

Logique à Paris February 26th, 2025

Ingo Blechschmidt University of Antwerp

C. Carlos

Modal operators for a constructive account of well quasi-orders

February 26th, 2025

Def. Let (X, \leq) be a quasi-order.

- A sequence $\alpha : \mathbb{N} \to X$ is **good** iff there exist i < j with $\alpha i \leq \alpha j$.
- The quasi-order X is well iff every sequence $\mathbb{N} \to X$ is good.

Well quasi-orders are an important notion in proof theory and termination analysis.

Def. Let (X, \leq) be a quasi-order.

- A sequence $\alpha : \mathbb{N} \to X$ is **good** iff there exist i < j with $\alpha i \leq \alpha j$.
- The quasi-order X is well iff every sequence $\mathbb{N} \to X$ is good.

The presented proof rests on the law of excluded middle and hence cannot immediately be interpreted as a program for finding suitable indices i < j. However, constructive proofs are also possible (for instance by induction on the value of a given term of the sequence, see Constructive combinatorics of Dickson's Lemma by Iosif Petrakis for several fine quantitative results). And even more: There is a procedure for regarding this proof—and many others in the theory of well quasi-orders—as *blueprints* for more informative constructive proofs. This shall be our motto for today:

Do not take classical proofs literally, instead ask which constructive proofs they are blueprints for.

Def. Let (X, \leq) be a quasi-order.

- A sequence $\alpha : \mathbb{N} \to X$ is **good** iff there exist i < j with $\alpha i \leq \alpha j$.
- The quasi-order X is well iff every sequence $\mathbb{N} \to X$ is good.

Natural numbers		Key stability results	
Prop. (\mathbb{N}, \leq) is well. <i>Proof.</i> Let $\alpha : \mathbb{N} \to \mathbb{N}$. By LEM, there is a minimum α <i>i</i> . Set $j := i + 1$. \Box offensive?		Assuming LEM and DC, Dickson: If X and Y are well, so is $X \times Y$. Higman: If X is well, so is X^* . Kruskal: If X is well, so is Tree(X).	
7, 4, 3, 1, 8, 2,			
Well annu orders		1/- Well quasi-orders	
Modal operators for a constructive accour	it (of well quasi-orders \bullet + \bullet quasi-order X is used there exist (<) with $o \le a_1$. \bullet + \bullet quasi-order X is well if every support \bullet > X is goal. \bullet + \bullet quasi-order X is well if every support \bullet > X is goal. \bullet - \bullet quasi-order X is well if every support \bullet > X is goal. \bullet - \bullet	
S └─Well quasi-orders		7, 4, 0, 1, 0, 2,	

The presented proof rests on the law of excluded middle and hence cannot immediately be interpreted as a program for finding suitable indices i < j. However, constructive proofs are also possible (for instance by induction on the value of a given term of the sequence, see Constructive combinatorics of Dickson's Lemma by Iosif Petrakis for several fine quantitative results). And even more: There is a procedure for regarding this proof—and many others in the theory of well quasi-orders—as *blueprints* for more informative constructive proofs. This shall be our motto for today:

Do not take classical proofs literally, instead ask which constructive proofs they are blueprints for.

The displayed stability results, along with several others, provide a flexible toolbox for constructing new well quasi-orders from given ones. However, with the classical formulation of *well*, renamed "well_{∞}" on the next slide, these results are inherently classical.

In Higman's lemma, the set X^* of finite lists of elements of X is equipped with the following ordering: We have $x_0 \ldots x_{n-1} \leq y_0 \ldots y_{m-1}$ iff there is an increasing injection $f : \{0, \ldots, n-1\} \rightarrow \{0, \ldots, m-1\}$ such that $x_i \leq y_{f(i)}$ for all i < n.

Def. Let (X, \leq) be a quasi-order.

- A sequence $\alpha : \mathbb{N} \to X$ is **good** iff there exist i < j with $\alpha i \leq \alpha j$.
- The quasi-order X is well_{∞} iff every sequence $\mathbb{N} \to X$ is good.

Natural numbers	Key stability results	
Prop. (\mathbb{N}, \leq) is well _{∞} . <i>Proof.</i> Let $\alpha : \mathbb{N} \to \mathbb{N}$. By LEM , there is a minimum α <i>i</i> . Set $j := i + 1$. \Box offensive?	Assuming LEM and DC, Dickson: If X and Y are well _{∞} , so is $X \times Y$. Higman: If X is well _{∞} , so is X^* . Kruskal: If X is well _{∞} , so is Tree(X).	
7, 4, 3, 1, 8, 2,	1/	
Modal operators for a constructive account	t of well quasi-orders Well quasi-orders Pd 44 (15, 15) = optimizer Pd 44 (15, 15) = optimizer Pd 44 (15, 15) = optimizer Pd 44 (15, 15) = optimizer Page (15, 15) = optimizer Pd 44 (15, 15) = optimizer Page (15, 15) = optimizer Page (15, 15) = optimizer Page (15, 15) = optimizer Page (15, 15) = optimizer Page (15, 15) = optimizer Page (15, 15) = optimizer Page (15, 15) = optimizer Page (15, 15) = optimizer Page (15, 15) = optimizer Page (15, 15) = optimizer Page (15, 15) = optimizer Page (15, 15) = optimizer Page (15, 15) = optimizer Page (15, 15) = optimizer Page (15, 15) = optimizer Page (15, 15) = optimizer Page (15, 15) = optimizer Page (15, 15) = optimizer Page (15, 15) = optimizer Page (15, 15) = optimizer Page (15, 15) = optimizer Page (15, 15) = optimizer Page (15, 15) = optimizer Page (15, 15) = optimizer Page (15, 15) = optimizer Page (15, 15) = optimizer Page (15, 15) = optimizer Page (15, 15) = optimizer Page (15, 15) = optimizer Page (15, 15) = optimizer Page (15, 15) = optimizer Page (15, 15) = optimizer Page (15, 15) = optimizer Page (15, 15) = optimizer Page (15, 15) = optimizer Page (15, 15) = optimizer <t< td=""></t<>	
² -20 -20 -20 -20 -20 -20 -20 -20 -20 -20	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	

The dependence of the theory on well quasi-orders on classical transfinite methods is already present in one of the first and central observations of this theory:

Lemma. Let X be well_{∞}. Let $\alpha : \mathbb{N} \to X$. Then there is an infinite increasing subsequence $\alpha i_0 \leq \alpha i_1 \leq \ldots$.

Proof. Let $K := \{n \in \mathbb{N} \mid \neg \exists m > n. \alpha \ n \le \alpha \ m\}$ be the set of indices of those terms which cannot appear as the first component of a good pair. If K is in bijection with \mathbb{N} , there is a subsequence $\alpha \ k_0 \le \alpha \ k_1 \le \ldots$ with $k_0, k_1, \ldots \in K$. As X is well_{∞}, this sequence is good, a contradiction.

Hence *K* is not in bijection with \mathbb{N} . Assuming LEM, it is hence bounded by a number *N*, and (again with LEM), for every index a > N there is an index b > a such that $\alpha a \le \alpha b$. Thus, assuming DC, every number $i_0 > N$ is a suitable starting index for an infinite increasing subsequence.

The appeal to dependent choice can be removed by always picking the smallest possible next index in $\mathbb{N} \setminus K$, doable by yet another invocation of LEM. But the result remains fundamentally noneffective—in the special case $X = (\{0, 1\}, =)$, the statement of the lemma implies the infinite pigeonhole principle.

Def. Let (X, \leq) be a quasi-order.

- A sequence $\alpha : \mathbb{N} \to X$ is good iff there exist i < j with $\alpha i \leq \alpha j$.
- The quasi-order X is well_{∞} iff every sequence $\mathbb{N} \to X$ is good.

Natural numbers	Key stability results	
Prop. (\mathbb{N}, \leq) is well _{∞} . <i>Proof.</i> Let $\alpha : \mathbb{N} \to \mathbb{N}$. By LEM , there is a minimum α <i>i</i> . Set $j := i + 1$. \Box offensive?	Assuming LEM and DC, Dickson: If X and Y are well _{∞} , so is $X \times Y$. Higman: If X is well _{∞} , so is X^* . Kruskal: If X is well _{∞} , so is Tree(X).	

Def. A quasi-order X is well_{ind} iff there exists a modulus of wellness for X.

Luckily, thanks to work by Thierry Coquand, Daniel Fridlender and Monika Seisenberger, a constructive substitute is available, the notion $\mathrm{well}_{\mathrm{ind}}$. In classical mathematics (where LEM and DC and hence bar induction are available), this notion is equivalent to well_∞ .

The assertion "Good | []" is pronounced "Good bars the empty list", and is defined as follows: Let *B* be a predicate on X^* . Then $B \mid \sigma$ is inductively generated by the following two clauses.

- 1. If $B\sigma$, then $B \mid \sigma$.
- 2. If $B \mid \sigma x$ for all $x \in X$, then $B \mid \sigma$.

Here σx denotes the concatenation of the list σ with the element x. The accompanying induction principle is the following: Let Q be a predicate on X^* such that, for all $\sigma \in X^*$, $B\sigma \Rightarrow Q\sigma$ and $(\forall x \in X, Q(\sigma x)) \Rightarrow Q\sigma$. Then, for all $\sigma \in X^*$: If $B \mid \sigma$, then $Q\sigma$.

Intuitively, the assertion " $B \mid \sigma$ " expresses (in a positive direct way) that no matter how σ evolves to a longer finite list τ , eventually $B\tau$ will hold.

Def. Let (X, \leq) be a quasi-order.

- A sequence $\alpha : \mathbb{N} \to X$ is **good** iff there exist i < j with $\alpha i \leq \alpha j$.
- The quasi-order X is well_{∞} iff every sequence $\mathbb{N} \to X$ is good.

Natural numbers Key stability results	
Prop. (\mathbb{N}, \leq) is well _{∞} .	Constructively,
<i>Proof.</i> Let $\alpha : \mathbb{N} \to \mathbb{N}$. By LEM, there is	Dickson: If <i>X</i> and <i>Y</i> are well _{ind} , so is $X \times Y$.
a minimum α <i>i</i> . Set $j := i + 1$.	Higman: If <i>X</i> is well _{ind} , so is X^* .
offensive?	Kruskal: If X is well _{ind} , so is $Tree(X)$.

Def. A quasi-order X is well_{ind} iff there exists a modulus of wellness for X.

Luckily, thanks to work by Thierry Coquand, Daniel Fridlender and Monika Seisenberger, a constructive substitute is available, the notion $\mathrm{well}_{\mathrm{ind}}$. In classical mathematics (where LEM and DC and hence bar induction are available), this notion is equivalent to well_∞ .

The assertion "Good | []" is pronounced "Good bars the empty list", and is defined as follows: Let *B* be a predicate on X^* . Then $B \mid \sigma$ is inductively generated by the following two clauses.

- 1. If $B\sigma$, then $B \mid \sigma$.
- 2. If $B \mid \sigma x$ for all $x \in X$, then $B \mid \sigma$.

Here σx denotes the concatenation of the list σ with the element x. The accompanying induction principle is the following: Let Q be a predicate on X^* such that, for all $\sigma \in X^*$, $B\sigma \Rightarrow Q\sigma$ and $(\forall x \in X, Q(\sigma x)) \Rightarrow Q\sigma$. Then, for all $\sigma \in X^*$: If $B \mid \sigma$, then $Q\sigma$.

Intuitively, the assertion " $B \mid \sigma$ " expresses (in a positive direct way) that no matter how σ evolves to a longer finite list τ , eventually $B\tau$ will hold.

Def. Let (X, \leq) be a quasi-order.

- A sequence $\alpha : \mathbb{N} \to X$ is good iff there exist i < j with $\alpha i \leq \alpha j$.
- The quasi-order X is well_{∞} iff every sequence $\mathbb{N} \to X$ is good.

Natural numbers	s Key stability results		
Prop. (\mathbb{N}, \leq) is well _{∞} . <i>Proof.</i> Let $\alpha : \mathbb{N} \to \mathbb{N}$. By LEM , there is a minimum α <i>i</i> . Set $j := i + 1$. \Box offensive?	Constructively, Dickson: If X and Y are well _{ind} , so is $X \times Y$. Higman: If X is well _{ind} , so is X^* . Kruskal: If X is well _{ind} , so is Tree(X).		
Def A quest order V is well wiff there exists a modulus of wellness for V			

Def. A quasi-order X is well_{ind} iff there exists a modulus of wellness for

With bar induction, well_{ind} \Leftarrow well_{∞}. Constructively, well_{ind} \Rightarrow well_{∞}.

Luckily, thanks to work by Thierry Coquand, Daniel Fridlender and Monika Seisenberger, a constructive substitute is available, the notion well_{ind}. In classical mathematics (where LEM and DC and hence bar induction are available), this notion is equivalent to well_{∞}.

The assertion "Good | []" is pronounced "Good bars the empty list", and is defined as follows: Let *B* be a predicate on X^* . Then $B \mid \sigma$ is inductively generated by the following two clauses.

- 1. If $B\sigma$, then $B \mid \sigma$.
- 2. If $B \mid \sigma x$ for all $x \in X$, then $B \mid \sigma$.

Here σx denotes the concatenation of the list σ with the element x. The accompanying induction principle is the following: Let Q be a predicate on X^* such that, for all $\sigma \in X^*$, $B\sigma \Rightarrow Q\sigma$ and $(\forall x \in X, Q(\sigma x)) \Rightarrow Q\sigma$. Then, for all $\sigma \in X^*$: If $B \mid \sigma$, then $Q\sigma$.

Intuitively, the assertion " $B \mid \sigma$ " expresses (in a positive direct way) that no matter how σ evolves to a longer finite list τ , eventually $B\tau$ will hold.

Def. Let (X, \leq) be a quasi-order.

- A sequence $\alpha : \mathbb{N} \to X$ is good iff there exist i < j with $\alpha i \leq \alpha j$.
- The quasi-order X is well_{∞} iff every sequence $\mathbb{N} \to X$ is good.

Natural numbers	Key stability results
Prop. (\mathbb{N}, \leq) is well _{∞} . <i>Proof.</i> Let $\alpha : \mathbb{N} \to \mathbb{N}$. By LEM , there is a minimum α <i>i</i> . Set $i := i + 1$.	Constructively, Dickson: If X and Y are well _{ind} , so is $X \times Y$. Higman: If X is well _{ind} , so is X^* .
offensive?	Kruskal: If X is well _{ind} , so is $Tree(X)$.

Def. A quasi-order X is **well**_{ind} iff there exists a **modulus of wellness** for X.

With bar induction, well_{ind} \leftarrow well_{∞}. Constructively, well_{ind} \Rightarrow well_{∞}.

Is there a procedure for reinterpreting classical proofs regarding well_{∞} as blueprints for constructive proofs regarding well_{ind}?

The original notion well_ ∞ :

- \checkmark short and simple
- ✓ constructively satisfied for the main examples (but only because of the theory around well_{ind})
- ✓ concise abstract proofs (albeit employing transfinite methods)
- ✗ main results not constructively attainable
- ✗ philosophically strenuous by the quantification over all sequences
- ✗ not stable under "change of base"—a forcing extension of the universe may well contain more sequences than the base universe

The constructive substitute well_{ind}:

- ✓ main results constructive
- $\checkmark~$ stable under change of base
- ✓ positive (existential) condition
- ✗ proofs intriguing, but also somewhat alien, not just some trivial reshuffling of the classical arguments, classical sequence language cannot be used

✗ negative (universal) condition

Def. Let (X, \leq) be a quasi-order.

- A sequence $\alpha : \mathbb{N} \to X$ is **good** iff there exist i < j with $\alpha i \leq \alpha j$.
- The quasi-order X is well_{∞} iff every sequence $\mathbb{N} \to X$ is good.

Natural numbers	Key stability results	
Prop. (\mathbb{N}, \leq) is well _{∞} . <i>Proof.</i> Let $\alpha : \mathbb{N} \to \mathbb{N}$. By LEM , there is a minimum α <i>i</i> . Set $j := i + 1$. \Box offensive?	Constructively, Dickson: If X and Y are well _{ind} , so is $X \times Y$. Higman: If X is well _{ind} , so is X^* . Kruskal: If X is well _{ind} , so is Tree(X).	

Def. A quasi-order X is **well**_{ind} iff there exists a **modulus of wellness** for X.

With bar induction, well_{ind} \leftarrow well_{∞}. Constructively, well_{ind} \Rightarrow well_{∞}. Moreover, if *X* is well_{ind}, then ...

- for every *partial* function α , if $\forall n. \neg \neg (\alpha n \downarrow)$, then $\neg \neg \exists i < j. \alpha i \downarrow \land \alpha j \downarrow \land \alpha i \leq \alpha j$.
- for every *multivalued* function α , $\exists i < j$. $\exists x \in \alpha i$. $\exists y \in \alpha j$. $x \leq y$.

Constructively, the notion well_{ind} is much stronger than well_{∞}, as it ensures goodness (in an appropriate sense) of sequence-like entities which are not actually honest maps $\mathbb{N} \to X$.

For partial maps α , by $\alpha n \downarrow$ we mean that α is defined on the input *n*. If **LEM** is available, then a partial map such that $\neg \neg (\alpha n \downarrow)$ for all $n \in \mathbb{N}$ is already a total map, but without **LEM** the hypothesis well_{∞} does not have anything to say about such a partially-defined sequence.

If ${}_{\rm DC}$ is available, then every multivalued map contains a singlevalued map, but again without ${}_{\rm DC}$ the hypothesis well_ $_\infty$ does not have anything to say about multivalued sequences.

Def. Let (X, \leq) be a quasi-order.

- A sequence $\alpha : \mathbb{N} \to X$ is **good** iff there exist i < j with $\alpha i \leq \alpha j$.
- The quasi-order X is well_{∞} iff every sequence $\mathbb{N} \to X$ is good.

Natural numbers		Key stability results	
Prop. (\mathbb{N}, \leq) is well _{∞} . <i>Proof.</i> Let $\alpha : \mathbb{N} \to \mathbb{N}$. By LEM , there is a minimum α <i>i</i> . Set $j := i + 1$. \Box offensive?		Constructively, Dickson: If X and Y are well _{ind} , so is $X \times Y$. Higman: If X is well _{ind} , so is X^* . Kruskal: If X is well _{ind} , so is Tree(X).	
Def. A quasi-order X is well _{ind} iff there exists a modulus of wellness for X.			
With bar induction, well _{ind} \Leftarrow well _{∞} . Constructively, well _{ind} \Rightarrow well _{∞} . Moreover, if X is well _{ind} , then • for every <i>partial</i> function α , if $\forall n. \neg \neg (\alpha n \downarrow)$, then $\neg \neg \exists i < j. \alpha i \downarrow \land \alpha j \downarrow \land \alpha i \le \alpha j$. • for every <i>multivalued</i> function $\alpha, \exists i < j. \exists x \in \alpha i. \exists y \in \alpha j. x \le y$. Central insight: A quasi-order X is well _{ind} iff $\Box \forall \alpha : \mathbb{N} \to X. \exists i < j. \alpha i \le \alpha j$.			
Modal operators for a constructive account	nt	Well quasi-orders Well quasi-orders of well quasi-orders DF Let(X ≤ D ∈ voi dent The quasi-det X with µ of ≤ v ∈ A	

2025-02-27

└─Well quasi-orders

It turns out that these entities are, or give rise to, actual maps $\mathbb{N} \to X$ —but in a forcing extension of the universe.

Proof. Let $\alpha : \mathbb{N} \to \mathbb{N}$. By **LIM**, there is a minimum αi . Set j := i + 1.

iff there exists a

Forcing originated in set theory to construct new models for set theory from given ones, in order to explore the range of set-theoretic possibility. For instance, by forcing we can construct models of zfc validating the continuum hypothesis and also models which falsify it.

We here refer to a simplification of original forcing which is useful in a constructive metatheory. At its core, every forcing extension is just a formula and proof translation of a certain form. For instance, there is a forcing extension validating LEM even if the base universe does not; this forcing extension is not a deep mystery, for a statement holds in that forcing extension iff its double negation translation holds in the base universe and it is well-known that the double negation translation of LEM is an intuitionistic tautology.

Here is a set of slides on constructive forcing, and Section 4 of this joint paper with Peter Schuster contains a written summary of constructive forcing.

The modal multiverse of constructive forcing

Def. A statement φ holds ...

- everywhere $(\Box \varphi)$ iff it holds in every topos (over the current base).
- **somewhere** $(\diamondsuit \varphi)$ iff it holds in some positive topos.
- **proximally** $(\otimes \varphi)$ iff it holds in some positive overt topos.

Def. A (Grothendieck) **topos** is a category equivalent to the category of sheaves over a small site.

By *topos*, we mean *Grothendieck topos*. In constructive forcing, a "forcing extension of the base universe" is exactly the same thing as a Grothendieck topos.

A particular member of the rich and varied landscape of toposes is the *trivial topos*, in which every statement whatsoever holds. By restricting to positive toposes, we exclude this special case.

For positive toposes \mathcal{E} , a geometric implication holds in \mathcal{E} iff it holds in the base universe. For positive overt toposes \mathcal{E} , we even have that a bounded first-order formula holds in \mathcal{E} iff it holds in the base. Hence, for the purpose of verifying a bounded first-order assertion about the base, we can freely pass to a positive overt topos with problem-adapted better higher-order properties (such as that some uncountable set from the base now appears countable, or that an infinite sequence whose existence is predicted by failing dependent choice now actually exists).

Here is a rough early draft of a preprint with more details about the modal multiverse.

The modal multiverse of constructive forcing

Def. A statement φ holds ...

- everywhere $(\Box \varphi)$ iff it holds in every topos (over the current base).
- **somewhere** ($\diamondsuit \varphi$) iff it holds in some positive topos.
- **proximally** ($\otimes \varphi$) iff it holds in some positive overt topos.

Def. A (Grothendieck) **topos** is a category equivalent to the category of sheaves over a small site.

Examples for toposes.

- Set, the category of sets and maps.
- The category of sets and maps which are **defined up to** ¬¬.
- Set[G], the extension obtained by adding a generic filter of a forcing notion (a quasi-order equipped with a coverage).

The following are not toposes:

- The category of sets and partially defined maps.
- The category of abelian groups.

The idea to study the modal multiverse of toposes in a principled manner was proposed by Alexander Oldenziel in 2016. *Foreshadowed by:*

- 1984 André Joyal, Miles Tierney. "An extension of the Galois theory of Grothendieck".
- 1987 Andreas Blass. "Well-ordering and induction in intuitionistic logic and topoi".
- 2010s Milly Maietti, Steve Vickers. Ongoing work on arithmetic universes.
- 2011 Joel David Hamkins. "The set-theoretic multiverse".
- 2013 Shawn Henry. "Classifying topoi and preservation of higher order logic by geometric morphisms".

The modal multiverse of constructive forcing

Def. A statement φ holds ...

- everywhere $(\Box \varphi)$ iff it holds in every topos (over the current base).
- **somewhere** ($\diamondsuit \varphi$) iff it holds in some positive topos.
- **proximally** ($\otimes \varphi$) iff it holds in some positive overt topos.

Def. A (Grothendieck) **topos** is a category equivalent to the category of sheaves over a small site.

Multiversal yoga:

- A quasiorder is well_{ind} iff *everywhere*, every sequence is good.
- 2 A ring element is nilpotent iff all prime ideals *everywhere* contain it.
- Solution For every inhabited set *X*, *proximally* there exists an enumeration $\mathbb{N} \twoheadrightarrow X$.
- For every ring, *proximally* there exists a maximal ideal.
- **5** *Somewhere*, the law of excluded middle holds.

With the modal language we seek to provide an accessible and modular framework for constructivization results.

For instance, conservativity of classical logic over intuitionistic logic for geometric implications (known under various names such as Barr's theorem, Friedman's trick, escaping the continuation monad, ...) is packaged up by the observation that *somewhere*, the law of excluded middle holds.

Another example: In the community around Krull's lemma, it is well-known that we can constructively infer that a given ring element $x \in A$ is nilpotent from knowing that it is contained in the *generic prime ideal* of A. This entity is not actually an honest prime ideal of the ring A in the base universe, but a certain combinatorial notion (efficiently dealt with using *entailment relations*). Constructive forcing allows us to reify the generic prime ideal as an actual prime ideal in a suitable forcing extension, so in a suitable topos (der little Zariski topos of the ring).

Multiversal constructive combinatorics

Prop. Let *X* and *Y* be well_{ind} quasi-orders. Then $X \times Y$ is well_{ind}.

Multiversal constructive proof. Let $\alpha = (\beta, \gamma) : \mathbb{N} \to X \times Y$ be a sequence in an arbitrary topos. We need to show that α is good, i. e. find indices n < m such that

 $\beta n \leq \beta m$ and $\gamma n \leq \gamma m$.

It suffices to prove that *somewhere*, α is good, as goodness is a geometric implication (in fact even a geometric formula). Hence without loss of generality, we may suppose LEM.

Thus there is an infinite increasing subsequence

$$\beta k_0 \leq \beta k_1 \leq \ldots$$

As *Y* is well_{ind}, the sequence $(\gamma k_0, \gamma k_1, ...)$ is good, so there exist i < j with $\gamma k_i \le \gamma k_j$. Since we also have $\beta k_i \le \beta k_j$, we are done.

		3/4
		Multiversal constructive combinatorics
5-02-27	Modal operators for a constructive account of well quasi-orders	Prop. Let X and Y be well _{ind} quasi-orders. Then $X \times Y$ is well _{ind} .
	inour operators for a constructive account of wen quasi oracio	Multiversal constructive proof. Let $\alpha = (\beta,\gamma): \mathbb{N} \to X \times Y$ be a sequence in an arbitrary topos. We need to show that α is good, i.e. find indices $n < m$ such that
		$\beta n \leq \beta m$ and $\gamma n \leq \gamma m$.
		It suffices to prove that somewhere, α is good, as goodness is a geometric implication (in fact even a geometric formula). Hence without loss of generality, we may suppose LEM.
		Thus there is an infinite increasing subsequence
00	-Multiversal constructive combinatorics	$\beta k_1 \le \beta k_1 \le \dots$
2	Multiversal constructive combinatories	As Y is well _{ad} , the sequence $(\gamma k_i, \gamma k_1, \ldots)$ is good, so there exist $i < j$ with $\gamma k_i \le \gamma k_j$. Since we also have $\beta k_j \le \beta k_j$, we are done.

The displayed multiversal proof closely mimics the classical proof (for well_{∞}), but is fully constructive (for well_{ind}). It would be possible to streamline this proof and unroll the topos-theoretic machinery, to obtain an explicit algorithm of type

Good $|_{X}[] \times \text{Good } |_{Y}[] \longrightarrow \text{Good } |_{X \times Y}[].$

The modal language was recently used to answer a question by Stefano Berardi, Gabriele Buriola and Peter Schuster, see this set of slides.

Thm. Let *M* be a surjective matrix with more rows than columns over a ring *A*. Then 1 = 0 in *A*.

Classical proof. Assume not. Then there is a maximal ideal \mathfrak{m} . The matrix M is surjective over A/\mathfrak{m} . Since A/\mathfrak{m} is a field, this is a contradiction to basic linear algebra.

The displayed classical proof is quite efficient from the point of view of organizing mathematical knowledge, as it quickly reduces the general situation of dealing with an arbitrary ring to dealing with a field. Alas, read literally, it is hopeless ineffective.

Thm. Let *M* be a surjective matrix with more rows than columns over a ring *A*. Then 1 = 0 in *A*.

Classical proof. Assume not. Then there is a maximal ideal \mathfrak{m} . The matrix M is surjective over A/\mathfrak{m} . Since A/\mathfrak{m} is a field, this is a contradiction to basic linear algebra.

Multiversal constructive proof. We may work *somewhere* where LEM holds. So assume not. *Proximally*, there is a maximal ideal \mathfrak{m} . The matrix M is still surjective *there*, and also over A/\mathfrak{m} . Since A/\mathfrak{m} is a field, this is a contradiction to basic linear algebra.

The displayed classical proof is quite efficient from the point of view of organizing mathematical knowledge, as it quickly reduces the general situation of dealing with an arbitrary ring to dealing with a field. Alas, read literally, it is hopeless ineffective.

By employing modal language, we can closely mimic the original proof and be fully constructive at the same time.

Thm. Let *M* be a surjective matrix with more rows than columns over a ring *A*. Then 1 = 0 in *A*.

Classical proof. Assume not. Then there is a maximal ideal \mathfrak{m} . The matrix M is surjective over A/\mathfrak{m} . Since A/\mathfrak{m} is a field, this is a contradiction to basic linear algebra.

Multiversal constructive proof. We may work *somewhere* where LEM holds. So assume not. *Proximally*, there is a maximal ideal \mathfrak{m} . The matrix M is still surjective *there*, and also over A/\mathfrak{m} . Since A/\mathfrak{m} is a field, this is a contradiction to basic linear algebra.

Unrolled constructive proof (special case). Write $M = \begin{pmatrix} x \\ y \end{pmatrix}$. By surjectivity, have u, v with

The displayed classical proof is quite efficient from the point of view of organizing mathematical knowledge, as it quickly reduces the general situation of dealing with an arbitrary ring to dealing with a field. Alas, read literally, it is hopeless ineffective.

By employing modal language, we can closely mimic the original proof and be fully constructive at the same time.

By unwinding all modal definitions, the modal proof can be unrolled to a fully explicit computation.

Thm. Let *M* be a surjective matrix with more rows than columns over a ring *A*. Then 1 = 0 in *A*.

Classical proof. Assume not. Then there is a maximal ideal \mathfrak{m} . The matrix M is surjective over A/\mathfrak{m} . Since A/\mathfrak{m} is a field, this is a contradiction to basic linear algebra.

Multiversal constructive proof. We may work *somewhere* where LEM holds. So assume not. *Proximally*, there is a maximal ideal \mathfrak{m} . The matrix M is still surjective *there*, and also over A/\mathfrak{m} . Since A/\mathfrak{m} is a field, this is a contradiction to basic linear algebra.

Unrolled constructive proof (special case). Write $M = \begin{pmatrix} x \\ y \end{pmatrix}$. By surjectivity, have u, v with

$u\left(\begin{smallmatrix} x\\y\end{smallmatrix} ight)=\left(\begin{smallmatrix} 1\\0\end{smallmatrix} ight) ext{and} v\left(\begin{smallmatrix} x\\y\end{smallmatrix} ight)=\left(\begin{smallmatrix} 0\\1\end{smallmatrix} ight).$	
Hence $1 = (vy)(ux) = (uy)(vx) = 0.$	
Agda formalization available.	4/4
Modal operators for a constructive account of well quasi-orders	Multiversal constructive algebra Thm. Let M be a surgicity matrix with more rows than columns over a ring A Then 1 = 0 in A. Channel and row A. Channel and row A. Channel and row A. Maintread constructive proof. We may be a field with is a contradiction to busic linear algebra. Maintread constructive proof. We may we scoredway there is in balls. So assume
No. No. No. No. No. No. No. No. No. No.	not. Provided there is a maximal ideal in . The matter M is still surjective flow, and also over A (M. Stake A) in a field, this is a contradiction to beliave algorithm. The matter proof (special case). Write $M = (f)$. By surjectivity, have a, v with $u(f) = (1)$ and $v(f) = (1)$. Hence $1 = (v_f)(xx) = 0$. Again formulation constable.

The displayed classical proof is quite efficient from the point of view of organizing mathematical knowledge, as it quickly reduces the general situation of dealing with an arbitrary ring to dealing with a field. Alas, read literally, it is hopeless ineffective.

By employing modal language, we can closely mimic the original proof and be fully constructive at the same time.

By unwinding all modal definitions, the modal proof can be unrolled to a fully explicit computation.

Backup slides.

2025-02-27	Modal operators for a constructive account of well quasi-orders	Bachap shdes.

Ingredients for forcing

To construct a forcing extension, we require:

- 1 a base universe V
- **2** a preorder *L* of **forcing conditions** in *V*, pictured as **finite approximations** (*convention*: $\tau \preccurlyeq \sigma$ means that τ is a better finite approximation than σ)
- **3** a covering system governing how finite approximations evolve to better ones (for each $\sigma \in L$, a set $Cov(\sigma) \subseteq P(\downarrow \sigma)$, with a simulation condition)

In the forcing extension V^{∇} , there will then be a **generic filter** (ideal object).

Ingredients for forcing

To construct a forcing extension, we require:

- a base universe V
- **2** a preorder *L* of **forcing conditions** in *V*, pictured as **finite approximations** (convention: $\tau \preccurlyeq \sigma$ means that τ is a better finite approximation than σ)
- **3** a **covering system** governing how finite approximations evolve to better ones (for each $\sigma \in L$, a set $Cov(\sigma) \subseteq P(\downarrow \sigma)$, with a simulation condition)

In the forcing extension V^{∇} , there will then be a **generic filter** (ideal object).

For the generic surjection $\mathbb{N} \twoheadrightarrow X$

Use **finite lists** $\sigma \in X^*$ as forcing conditions, where $\tau \preccurlyeq \sigma$ iff σ is an initial segment of τ , and be prepared to grow σ to ...

- (a) one of $\{\sigma x \mid x \in X\}$, to make σ more defined
- (b) one of $\{\sigma\tau \mid \tau \in X^*, a \in \sigma\tau\}$, for any $a \in X$, to make σ more surjective

Modal operators for a constructive account of well quasi-orders 2025-02-27 -Basics of forcing

-Ingredients for forcing

Ingredients for forcing

To construct a forcing extension, we require:

- a base universe V
- **2** a preorder *L* of **forcing conditions** in *V*, pictured as **finite approximations** (*convention*: $\tau \preccurlyeq \sigma$ means that τ is a better finite approximation than σ)
- **3** a covering system governing how finite approximations evolve to better ones (for each $\sigma \in L$, a set $Cov(\sigma) \subseteq P(\downarrow \sigma)$, with a simulation condition)

In the forcing extension V^{∇} , there will then be a **generic filter** (ideal object).

For the generic surjection $\mathbb{N} \twoheadrightarrow X$ For the generic prime ideal of a ring AUse **finite lists** $\sigma \in X^*$ as forcing conditions, Use f.g. ideals as forcing conditions, where where $\tau \preccurlyeq \sigma$ iff σ is an initial segment of τ , $\mathfrak{b} \preccurlyeq \mathfrak{a}$ iff $\mathfrak{b} \supset \mathfrak{a}$, and be prepared to grow \mathfrak{a} and be prepared to grow σ to ... to ... (a) one of $\{\sigma x \mid x \in X\}$, to make σ more defined (a) one of \emptyset , if $1 \in \mathfrak{a}$, to make \mathfrak{a} more proper (b) one of $\{\sigma\tau \mid \tau \in X^*, a \in \sigma\tau\}$, for any $a \in X$, (b) one of $\{a + (x), a + (y)\}$, if $xy \in a$, to to make σ more surjective make a more prime 6/4Modal operators for a constructive account of well quasi-orders se universe Vecorder L of forcing conditions in V, pictured as finite approximation vertice: $\tau \neq \sigma$ means that τ is a better finite approximation verting system governing how finite approximations evolve each $\sigma \in L$, a set $Cov(\sigma) \subseteq P(\downarrow\sigma)$, with a simulation conditi 2025-02-27 -Basics of forcing on V^{∇} , there will then be a generic filter (ideal of σ iff σ is an initial seq red to grow σ to ... $b \propto a$ iff $b \supset a$, and be -Ingredients for forcing of $\{\sigma x | x \in X\}$, to make σ more defined (a) one of ∅, if 1 ∈ a, to make a $a \in \{\sigma_T | \tau \in X^*, a \in \sigma_T\}$, for any $a \in X$. one of $\{a + (x), a + (y)\}$, if $xy \in a$, to make a more prime

The eventually monad

Let *L* be a forcing notion.

Let *P* be a monotone predicate on *L* (if $\tau \preccurlyeq \sigma$, then $P\sigma \Rightarrow P\tau$). For instance, in the case $L = X^*$:

Modal operators for a constructive account of well quasi-orders Basics of forcing The eventually monad Let *L* be a forcing notion. Let *P* be a monotone predicate on *L*(if $\tau \leq \sigma$, then $P\sigma \Rightarrow Pr$). For instance, in the case $L = X^*$. **n** Repeats $x_i \dots x_{i-1} \equiv \exists i, \exists j, i < j \land x_i = x_j$ **n** Good $x_i \dots x_{i-1} \equiv \exists i, \exists j, i < j \land x_i = x_j$

2025-02-27

└─The eventually monad

The eventually monad

Let *L* be a forcing notion.

Let *P* be a monotone predicate on *L* (if $\tau \preccurlyeq \sigma$, then $P\sigma \Rightarrow P\tau$). For instance, in the case $L = X^*$:

• Repeats $x_0 \dots x_{n-1} :\equiv \exists i . \exists j . i < j \land x_i = x_i$

• Good $x_0 \ldots x_{n-1} :\equiv \exists i . \exists j . i < j \land x_i < x_i$ (for some preorder < on X)

We then define "*P* | σ " ("*P* bars σ ") inductively by the following clauses:

- 1 If $P\sigma$, then $P \mid \sigma$.
- **2** If $P \mid \tau$ for all $\tau \in R$, where *R* is some covering of σ , then $P \mid \sigma$.

So $P \mid \sigma$ expresses in a **direct inductive fashion**:

"No matter how σ evolves to a better approximation τ , eventually $P\tau$ will hold."

Modal operators for a constructive account of well quasi-orders 2025-02-27 -Basics of forcing

-The eventually monad

The eventually monad

Let *L* be a forcing notion.

Let *P* be a monotone predicate on *L* (if $\tau \preccurlyeq \sigma$, then $P\sigma \Rightarrow P\tau$). For instance, in the case $L = X^*$:

• Repeats $x_0 \dots x_{n-1} :\equiv \exists i . \exists j . i < j \land x_i = x_i$

• Good $x_0 \dots x_{n-1} :\equiv \exists i . \exists j . i < j \land x_i < x_i$ (for some preorder < on X)

We then define "*P* | σ " ("*P* bars σ ") inductively by the following clauses:

- 1 If $P\sigma$, then $P \mid \sigma$.
- **2** If $P \mid \tau$ for all $\tau \in R$, where *R* is some covering of σ , then $P \mid \sigma$.

So $P \mid \sigma$ expresses in a **direct inductive fashion**:

"No matter how σ evolves to a better approximation τ , eventually $P\tau$ will hold."

```
We use quantifier-like notation: "\nabla(\tau \preccurlyeq \sigma). P\tau" means "P \mid \sigma".
```

```
Modal operators for a constructive account of well quasi-orders
2025-02-27
      -Basics of forcing
```

-The eventually monad

Proof translations

Thm. Every IQC-proof remains correct, with at most a polynomial increase in length, if throughout we replace

	8/4
	Proof translations
Modal operators for a constructive account of well quasi-orders	Thm. Every 1qc-proof remains correct, with at most a polynomial increase in length, if throughout we replace
Basics of forcing	$\exists \cdots \exists^{d}, \text{where} \exists^{d}:\equiv \neg \neg \exists, \forall j, \forall j, \forall j \in [w] \forall i \in [w] \forall j \in [w], \forall j \in [w], \mid j \in $
Proof translations	

Proof translations

Thm. Every IQC-proof remains correct, with at most a polynomial increase in length, if throughout we replace

When we say: some statement "holds in $V^{\neg \neg}$ ", **we mean:** its translation holds in V.

Similarly for arbitrary forcing extensions V^{∇} , "just with ∇ instead of $\neg \neg$ ".

Proof translations

Thm. Every IQC-proof remains correct, with at most a polynomial increase in length, if throughout we replace

When we say: some statement "holds in $V^{\neg\neg}$ ", **we mean:** its translation holds in V.

Similarly for arbitrary forcing extensions V^{∇} , "just with ∇ instead of $\neg \neg$ ".

Ex. As $\neg \neg (\varphi \lor \neg \varphi)$ is a theorem of IQC, the law of excluded middle holds in $V^{\neg \neg}$.

The ∇ -translation

For bounded first-order formulas over the (large) first-order signature which has

- 1 one sort \underline{X} for each set X in the base universe,
- **2** one *n*-ary function symbol $f : \underline{X_1} \times \cdots \times \underline{X_n} \to \underline{Y}$ for each map $f : X_1 \times \cdots \times X_n \to Y$,
- 3 one *n*-ary relation symbol $\underline{R} \hookrightarrow \underline{X_1} \times \cdots \times \underline{X_n}$ for each relation $R \subseteq X_1 \times \cdots \times X_n$, and
- 4 an additional unary relation symbol $G \hookrightarrow \underline{L}$ (for the generic filter of L),

we recursively define:

$\sigma \vDash s = t$	iff	$ abla \sigma$. $\llbracket s \rrbracket = \llbracket t \rrbracket$.	$\sigma \vDash \underline{R}(s_1,\ldots,s_n)$	iff	$\nabla \sigma. R(\llbracket s_1 \rrbracket, \ldots, \llbracket s_n \rrbracket).$
$\sigma\vDash\varphi\Rightarrow\psi$	iff	$\forall (\tau \preccurlyeq \sigma). \ (\tau \vDash \varphi) \Rightarrow (\tau \vDash \psi).$	$\sigma\vDash G\tau$	iff	$\nabla \sigma. \sigma \preccurlyeq \llbracket \tau \rrbracket.$
$\sigma \vDash \top$	iff	Т.	$\sigma \vDash \bot$	iff	$\nabla \sigma$. \perp
$\sigma\vDash\varphi\wedge\psi$	iff	$(\sigma\vDash\varphi)\wedge(\sigma\vDash\psi).$	$\sigma\vDash\varphi\lor\psi$	iff	$\nabla \sigma$. $(\sigma \vDash \varphi) \lor (\sigma \vDash \psi)$.
$\sigma\vDash \forall (x{:}\underline{X}).\varphi$	iff	$\forall (\tau \preccurlyeq \sigma). \ \forall (x_0 \in X). \ \tau \vDash \varphi[\underline{x_0}/x].$	$\sigma \vDash \exists (x : \underline{X}). \varphi$	iff	$\nabla \sigma$. $\exists (x_0 \in X). \sigma \vDash \varphi[\underline{x_0}/x].$

Finally, we say that φ "holds in V^{∇} " iff for all $\sigma \in L, \sigma \vDash \varphi$.

forcing notion	statement about V^∇	external meaning	
surjection $\mathbb{N} \twoheadrightarrow X$	"the gen. surj. is surjective"	$\forall (\sigma {\in} X^*). \forall (a {\in} X). \nabla (\tau {\preccurlyeq}$	(σ) . $\exists (n \in \mathbb{N})$. $\tau[n] = a$.
			9/4
			The ∇-translation
Modal operators for a constructive account of well que $\stackrel{\circ}{\sim}_{\sim}$ Basics of forcing		of well quasi-orders	For bounded first-order formulas over the (large) first-order signature which has $\ \mathbf{x} - \mathbf{x} \ = \mathbf{x} + \mathbf{x}$
0- 2022 □	-translation		$\begin{array}{cccc} \sigma(r, \omega) & = \sigma(r, \omega) = \sigma(r, \omega), \sigma(r, \omega), \sigma(r, \omega) = \sigma(r, \omega), \sigma(r, \omega),$

The ∇ -translation

$\sigma \vDash s = t$	iff	$ abla \sigma$. $\llbracket s \rrbracket = \llbracket t \rrbracket$.	$\sigma \vDash \underline{R}(s_1,\ldots,s_n)$	iff	$\nabla \sigma. R(\llbracket s_1 \rrbracket, \ldots, \llbracket s_n \rrbracket).$
$\sigma\vDash\varphi\Rightarrow\psi$	iff	$\forall (\tau \preccurlyeq \sigma). \ (\tau \vDash \varphi) \Rightarrow (\tau \vDash \psi).$	$\sigma \vDash G\tau$	iff	$\nabla \sigma. \sigma \preccurlyeq \llbracket \tau \rrbracket.$
$\sigma \vDash \top$	iff	Τ.	$\sigma \vDash \bot$	iff	$\nabla \sigma$. \perp
$\sigma\vDash\varphi\wedge\psi$	iff	$(\sigma \vDash \varphi) \land (\sigma \vDash \psi).$	$\sigma\vDash\varphi\lor\psi$	iff	$\nabla \sigma. \ (\sigma \vDash \varphi) \lor (\sigma \vDash \psi).$
$\sigma\vDash \forall (x\!:\!\underline{X}).\varphi$	iff	$\forall (\tau \preccurlyeq \sigma). \ \forall (x_0 \in X). \ \tau \vDash \varphi[\underline{x_0}/x].$	$\sigma \vDash \exists (x \colon \underline{X}). \varphi$	iff	$\nabla \sigma$. $\exists (x_0 \in X). \sigma \vDash \varphi[\underline{x_0}/x].$

forcing notion	statement about V^∇	external meaning
surjection $\mathbb{N} \twoheadrightarrow X$	"the gen. surj. is surjective"	$\forall (\sigma \in X^*). \forall (a \in X). \nabla(\tau \preccurlyeq \sigma). \exists (n \in \mathbb{N}). \tau[n] = a.$
$\mathrm{map} \ \mathbb{N} \to X$	"the gen. sequence is good"	Good [].
frame of opens	"every complex number has a square root"	For every open $U \subseteq X$ and every cont. function $f: U \to \mathbb{C}$, there is an open covering $U = \bigcup_i U_i$ such that for each index <i>i</i> , there is a cont. function $g: U_i \to \mathbb{C}$ such that $g^2 = f$.
big Zariski	" $x \neq 0 \Rightarrow x$ inv."	If the only f.p. <i>k</i> -algebra in which $x = 0$ is the zero algebra, then <i>x</i> is invertible in <i>k</i> .

				9/4
			The ∇-tr	anslation
5	Modal operators for a constructive account of well quasi-orders	$\begin{array}{c} a \vDash a = i \\ a \succeq \varphi \Rightarrow \psi \\ a \vDash \top \end{array}$	iff $\nabla \sigma. [4] = [4]$. iff $\forall (\tau < \sigma). (\tau \vDash \varphi) \Rightarrow (\tau \vDash \psi)$. iff \top .	$\begin{split} \sigma &\coloneqq \underbrace{g}(\mathbf{s}_1, \dots, \mathbf{s}_n) \text{ iff } \nabla \sigma, R([\mathbf{s}_1], \dots, [\mathbf{s}_n]), \\ \sigma &\coloneqq G\sigma \text{ iff } \nabla \sigma, \sigma < [\tau], \\ \sigma &\vDash \bot \text{ iff } \nabla \sigma, \tau \leq [\tau]. \end{split}$
°-∼ ⊢B	Basics of forcing	$u \models A(x; \overline{X}), \phi$ $u \models A(x; \overline{X}), \phi$	If $(\sigma \models \varphi) \land (\sigma \models \varphi)$. If $\forall (\tau < \sigma) \land \forall (m \in X), \tau \models \varphi[\underline{m}/\pi]$.	$\sigma \models \widehat{a}(x; \underline{X}), \varphi \text{iff} \nabla x, (\sigma \models \varphi) \lor (\sigma \models \varphi),$ $\sigma \models \widehat{a}(x; \underline{X}), \varphi \text{iff} \nabla x, \widehat{a}(x \in X), \sigma \models \varphi(\underline{n}/a).$
	Dasies of foreing	forcing notion	statement about $V^{\rm T}$	external meaning
ö		surjection $\mathbb{N} \to X$	"the gen surj. is surjective"	$\forall (\sigma {\in} X^*). \; \forall (a {\in} X). \; \nabla (\tau {:} (\sigma). \; \exists (n {\in} \mathbb{N}). \; \tau [n] = a.$
Ť		map $\mathbb{N} \to X$	"the gen. sequence is good"	Good [].
)25	L The ∇ -translation	frame of opens	"every complex number has a square root"	For every open $U \subseteq X$ and every cost. function $f: U \to \mathbb{C}$, there is an open covering $U = \bigcup_i U_i$ such that for each index <i>i</i> , there is a cost. function $g: U_i \to \mathbb{C}$ such that $g^2 = f$.
2(big Zariski	$"x \neq 0 \Rightarrow x \mathrm{inv."}$	If the only f.p. k -algebra in which $x=0$ is the zero algebra, then x is invertible in $k.$

The ∇ -translation

$\sigma \vDash s = t$ $\sigma \vDash \varphi \Rightarrow \psi$ $\sigma \vDash \top$ $\sigma \vDash \varphi \land \psi$ $\sigma \vDash \forall (x : \underline{X}). \varphi$	$ \begin{array}{ll} \inf & \nabla \sigma. \llbracket s \rrbracket = \llbracket t \rrbracket. \\ \inf & \forall (\tau \preccurlyeq \sigma). (\tau \vDash \varphi) \Rightarrow (\tau \vDash \psi). \\ \inf & \top. \\ \inf & (\sigma \vDash \varphi) \land (\sigma \vDash \psi). \\ \inf & \forall (\tau \preccurlyeq \sigma). \forall (x_0 \in X). \tau \vDash \varphi[\underline{x_0}/x]. \end{array} $	$\sigma \vDash \underline{R}(s_1, \dots, s_n) \text{ iff } \nabla \sigma. R(\llbracket s_1 \rrbracket, \dots, \llbracket s_n \rrbracket).$ $\sigma \vDash G\tau \qquad \text{iff } \nabla \sigma. \sigma \preccurlyeq \llbracket \tau \rrbracket.$ $\sigma \vDash \bot \qquad \text{iff } \nabla \sigma. \bot$ $\sigma \vDash \varphi \lor \psi \qquad \text{iff } \nabla \sigma. (\sigma \vDash \varphi) \lor (\sigma \vDash \psi).$ $\sigma \vDash \exists (x : \underline{X}). \varphi \qquad \text{iff } \nabla \sigma. \exists (x_0 \in X). \sigma \vDash \varphi[\underline{x_0}/x].$
forcing notion	statement about V^∇	external meaning
surjection $\mathbb{N} \twoheadrightarrow \mathcal{X}$	"the gen. surj. is surjective"	$\forall (\sigma \in X^*). \ \forall (a \in X). \ \nabla (\tau \preccurlyeq \sigma). \ \exists (n \in \mathbb{N}). \ \tau [n] = a.$
map $\mathbb{N} \to X$	"the gen. sequence is good"	Good [].
frame of opens	"every complex number has a square root"	For every open $U \subseteq X$ and every cont. function $f: U \to \mathbb{C}$, there is an open covering $U = \bigcup_i U_i$ such that for each index <i>i</i> , there is a cont. function $g: U_i \to \mathbb{C}$ such that $g^2 = f$.
big Zariski	" $x \neq 0 \Rightarrow x$ inv."	If the only f.p. <i>k</i> -algebra in which $x = 0$ is the zero algebra, then <i>x</i> is invertible in <i>k</i> .
little Zariski	"every f.g. vector space does <i>not not</i> have a basis"	Grothendieck's generic freeness lemma
$\begin{array}{c} \text{Modal operat}\\ \hline \\ \text{Basics of f}\\ \text{Solution}\\ \text{Solution}\\ \text{The} \end{array}$	ors for a constructive account orcing $ abla$ -translation	of well quasi-orders $\frac{d^{2}(x)d(x)d(x)d(x)d(x)}{d^{2}(x)d(x)d(x)d(x)} = \frac{d^{2}(x)d(x)d(x)d(x)d(x)}{d^{2}(x)d(x)d(x)d(x)d(x)d(x)} = \frac{d^{2}(x)d(x)d(x)d(x)d(x)d(x)d(x)d(x)d(x)d(x)d$

Outlook

Passing to and from extensions

Thm. Let φ be a **bounded first-order formula** not mentioning G. In each of the following situations, we have that φ holds in V^{∇} iff φ holds in V:

- **1** *L* and all coverings are inhabited (proximality).
- 2 L contains a top element, every covering of the top element is inhabited, and φ is a coherent implication (positivity).

The mystery of nongeometric sequents	Traveling the multiverse
The generic ideal of a ring is maximal: $(x \in \mathfrak{a} \Rightarrow 1 \in \mathfrak{a}) \Longrightarrow 1 \in \mathfrak{a} + (x).$	LEM is a switch and holds positively ; being countable is a button .
The generic ring is a field: $(x = 0 \Rightarrow 1 = 0) \Longrightarrow (\exists y. xy = 1).$	Every instance of DC holds proximally . A geometric implication is provable iff it holds everywhere .
	\ldots upwards, but always keeping ties to the base. $_{_{10/}}$
Modal operators for a constructive account	t of well quasi-orders Passing to and from extensions

2025-02-27 Basics of forcing

Outlook

More on forcing notions

Def. A forcing notion consists of a preorder *L* of forcing conditions, and for every $\sigma \in L$, a set $Cov(\sigma) \subseteq P(\downarrow \sigma)$ of coverings of σ such that: If $\tau \preccurlyeq \sigma$ and $R \in Cov(\sigma)$, there should be a covering $S \in Cov(\tau)$ such that $S \subseteq \downarrow R$.

	preorder L	coverings of an element $\sigma \in L$	filters of <i>L</i>
1	X^*	$\{\sigma x \mid x \in X\}$	maps $\mathbb{N} \to X$
2	X^*	$\{\sigma x \mid x \in X\}, \{\sigma \tau \mid \tau \in X^*, a \in \sigma \tau\}$ for each $a \in X$	surjections $\mathbb{N} \twoheadrightarrow X$
3	f.g. ideals	_	ideals
4	f.g. ideals	$\{\sigma + (a), \sigma + (b)\}$ for each $ab \in \sigma$, $\{\}$ if $1 \in \sigma$	prime ideals
5	opens	\mathcal{U} such that $\sigma = \bigcup \mathcal{U}$	points
6	$\{\star\}$	$\{\star \varphi\} \cup \{\star \neg \varphi\}$	witnesses of LEM

Def. A *filter* of a forcing notion (L, Cov) is a subset $F \subseteq L$ such that

- **1** *F* is upward-closed: if $\tau \preccurlyeq \sigma$ and if $\tau \in F$, then $\sigma \in F$;
- **2** *F* is downward-directed: *F* is inhabited, and if $\alpha, \beta \in F$, then there is a common refinement $\sigma \preccurlyeq \alpha, \beta$ such that $\sigma \in F$; and
- 3 *F* splits the covering system: if $\sigma \in F$ and $R \in Cov(\sigma)$, then $\tau \in F$ for some $\tau \in R$.

