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Basics on Turing machines

Turing machines are idealized computers operating on an infinite tape
according to a finite list of rules.
The concept is astoundingly robust.
A subset of N is enumerable by a Turing machine if and only if it is a Σ1-set.

Alan Turing
(* 1912, † 1954)

worth watching Alison Bechdel
(* 1960)
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Super Turing machines
With super Turing machines, the time axis is more interesting:

normal: 0, 1, 2, . . .
super: 0, 1, 2, . . . , ω, ω + 1, . . . , ω · 2, ω · 2+ 1, . . . . . . . . . . . . . . . . . .

On reaching a limit ordinal time step like ω or ω · 2, . . .

the machine is put into a designated state,
the read/write head is moved to the start of the tape, and
the tape is set to the “lim sup” of all its previous contents.

Joel David Hamkins MathOverflow Andy Lewis
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A question for you
What’s the behaviour of this super Turing machine?

In the start state and the limit state, check whether the current cell
contains a “1”.

If yes, then stop.
If not, then flash that cell: set it to “1”, then reset it to “0”.
Then unremittingly move the head rightwards.

This machine halts after time step ω2.

Super Turing machines can break out of
(some kinds of) infinite loops.
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What can super Turing machines do?
Everything ordinary Turing machines can do.
Verify number-theoretic statements.
Decide whether a given ordinary Turing machine halts.
Simulate super Turing machines.
Decide Π1

1- and Σ1
1-statements:

“For every function N → N it holds that . . . ”
“There is a function N → N such that . . . ”

But: Super Turing machines can’t compute all functions and can’t write every
0/1-sequence to the tape.
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Fun facts

Every super Turing machine either halts or gets caught in an unbreakable
infinite loop after countably many steps.
An ordinal number α is clockable iff there is a super Turing machine which
halts precisely after time step α.

Speed-up Lemma: If α+ n is clockable, then so is α.
Big Gaps Theorem
Many Gaps Theorem
Gapless Blocks Theorem

Lost Melody Theorem: There are 0/1-sequences which a
super Turing machine can recognize, but not write to the tape.
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The effective topos
statement in Set in Eff(TM) in Eff(STM)

1 Every number is prime or not prime. ✓ (trivially) ✓ ✓
2 Beyond every number there is a prime. ✓ ✓ ✓
3 Every map N → N has a zero or not. ✓ (trivially) ✗ ✓
4 Every map N → N is computable. ✗

(trivially)

5 Every map R → R is continuous. ✗
6 Markov’s principle holds. ✓ (trivially)
7 Countable choice holds. ✓
8 There is an injection R ↪→ N. ✗

There is a Turing machine which determines of any given number whether it is prime or
not.
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The effective topos
statement in Set in Eff(TM) in Eff(STM)
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computing a map f : N → N, determines whether f has a zero or not.
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The effective topos
statement in Set in Eff(TM) in Eff(STM)

1 Every number is prime or not prime. ✓ (trivially) ✓ ✓
2 Beyond every number there is a prime. ✓ ✓ ✓
3 Every map N → N has a zero or not. ✓ (trivially) ✗ ✓
4 Every map N → N is computable. ✗ ✓ (trivially) ✗
5 Every map R → R is continuous. ✗ ✓ (if MP)
6 Markov’s principle holds. ✓ (trivially)
7 Countable choice holds. ✓
8 There is an injection R ↪→ N. ✗

A real number of Eff(TM) is externally represented by a TuringmachineM which on input n
outputs a rational approximation M(n). These approximations need to be compatible in
that |M(n)−M(m)| ≤ 2−n + 2−m for all n,m.
Two such machines M and M ′ represent the same real number iff |M(n) − M ′(m)| ≤
2−n + 2−m for all n,m.
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“Eff(TM) |= 6 ” amounts to: There is a Turing machine which, given a Turing machine
computing a map f : N → N and given the promise that it is not not the case that f has a
zero, determines a zero of f .
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The effective topos
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Countable choice states:
(
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)
⇒

(
∃f : N → A. ∀x ∈ N. φ(x, f (x))

)
.

“Eff(TM) |= 7 ” amounts to: There is a Turing machine which, given a Turing machine
computing for every x ∈ N some y ∈ A together with a witness of φ(x, y), outputs a
Turing machine computing a suitable choice function N → A.
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Curious size phenomena
Eff(STM) |= “There exists an injection R ↪→ N.”

means:
There is a super Turing machine which inputs the source of a super
Turing machine A representing a real number and outputs a natural
number n(A) such that n(A) = n(B) if and only if A and B represent
the same real.

This statement is witnessed by following super Turing machine:

Read the source of a super TuringmachineA from the tape. Simulate
all super Turing machines in a dovetailing fashion. As soon a
machine is found which represents the same real as A, output the
index of this machine and halt.
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Wrapping up

Effective toposes are a good vehicle for studying the nature of computation.
Effective toposes build links between constructive mathematics and
programming.
Toposes allow for curious dream axioms.
Toposes also have a geometric flavour:
points, subtoposes, continuous maps between toposes.

There is more to mathematics than the standard topos.
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