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r P vs. NP r
the biggest open question in computer science

– an invitation –

38th Chaos Communication Congress
Questions are very much welcome! Please interrupt me mid-sentence.

Ingo Blechschmidt
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The landscape of complexity classes

Def. An algorithm A runs in polynomial time if and only if there is some
polynomial p such that, for every input I

number of steps for computing A(I ) ≤ p(|I |),

where |I | is the length of an encoding of I in bits.

Def. A problem is in P if and only
if there is is a decision algorithm
which runs in polynomial time.

Ex. Primality testing, node reacha-
bility, . . .

Def.Aproblem is inNP if and only if there is an
algorithmwhich verifieswannabe certificates
for a positive answer in polynomial time.

Ex. 3SAT, Sudoku, TSP, graph coloring, proof
search, . . .

Prop. Every P-problem is also in NP: P ⊆ NP.
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Further complexity classes
P ⊆ NP

⊆

NP-C

⊆ PSPACE

⊆

PSPACE-C

⊆ EXP

A problem T is in . . .
P iff there is a polynomial-time decision algorithm.
NP iff there is a polynomial-time algorithmwhich verifies wannabe certificates
for a positive answer.

NP-C iff it is in NP and if every NP-problem is reducible to T in polynomial
time.
PSPACE iff there is a polynomial-space decision algorithm.
PSPACE-C iff it is in PSPACE and if every PSPACE-problem is reducible to T
in polynomial time.
EXP iff there is an exponential-time decision algorithm.

P , EXP, hence P , NP or NP , PSPACE or PSPACE , EXP.
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The relativization barrier

Let B be a problem. A B-algorithm is an algorithm which has access to an oracle
for B.

Def. A problem is in PB iff
there is a polynomial-time
decision B-algorithm.

Def. A problem is in NPB iff there is a
polynomial-time B-algorithm which verifies
wannabe certificates for a positive answer.

Prop. PB ⊆ NPB ⊆ PSPACEB.
Prop. If B is in NP-C, then NP ⊆ PB.

Thm. For some B, PB = NPB; and for some B, PB , NPB.
Proof, first part. Pick for B some problem in PSPACE-C. Then PSPACE ⊆ PB ⊆

NPB ⊆ PSPACEB ⊆ PSPACE.
Proof, second part. Pick for B a zero/one random oracle. Then the problem “do n
consecutive ones occur in the first 2n drawings of B?” is in NPB but not in PB.
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