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Modal operators for a constructive account of well quasi-orders



Well quasi-orders
Def. Let (X ,≤) be a quasi-order.

A sequence α : N → X is good iff there exist i < j with α i ≤ α j.
The quasi-order X is well iff every sequence N → X is good.

Natural numbers

Prop. (N,≤) is well.

Proof. Let α : N → N. By lem , there is

a minimum α i. Set j := i + 1.

offensive?

Key stability results

Assuming lem and dc , . . .

Dickson: If X and Y are well, so is X × Y .
Higman: If X is well, so is X⋆

.

Kruskal: If X is well, so is Tree(X).

Def. A quasi-order X is wellind iff there exists amodulus of wellness for X .
With bar induction,wellind ⇐ well∞.

Constructively, wellind ⇒ well∞. Moreover, if X is wellind, then . . .

for every partial function α, if ∀n.¬¬(α n ↓), then ¬¬∃i < j. α i ↓ ∧α j ↓ ∧α i ≤ α j.
for every multivalued function α,∃i < j. ∃x ∈ α i.∃y ∈ α j. x ≤ y.

Central insight: A quasi-order X is wellind iff ∀α : N → X .∃i < j. α i ≤ α j.
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Modal operators for a constructive account of well quasi-orders

Well quasi-orders

Well quasi-orders are an important notion in proof theory and termination analysis.
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Modal operators for a constructive account of well quasi-orders

Well quasi-orders

The presented proof rests on the law of excludedmiddle and hence cannot immediately be interpreted

as a program for finding suitable indices i < j. However, constructive proofs are also possible (for

instance by induction on the value of a given term of the sequence, see Constructive combinatorics

of Dickson’s Lemma by Iosif Petrakis for several fine quantitative results). And even more: There

is a procedure for regarding this proof—and many others in the theory of well quasi-orders—as

blueprints for more informative constructive proofs. This shall be our motto for today:

Do not take classical proofs literally, instead ask which constructive proofs they are blueprints for.

https://www.math.lmu.de/~petrakis/Dickson.pdf
https://www.math.lmu.de/~petrakis/Dickson.pdf
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The displayed stability results, along with several others, provide a flexible toolbox for construct-

ing new well quasi-orders from given ones. However, with the classical formulation of well, re-
named “well∞” on the next slide, these results are inherently classical.

In Higman’s lemma, the set X∗
of finite lists of elements of X is equipped with the following

ordering: We have x0 . . . xn−1 ≤ y0 . . . ym−1 iff there is an increasing injection f : {0, . . . , n− 1} →
{0, . . . ,m− 1} such that xi ≤ yf (i) for all i < n.
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Modal operators for a constructive account of well quasi-orders

Well quasi-orders

The dependence of the theory on well quasi-orders on classical transfinite methods is already present

in one of the first and central observations of this theory:

Lemma. Let X be well∞. Let α : N → X . Then there is an infinite increasing subsequence α i0 ≤
α i1 ≤ . . ..

Proof. Let K := {n ∈ N | ¬∃m > n. α n ≤ αm} be the set of indices of those terms which cannot

appear as the first component of a good pair. If K is in bijection withN, there is a subsequence α k0 ≤
α k1 ≤ . . . with k0, k1, . . . ∈ K . As X is well∞, this sequence is good, a contradiction.

Hence K is not in bijection with N. Assuming lem, it is hence bounded by a number N , and (again

with lem), for every index a > N there is an index b > a such that α a ≤ α b. Thus, assuming dc,

every number i0 > N is a suitable starting index for an infinite increasing subsequence.

The appeal to dependent choice can be removed by always picking the smallest possible next

index in N \ K , doable by yet another invocation of lem. But the result remains fundamentally

noneffective—in the special case X = ({0, 1},=), the statement of the lemma implies the infinite

pigeonhole principle.
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Modal operators for a constructive account of well quasi-orders

Well quasi-orders

Luckily, thanks to work by Thierry Coquand, Daniel Fridlender and Monika Seisenberger, a con-

structive substitute is available, the notion wellind. In classical mathematics (where lem and dc and

hence bar induction are available), this notion is equivalent to well∞.

The assertion “Good | [ ]” is pronounced “Good bars the empty list”, and is defined as follows: Let B
be a predicate on X⋆

. Then B | σ is inductively generated by the following two clauses.

1. If Bσ, then B | σ.
2. If B | σx for all x ∈ X , then B | σ.

Here σx denotes the concatenation of the list σ with the element x. The accompanying induction

principle is the following: Let Q be a predicate on X∗
such that, for all σ ∈ X∗

, Bσ ⇒ Qσ and

(∀x ∈ X .Q(σx)) ⇒ Qσ. Then, for all σ ∈ X∗
: If B | σ, then Qσ.

Intuitively, the assertion “B | σ” expresses (in a positive direct way) that no matter how σ evolves

to a longer finite list τ , eventually Bτ will hold.
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Def. A quasi-order X is wellind iff there exists a modulus of wellness for X .
With bar induction,wellind ⇐ well∞.
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for every partial function α, if ∀n.¬¬(α n ↓), then ¬¬∃i < j. α i ↓ ∧α j ↓ ∧α i ≤ α j.
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Modal operators for a constructive account of well quasi-orders

Well quasi-orders

The original notion well∞:

✓ short and simple

✓ constructively satisfied for the main examples (but

only because of the theory around wellind)

✓ concise abstract proofs (albeit employing transfinite

methods)

✗ main results not constructively attainable

✗ philosophically strenuous by the quantification over

all sequences

✗ not stable under “change of base”—a forcing extension

of the universe may well contain more sequences than

the base universe

✗ negative (universal) condition

The constructive substitute wellind:

✓ main results constructive

✓ stable under change of base

✓ positive (existential) condition

✗ proofs intriguing, but also somewhat

alien, not just some trivial reshuffling

of the classical arguments, classical se-

quence language cannot be used
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Modal operators for a constructive account of well quasi-orders

Well quasi-orders

Constructively, the notion wellind is much stronger than well∞, as it ensures goodness (in an

appropriate sense) of sequence-like entities which are not actually honest maps N → X .

For partial maps α, by α n ↓ we mean that α is defined on the input n. If lem is available, then a

partial map such that ¬¬(α n ↓) for all n ∈ N is already a total map, but without lem the hypothesis

well∞ does not have anything to say about such a partially-defined sequence.

If dc is available, then every multivalued map contains a singlevalued map, but again without dc

the hypothesis well∞ does not have anything to say about multivalued sequences.
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Modal operators for a constructive account of well quasi-orders

Well quasi-orders

It turns out that these entities are, or give rise to, actual maps N → X—but in a forcing extension of

the universe.

Forcing originated in set theory to construct new models for set theory from given ones, in order

to explore the range of set-theoretic possibility. For instance, by forcing we can construct models

of zfc validating the continuum hypothesis and also models which falsify it.

We here refer to a simplification of original forcing which is useful in a constructive metatheory.

At its core, every forcing extension is just a formula and proof translation of a certain form. For

instance, there is a forcing extension validating lem even if the base universe does not; this forcing

extension is not a deep mystery, for a statement holds in that forcing extension iff its double negation

translation holds in the base universe and it is well-known that the double negation translation

of lem is an intuitionistic tautology.

Here is a set of slides on constructive forcing, and Section 4 of this joint paper with Peter Schuster

contains a written summary of constructive forcing.

https://www.speicherleck.de/iblech/stuff/slides-herrsching2023.pdf
https://raw.githubusercontent.com/iblech/constructive-maximal-ideals/master/tex/extended.pdf


The modal multiverse of constructive forcing
Def. A statement φ holds . . .

everywhere ( φ) iff it holds in every topos (over the current base).
somewhere ( φ) iff it holds in some positive topos.
proximally ( φ) iff it holds in some positive overt topos.

Def. A (Grothendieck) topos is a category equivalent to the category

of sheaves over a small site.

Multiversal yoga:
1 A quasiorder is wellind iff everywhere, every sequence is good.

2 A ring element is nilpotent iff

all prime ideals everywhere contain it.

3 For every inhabited set X ,
proximally there exists an enumeration N↠ X .

4 For every ring, proximally there exists a maximal ideal.

5 Somewhere, the law of excluded middle holds.
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Modal operators for a constructive account of well quasi-orders

The modal multiverse of constructive forcing

By topos, we mean Grothendieck topos. In constructive forcing, a “forcing extension of the base

universe” is exactly the same thing as a Grothendieck topos.

A particular member of the rich and varied landscape of toposes is the trivial topos, in which every

statement whatsoever holds. By restricting to positive toposes, we exclude this special case.

For positive toposes E , a geometric implication holds in E iff it holds in the base universe. For

positive overt toposes E , we even have that a bounded first-order formula holds in E iff it holds in

the base. Hence, for the purpose of verifying a bounded first-order assertion about the base, we can

freely pass to a positive overt topos with problem-adapted better higher-order properties (such as

that some uncountable set from the base now appears countable, or that an infinite sequence whose

existence is predicted by failing dependent choice now actually exists).

Here is a rough early draft of a preprint with more details about the modal multiverse.

https://www.speicherleck.de/iblech/stuff/early-draft-modal-multiverse.pdf
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of sheaves over a small site.

Examples for toposes.
Set, the category of sets and maps.

The category of sets and maps which are defined up to ¬¬.

Set[G], the extension obtained by adding a generic filter of a
forcing notion (a quasi-order equipped with a coverage).

The following are not toposes:

The category of sets and partially defined maps.
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Modal operators for a constructive account of well quasi-orders

The modal multiverse of constructive forcing

The idea to study the modal multiverse of toposes in a principled manner was proposed by Alexander

Oldenziel in 2016. Foreshadowed by:

1984 André Joyal, Miles Tierney. “An extension of the Galois theory of Grothendieck”.

1987 Andreas Blass. “Well-ordering and induction in intuitionistic logic and topoi”.

2010s Milly Maietti, Steve Vickers. Ongoing work on arithmetic universes.

2011 Joel David Hamkins. “The set-theoretic multiverse”.

2013 Shawn Henry. “Classifying topoi and preservation of higher order logic by geometric

morphisms”.
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Modal operators for a constructive account of well quasi-orders

The modal multiverse of constructive forcing

With the modal language we seek to provide an accessible and modular framework for construc-

tivization results.

For instance, conservativity of classical logic over intuitionistic logic for geometric implications

(known under various names such as Barr’s theorem, Friedman’s trick, escaping the continuation

monad, . . . ) is packaged up by the observation that somewhere, the law of excluded middle holds.

Another example: In the community around Krull’s lemma, it is well-known that we can construc-

tively infer that a given ring element x ∈ A is nilpotent from knowing that it is contained in the

generic prime ideal of A. This entity is not actually an honest prime ideal of the ring A in the

base universe, but a certain combinatorial notion (efficiently dealt with using entailment relations).
Constructive forcing allows us to reify the generic prime ideal as an actual prime ideal in a suitable

forcing extension, so in a suitable topos (der little Zariski topos of the ring).



Multiversal constructive combinatorics
Prop. Let X and Y be wellind quasi-orders. Then X × Y is wellind.

Multiversal constructive proof. Let α = (β, γ) : N → X×Y be a sequence in an arbitrary

topos. We need to show that α is good, i. e. find indices n < m such that

β n ≤ βm and γ n ≤ γm.

It suffices to prove that somewhere, α is good, as goodness is a geometric implication (in

fact even a geometric formula). Hence without loss of generality, we may suppose lem.

Thus there is an infinite increasing subsequence

β k0 ≤ β k1 ≤ . . . .

As Y is wellind, the sequence (γ k0, γ k1, . . .) is good, so there exist i < j with γ ki ≤ γ kj .
Since we also have β ki ≤ β kj , we are done.
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Modal operators for a constructive account of well quasi-orders

Multiversal constructive combinatorics

The displayed multiversal proof closely mimics the classical proof (for well∞), but is fully con-

structive (for wellind). It would be possible to streamline this proof and unroll the topos-theoretic

machinery, to obtain an explicit algorithm of type

Good |X [ ]× Good |Y [ ] −→ Good |X×Y [ ].

The modal language was recently used to answer a question by Stefano Berardi, Gabriele Buriola

and Peter Schuster, see this set of slides.

https://www.speicherleck.de/iblech/stuff/slides-abmv2024.pdf#page=16


Multiversal constructive algebra
Thm. Let M be a surjective matrix with more rows than columns over a ring A.
Then 1 = 0 in A.

Classical proof. Assume not. Then there is a maximal idealm. The matrixM is surjective

over A/m. Since A/m is a field, this is a contradiction to basic linear algebra.

Multiversal constructive proof. We may work somewhere where lem holds. So assume

not. Proximally, there is a maximal ideal m. The matrix M is still surjective there, and
also over A/m. Since A/m is a field, this is a contradiction to basic linear algebra.

Unrolled constructive proof (special case). Write M = ( x
y ). By surjectivity, have u, v with

u ( x
y ) = ( 1

0
) and v ( x

y ) = ( 0

1
) .

Hence 1 = (vy)(ux) = (uy)(vx) = 0.

Agda formalization available.
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Modal operators for a constructive account of well quasi-orders

Multiversal constructive algebra

The displayed classical proof is quite efficient from the point of view of organizing mathematical

knowledge, as it quickly reduces the general situation of dealing with an arbitrary ring to dealing

with a field. Alas, read literally, it is hopeless ineffective.

https://iblech.github.io/constructive-maximal-ideals/
https://iblech.github.io/constructive-maximal-ideals/
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Multiversal constructive algebra

The displayed classical proof is quite efficient from the point of view of organizing mathematical

knowledge, as it quickly reduces the general situation of dealing with an arbitrary ring to dealing
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By employing modal language, we can closely mimic the original proof and be fully constructive at

the same time.
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Multiversal constructive algebra

The displayed classical proof is quite efficient from the point of view of organizing mathematical

knowledge, as it quickly reduces the general situation of dealing with an arbitrary ring to dealing

with a field. Alas, read literally, it is hopeless ineffective.

By employing modal language, we can closely mimic the original proof and be fully constructive at

the same time.

By unwinding all modal definitions, the modal proof can be unrolled to a fully explicit computation.
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Ingredients for forcing
To construct a forcing extension, we require:

1 a base universe V
2 a preorder L of forcing conditions in V, pictured as finite approximations
(convention: τ ≼ σ means that τ is a better finite approximation than σ)

3 a covering system governing how finite approximations evolve to better ones

(for each σ ∈ L, a set Cov(σ) ⊆ P(↓σ), with a simulation condition)

In the forcing extension V∇
, there will then be a generic filter (ideal object).

For the generic surjection N↠ X

Use finite lists σ ∈ X∗
as forcing conditions,

where τ ≼ σ iff σ is an initial segment of τ ,
and be prepared to grow σ to . . .

(a) one of {σx | x ∈ X}, to make σ more defined

(b) one of {στ | τ ∈ X∗, a ∈ στ}, for any a ∈ X ,
to make σ more surjective

For the generic prime ideal of a ring A

Use f.g. ideals as forcing conditions, where
b ≼ a iff b ⊇ a, and be prepared to grow a
to . . .

(a) one of ∅, if 1 ∈ a, to make a more proper

(b) one of {a+ (x), a+ (y)}, if xy ∈ a, to
make a more prime
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The eventually monad
Let L be a forcing notion.

Let P be a monotone predicate on L (if τ ≼ σ, then Pσ ⇒ Pτ ).
For instance, in the case L = X∗

:

Repeats x0 . . . xn−1
:≡ ∃i.∃j. i < j ∧ xi = xj

Good x0 . . . xn−1
:≡ ∃i. ∃j. i < j ∧ xi ≤ xj (for some preorder ≤ on X )

We then define “P | σ” (“P bars σ”) inductively by the following clauses:

1 If Pσ, then P | σ.
2 If P | τ for all τ ∈ R, where R is some covering of σ, then P | σ.

So P | σ expresses in a direct inductive fashion:

“No matter how σ evolves to a better approximation τ , eventually Pτ will hold.”

We use quantifier-like notation: “∇(τ ≼ σ). Pτ” means “P | σ”.
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Proof translations
Thm. Every iqc-proof remains correct, with at most a polynomial increase in length,

if throughout we replace

∃ ⇝ ∃cl, where ∃cl :≡ ¬¬∃,
∨ ⇝ ∨cl, where α ∨cl β :≡ ¬¬(α ∨ β),
= ⇝ =cl, where s =cl t :≡ ¬¬(s = t).

When we say: some statement “holds in V¬¬
”,

we mean: its translation holds in V .

Similarly for arbitrary forcing extensions V∇
, “just with∇ instead of ¬¬”.

Ex. As ¬¬(φ ∨ ¬φ) is a theorem of iqc, the law of excluded middle holds in V¬¬
.
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The ∇-translation
For bounded first-order formulas over the (large) first-order signature which has

1 one sort X for each set X in the base universe,

2 one n-ary function symbol f : X1 × · · · × Xn → Y for each map f : X1 × · · · × Xn → Y ,

3 one n-ary relation symbol R ↪→ X1 × · · · × Xn for each relation R ⊆ X1 × · · · × Xn, and

4 an additional unary relation symbol G ↪→ L (for the generic filter of L),

we recursively define:

σ ⊨ s = t iff ∇σ. JsK = JtK. σ ⊨ R(s1, . . . , sn) iff ∇σ. R(Js1K, . . . , JsnK).
σ ⊨ φ⇒ ψ iff ∀(τ ≼ σ). (τ ⊨ φ) ⇒ (τ ⊨ ψ). σ ⊨ Gτ iff ∇σ. σ ≼ JτK.
σ ⊨ ⊤ iff ⊤. σ ⊨ ⊥ iff ∇σ. ⊥
σ ⊨ φ ∧ ψ iff (σ ⊨ φ) ∧ (σ ⊨ ψ). σ ⊨ φ ∨ ψ iff ∇σ. (σ ⊨ φ) ∨ (σ ⊨ ψ).

σ ⊨ ∀(x :X). φ iff ∀(τ ≼ σ). ∀(x0 ∈ X). τ ⊨ φ[x0/x]. σ ⊨ ∃(x :X). φ iff ∇σ. ∃(x0 ∈ X). σ ⊨ φ[x0/x].

Finally, we say that φ “holds in V∇
” iff for all σ ∈ L, σ ⊨ φ.

forcing notion statement about V∇
external meaning

surjection N↠ X “the gen. surj. is surjective” ∀(σ∈X∗).∀(a∈X).∇(τ≼σ).∃(n∈N). τ [n] = a.

map N → X “the gen. sequence is good” Good | [ ].
frame of opens “every complex number has

a square root”

For every open U ⊆ X and every cont. function

f : U → C, there is an open covering U =
⋃

i Ui
such that for each index i, there is a cont. function
g : Ui → C such that g2 = f .

big Zariski “x ̸= 0 ⇒ x inv.” If the only f.p. k-algebra in which x = 0 is the zero

algebra, then x is invertible in k.
little Zariski “every f.g. vector space does

not not have a basis”
Grothendieck’s generic freeness lemma
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external meaning

surjection N↠ X “the gen. surj. is surjective” ∀(σ∈X∗).∀(a∈X).∇(τ≼σ).∃(n∈N). τ [n] = a.

map N → X “the gen. sequence is good” Good | [ ].
frame of opens “every complex number has

a square root”

For every open U ⊆ X and every cont. function

f : U → C, there is an open covering U =
⋃

i Ui
such that for each index i, there is a cont. function
g : Ui → C such that g2 = f .

big Zariski “x ̸= 0 ⇒ x inv.” If the only f.p. k-algebra in which x = 0 is the zero

algebra, then x is invertible in k.
little Zariski “every f.g. vector space does

not not have a basis”
Grothendieck’s generic freeness lemma
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Outlook
Passing to and from extensions

Thm. Let φ be a bounded first-order formula not mentioning G. In each of the following

situations, we have that φ holds in V∇
iff φ holds in V :

1 L and all coverings are inhabited (proximality).

2 L contains a top element, every covering of the top element is inhabited, and φ is a

coherent implication (positivity).

The mystery of nongeometric sequents

The generic ideal of a ring is maximal:

(x ∈ a ⇒ 1 ∈ a) =⇒ 1 ∈ a+ (x).

The generic ring is a field:

(x = 0 ⇒ 1 = 0) =⇒ (∃y. xy = 1).

Traveling the multiverse . . .

lem is a switch and holds positively;
being countable is a button.

Every instance of dc holds proximally.

A geometric implication is provable iff it

holds everywhere.
. . . upwards, but always keeping ties to the base. 10 / 4
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More on forcing notions
Def. A forcing notion consists of a preorder L of forcing conditions, and for every σ ∈ L, a
set Cov(σ) ⊆ P(↓σ) of coverings of σ such that: If τ ≼ σ and R ∈ Cov(σ), there should be a

covering S ∈ Cov(τ) such that S ⊆ ↓R.

preorder L coverings of an element σ ∈ L filters of L

1 X∗ {σx | x ∈ X} maps N → X
2 X∗ {σx | x ∈ X}, {στ | τ ∈ X∗, a ∈ στ} for each a ∈ X surjections N↠ X
3 f.g. ideals — ideals

4 f.g. ideals {σ + (a), σ + (b)} for each ab ∈ σ, {} if 1 ∈ σ prime ideals

5 opens U such that σ =
⋃
U points

6 {⋆} {⋆ |φ} ∪ {⋆ | ¬φ} witnesses of lem

Def. A filter of a forcing notion (L,Cov) is a subset F ⊆ L such that

1 F is upward-closed: if τ ≼ σ and if τ ∈ F , then σ ∈ F ;

2 F is downward-directed: F is inhabited, and if α, β ∈ F , then there is a common refinement σ ≼ α, β such that σ ∈ F ; and

3 F splits the covering system: if σ ∈ F and R ∈ Cov(σ), then τ ∈ F for some τ ∈ R.
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