statement	in Set	in Eff(TM)	in Eff(STM)
Every number is prime or not prime.	🗸 (trivially)	1	1
2 Beyond every number there is a prime.	1	1	1
3 Every map $\mathbb{N} \to \mathbb{N}$ has a zero or not.	🗸 (trivially)	×	1
4 Every map $\mathbb{N} \to \mathbb{N}$ is computable.	×	🗸 (trivially)	×
5 Every map $\mathbb{R} o \mathbb{R}$ is continuous.	×	🗸 (if MP)	×
6 Markov's principle holds.	🗸 (trivially)	🗸 (if MP)	🗸 (if MP)
7 Countable choice holds.	1	🗸 (always!)	🗸 (always!)
8 There is an injection $\mathbb{R} \hookrightarrow \mathbb{N}$.	×	?	?

Countable choice states: $(\forall x \in \mathbb{N}. \exists y \in A. \varphi(x, y)) \Rightarrow (\exists f : \mathbb{N} \to A. \forall x \in \mathbb{N}. \varphi(x, f(x))).$

"Eff(TM) \models "2" amounts to: There is a Turing machine which, given a Turing machine computing for every $x \in \mathbb{N}$ some $y \in A$ together with a witness of $\varphi(x, y)$, outputs a Turing machine computing a suitable choice function $\mathbb{N} \to A$.

	statement	in Set	in $\mathrm{Eff}(\mathrm{TM})$	in Eff(STM)
1	Every number is prime or not prime.	🗸 (trivially)	1	1
2	Beyond every number there is a prime.	1	1	1
3	Every map $\mathbb{N} \to \mathbb{N}$ has a zero or not.	🗸 (trivially)	×	1
4	Every map $\mathbb{N} o \mathbb{N}$ is computable.	×	🗸 (trivially)	×
5	Every map $\mathbb{R} o \mathbb{R}$ is continuous.	×	🗸 (if MP)	×
6	Markov's principle holds.	🗸 (trivially)	🗸 (if MP)	🗸 (if MP)
7	Countable choice holds.	1	🗸 (always!)	🗸 (always!)
8	There is an injection $\mathbb{R} \hookrightarrow \mathbb{N}$.	×	×	?

statement	in Set	in Eff(TM)	in Eff(STM)
Every number is prime or not prime.	🗸 (trivially)	1	1
2 Beyond every number there is a prime.	1	1	1
3 Every map $\mathbb{N} \to \mathbb{N}$ has a zero or not.	🗸 (trivially)	×	1
4 Every map $\mathbb{N} o \mathbb{N}$ is computable.	×	🗸 (trivially)	×
5 Every map $\mathbb{R} o \mathbb{R}$ is continuous.	×	🗸 (if MP)	X
6 Markov's principle holds.	🗸 (trivially)	🗸 (if MP)	🗸 (if MP)
7 Countable choice holds.	1	🗸 (always!)	🗸 (always!)
8 There is an injection $\mathbb{R} \hookrightarrow \mathbb{N}$.	×	×	1

Curious size phenomena

 $\operatorname{Eff}(\operatorname{STM}) \models$ "There exists an injection $\mathbb{R} \hookrightarrow \mathbb{N}$."

means:

There is a super Turing machine which inputs the source of a super Turing machine *A* representing a real number and outputs a natural number n(A) such that n(A) = n(B) if and only if *A* and *B* represent the same real.

Curious size phenomena

 $\operatorname{Eff}(\operatorname{STM}) \models$ "There exists an injection $\mathbb{R} \hookrightarrow \mathbb{N}$."

means:

There is a super Turing machine which inputs the source of a super Turing machine *A* representing a real number and outputs a natural number n(A) such that n(A) = n(B) if and only if *A* and *B* represent the same real.

This statement is witnessed by following super Turing machine:

Read the source of a super Turing machine *A* from the tape. Simulate all super Turing machines in a dovetailing fashion. As soon a machine is found which represents the same real as *A*, output the index of this machine and halt.

Wrapping up

- Effective toposes are a good vehicle for studying the nature of computation.
- Effective toposes build links between constructive mathematics and programming.
- Toposes allow for curious dream axioms.
- Toposes also have a geometric flavour: points, subtoposes, continuous maps between toposes.

Wrapping up

- Effective toposes are a good vehicle for studying the nature of computation.
- Effective toposes build links between constructive mathematics and programming.
- Toposes allow for curious dream axioms.
- Toposes also have a geometric flavour: points, subtoposes, continuous maps between toposes.

There is more to mathematics than the standard topos.

11/11