A primer to the ♥ set-theoretic multiverse philosophy ♥

– an invitation –

36th Chaos Communication Congress *Questions are very much welcome! Please interrupt me mid-sentence.*

Ingo Blechschmidt

Prehistory

Inconsistency

at the heart of mathematics ~ 1900

"Let *R* be the set of all those sets which don't contain themselves."

Prehistory

Inconsistency

at the heart of mathematics ~ 1900 "Let *R* be the set of all those sets which don't contain themselves."

\bigcirc

Formal proofs as the gold standard to judge correctness ~ 1920 Zermelo–Fraenkel set theory with the axiom of choice, zFC

Prehistory

Inconsistency

at the heart of mathematics ~ 1900 "Let *R* be the set of all those sets which don't contain themselves."

\bigcirc

Formal proofs as the gold standard to judge correctness ~ 1920 Zermelo–Fraenkel set theory with the axiom of choice, zFC

An outline of **ZFC**

Axioms of zFC include:

 $\exists x. \ \forall y. \ \neg(y \in x)$

"There is a set *x* such that for every set *y*, it is not the case that *y* is an element of *x*."

2 $\forall x. \forall y. \exists w. (x \in w \land y \in w)$

"Given any sets x and y, there is a set which contains x and y."

∃ ∀x. ∃z. ∀w. ((∀y. (y ∈ w ⇒ y ∈ x)) ⇒ w ∈ z).
"Given any set x, there is a set which contains all subsets of x."

Inference rules of zFC include:

- **1** From $\varphi \land \psi$ deduce φ .
- **2** Modus ponens: From φ and $\varphi \Rightarrow \psi$ deduce ψ .
- **3** Law of excluded middle: Deduce $\varphi \lor \neg \varphi$.

Def. "ZFC $\vdash \varphi$ " means: There is a ZFC-proof of φ . **Ex.** ZFC $\vdash 2 + 2 = 4$, ZFC $\vdash 2 + 2 \neq 5$, ZFC $\nvDash 2 + 2 = 5$.

Foundational incompleteness

Def. A formal system *S* (such as zFC) is **inconsistent** if and only if it proves a contradiction: $S \vdash 1 = 0$.

Foundational incompleteness

Def. A formal system *S* (such as zFC) is **inconsistent** if and only if it proves a contradiction: $S \vdash 1 = 0$.

Gödel's first incompleteness theorem. Let *S* be a "reasonable" formal system (such as z_{FC}). Then there are mathematical statements φ such that:

- If $S \vdash \varphi$, then *S* is inconsistent.
- If $S \vdash \neg \varphi$, then *S* is inconsistent.

Foundational incompleteness

Def. A formal system *S* (such as zFC) is **inconsistent** if and only if it proves a contradiction: $S \vdash 1 = 0$.

Gödel's first incompleteness theorem. Let *S* be a "reasonable" formal system (such as zFC). Then there are mathematical statements φ such that:

- If $S \vdash \varphi$, then *S* is inconsistent.
- If $S \vdash \neg \varphi$, then *S* is inconsistent.

Examples for statements which are **independent from zFC**:

- **1** "The system zFC is consistent."
- **2** "The value of BB(1919) is $1 + \cdots + 1$.", where the sum comprises BB(1919) summands.
- 3 "A certain specific equation does not have a solution."
- 4 "The continuum hypothesis holds."

The continuum hypothesis and its traditional dream solution

. . N. 10.

The continuum hypothesis and its traditional dream solution

N

all natural numbers		all integers
0	\longleftrightarrow	0
1	\longleftrightarrow	1
2	\longleftrightarrow	-1
3	\longleftrightarrow	2
4	\longleftrightarrow	-2
5	\longleftrightarrow	3
6	\longleftrightarrow	-3
÷		:

The continuum hypothesis and its traditional dream solution

Def. The size of the set \mathbb{R} of real numbers is \mathfrak{c} .

Thm. (Cantor's diagonal argument). $c > \aleph_0$ (in fact, $c = 2^{\aleph_0}$).

Where is c located on the cardinal number line?

The **continuum hypothesis** CH states: " $\mathfrak{c} = \aleph_1$." Alas:

- I If there is a zFC-proof of ¬CH, then zFC is inconsistent. [Gödel 1938]
- 2 If there is a zFC-proof of CH, then zFC is inconsistent. [Cohen 1963]

Hence the traditional dream solution: **Devise additional axioms to settle CH.**

Models of zFc

Def. A **model** of zFC is a collection *M* together with a binary relation on *M* for which the axioms of zFC are satisfied.

- Elements of *M* are called "sets of *M*", "what *M* believes to be sets" or "*M*-sets". The relation is written "∈".
- " $M \models \varphi$ " means: The statement φ holds for *M*-sets.

Models of zfc

Def. A **model** of zFC is a collection *M* together with a binary relation on *M* for which the axioms of zFC are satisfied.

- Elements of *M* are called "sets of *M*", "what *M* believes to be sets" or "*M*-sets". The relation is written " \in ".
- " $M \models \varphi$ " means: The statement φ holds for *M*-sets.

Non-example 1. Let $M = \{\heartsuit\}$ and declare $\heartsuit \in \heartsuit$.

Non-example 2. Let $M = \{\heartsuit\}$ and declare $\heartsuit \notin \heartsuit$.

Example. Let *M* be the collection of all sets in the platonic heaven. Declare $x \in y$ if and only if *x* is actually an element of *y*.

Models of zfc

Def. A **model** of zFC is a collection *M* together with a binary relation on *M* for which the axioms of zFC are satisfied.

- Elements of *M* are called "sets of *M*", "what *M* believes to be sets" or "*M*-sets". The relation is written " \in ".
- " $M \models \varphi$ " means: The statement φ holds for *M*-sets.

Non-example 1. Let $M = \{\heartsuit\}$ and declare $\heartsuit \in \heartsuit$.

Non-example 2. Let $M = \{\heartsuit\}$ and declare $\heartsuit \notin \heartsuit$.

Example. Let *M* be the collection of all sets in the platonic heaven. Declare $x \in y$ if and only if *x* is actually an element of *y*.

Rem. Any model *M* of zFC takes a definitive stance on each statement: For any mathematical statement φ , the expression " $M \models \varphi$ " has a definite truth value.

Models of zfc

Def. A **model** of zFC is a collection *M* together with a binary relation on *M* for which the axioms of zFC are satisfied.

- Elements of *M* are called "sets of *M*", "what *M* believes to be sets" or "*M*-sets". The relation is written " \in ".
- " $M \models \varphi$ " means: The statement φ holds for *M*-sets.

Non-example 1. Let $M = \{\heartsuit\}$ and declare $\heartsuit \in \heartsuit$.

Non-example 2. Let $M = \{\heartsuit\}$ and declare $\heartsuit \notin \heartsuit$.

Example. Let *M* be the collection of all sets in the platonic heaven. Declare $x \in y$ if and only if *x* is actually an element of *y*.

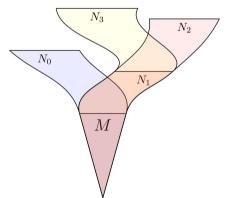
Rem. Any model *M* of zFC takes a definitive stance on each statement: For any mathematical statement φ , the expression " $M \models \varphi$ " has a definite truth value.

Embrace the **multiverse**, the entirety of all models of zFC.

Traveling the multiverse

Def. (modal operators)

- **I** " $\diamond \varphi$ " means that φ holds in **some** extension of the universe.
- **2** " $\Box \varphi$ " means that φ holds in **every** extension of the universe.



Traveling the multiverse

Def. (modal operators)

- **I** " $\diamond \varphi$ " means that φ holds in **some** extension of the universe.
- **2** " $\Box \varphi$ " means that φ holds in **every** extension of the universe.

Def.

- A switch is a statement φ such that $\Box((\Diamond \varphi) \land (\Diamond (\neg \varphi)))$: No matter where we travel to from the current universe, there will always be a road to a universe in which φ holds and there will always be a road to a universe in which φ does not hold.
- **2** A **button** is a statement φ such that $\Box(\Diamond(\Box\varphi))$:

No matter where we travel to from the current universe, there will always be a road to a universe such that φ holds there and in any further universe reachable from there.

Example. CH is a switch.

Notable features of the multiverse

- The mirage of uncountability: Any model is merely countable from the point of view of a sufficiently larger model.
- **2** The **mirage of well-foundedness**: Any model is **ill-founded** from the perspective of an appropriate other model.
- **3** Some models are maximally rich in that they validate $(\Diamond(\Box \varphi)) \Rightarrow (\Box \varphi)$.
- **4** There is a certain Turing machine *P* such that for any function $f : \mathbb{N} \to \mathbb{N}$, there is some model in which *P* computes *f*.
- **5** Set-theoretic geology: A **ground** of a model *M* is a model *M'* such that *M* is an extension of *M'*. The **mantle** of *M* is the intersection of all its grounds. ... an ancient paradise?