Zuletzt geändert: So, 05.11.2006

«K12/K13» 113. Hausaufgabe «PDF», «POD»




0.0.1 113. Hausaufgabe

0.0.1.1 B. S. 382: Treffend vs. zutreffend

An einer entscheidenden Stelle sollte man sich darüber klar werden, welche Vorstellungen vom Licht zutreffend sind. (Metzler, S. 382)

Modelle können nicht zutreffend sein, ähnlich wie Zahlen keinen Geschmack haben. Modelle können nur treffend sein; Modelle liefern eine treffende Beschreibung der Realität.

Je nach Modell und Einsatzgebiet kann diese Beschreibung treffender oder weniger treffend sein: Beispielsweise beschreibt die Strahlenoptik die Phänomene am Doppelspalt weniger treffend als die Wellenoptik.

0.0.1.1.1 Intelligent Design

Das Missverständnis um den Theorien- und Modellbegriff findet man oft in populären Medien. So liegt beispielsweise auch der Konflikt um Intelligent Design in Amerika in diesem Missverständnis begründet.

base64
iVBORw0KGgoAAAANSUhEUgAAAGIAAACHEAIAAAAy3scrAAAACXBIWXMAAArDAAAKwwE0KSSrAAAXsnpUWHRSYXcgcHJvZmlsZSB0eXBlIGlwdGMAAHjalXtLsiS7qmXfR3GHAEKAGA6/ZVa9atT8rRo789w87537ykpubuEKOUvS0gdEEN//+t//p79//etf/7Kj75N3z407JDuUekxdDNaufi0MtvQrMRFd+yPDf+Y/IuK/wC4Nv2v6Dl23Ntgxtj5028Lcnl8LW/NDl23NrU1/kD4iur9A99+AHHz+EZCt/Vr4dbX7G4SI7vffQARCpeTHwtbvoWvWxuYuv4SC/mtiou+PbiXtFYOTh5/fXfk30J9iRL/ljjPxvfkZOxnbmrqYHvof20KUv4H+SEfePd+v7lzuOwZbg4k9PwYb00P3GVub+TXYmh5SMfX7m/bflXxEfIhE/93sM7+e7U8W/uDQ/6nSz/SQXj/Gti5mpn7+U61E3ERE+If04T8kkn1/kkqXHtl1Vwu7pn+A/zWPfp7Or+n0+/NvILw0qnpuHzK4mfrx8yfkHxPyb4JJpmJtYfJn7c7/wN9fLSJiPT9Z/H7hEfkS3SZS/1lTQn/c/Ld+/QX0nxP/89e/KvyrAf9voP8x/UEFf8w3rlw5pGrr19jc3NT+++Jg4r8JX/bbxh6mfr5DN+49dN3U1tSPsV+Dn0P3GLv8tcbvf5ucl5r1rqn7d0jdwtauwd3lkF57rjZ2bI0trH/o0Po7b7/58d8c4RERWb9f/AmI+BERA/OAJSKmm9duXCMipkNMdN/PTQTsfkS0l+0a7JgS2U8Z/QIqoneJqOnRo0dBj5qCgpqZipKKmZXwUVMTWPmxsLCysPBjpv739ffcP1/ffyhgGioqGloaJlpaJr60tLR8fz/R8v2p5vtd5/9/G/5Di4AmImZ6P+Ogh4T4HCI6zMQkzMTAzK+JYEBfYsFvdaTEf1z/Zer+GqNLSkZOj4KS6pdW+5vk9w9r65D8V1H+KbvEJHTo0iElJ6NHSkIt8v2IMpPQPcxHmPSysjHLOc6P5ZDxDU4uvufIuax6mu2IyPXzzvCVj/xoHBXQMtjERZQtT50nx+4N0Wv3ap8Uv2Lsc1T3mOKUvNsy4rryQa4dj5v3ad3QvnP34qaWto6uQtXM3J6FpZW1zc++79fVzd2fh3/p5e3j63D+Yej8Ivj+wZWTkYr+m4jDwnzo/tDg/J3DQirncTDf3zw06xkGiZxrZ9nPO3GuqLCauMgFHyX7TQL5d0y0z5wfNlLY7V5VFfNruufvTECu/TMN3//Mw/G/M/FDBDBJRE3y765+zEQCoq3zWtlUVB+nPu62sCIUvbCH7ofhKsTJqRwbNXGetwx7/ol7lfPRbGMpLZtCzMIfhlSx7NizpQa2tNrM+0bmWt0qnfaHwfm0q7fSoegsQ0Fss7W3p3bqFBdVhz2vjHZb2Ew5rl69nVuGtPYPaXEC1zIjJ3cGN/pawi1XVqsgGukQV+wbLXtzaJ9J8FrFtPXsl/7mIsPn8WjNaumrCTVp4rTGmBzLsgaEtR1qXlmsnBgRKyPt+VysjY5PId56CaQw59z0V8gRaMoWGbPV2RyostZAq85JJ1oo0X7jqrSpUIAoTwliNAcqtSVVOStTD6FF60scUpfMMxQgEt/ytPmeqZtYY71GJhQbgmYM6a0t0nlSyDc1l8jGTc9kSYbHY69CVN/+tt3F0WdkwwsOJGEYKVj2l8jCeMbGQJ9THUt7ac8EI2Xce0b0k8lJHZ2qcgOIeh1VjvQClvSobAebDS0sihjGzmfiXFQ8vBncL5S2khExVJkrO5MopwQ1aVO4YKS49fW8LUFkWU1CvU6+6uKe/BQbFa15ZTkXBljkIm/ri3gH6fnKsmLRYdNUmWcn6vVzdS+6wvHV6cwyYWw6+pyb9qDUIXN1oF5HH3hzVWEaOs47EzAt2+LZPlPyzZt+uemZti2b2x39EtTIgrnL08d765Ezb3p6cQ7c9w1AVAUQfeSWzy9lIrfydEVVzHCW75GT1nSmtOGjNgkvzIVrXdxtz5rClf2GsY+tlkxV37yycMmyCbetM3A6a+0V7e54d6JizGsKXRVH5dXWh7EFiOqJOcTLEe3OKIDoAvsc9wGPbthgCiQYEWx4FpYdUcBHdKsdsnFuOjC07TmCrFGoHtnEHNuGK6v6rcs0Z6ye6ENp1Qzul2k+BD84t71t6+5mXIy+PJFgyTfqtcW0Z63DDD4H3vPXKnj1TRVnG7Y7GeeKzq1DMRcVOTRILszsaouPdmFzV1zflozLQT69+zV8Iswpyq8QtUF5NWxFAphToy4+DOW3MDmJkrzpERsChWfg3q/kCCPTTtXxQ8S6W7qam02jgeTih4ztcQf6nK3abB/blC1mfmWfsRS77MzIRuna8/cOTPPM5FoJnKFTAJFGCW7Ysc2HfT4uMqW13+b05BtXI2i3UtepXPhz6yavmu4BoicHIMqc2vR0JHXi1tj4fi93K1TkOJ9hDZRMbsZictk0SqanygU21mlIDNQG6j8zb47K+wI6nm53da+xX4iyqwQ1b+kjW9Edj0GI4MJUqX0Gvb4v/PA4Nr82URkh6Gy4yQZKtLt9k59ay5n2fsQ5Z21byk12MEd9w/cBRDe+TVXs24TGZjzy4wzeyU2bshVpLm13A24M5mhdT9+FZtsvBbDfDx5AxFY9tSWrQ6h8yILqTkPuXu7anDj9aOrM8ZH2Pu6p6K2vaN/ErQFAxK4+knP0nH2MFfEMIznZuunqO9RuFSljLnnWxgSiX+FalU75PuSr2hSRNIxZk+/1a9XVY2LPppRpTN9azOvSstJYwD8fyTMAUVN4PGj33djJU3XCizQ7oPZGcznrepXbuI/86BxWQtZX0OdSSa6Ccjs0OyS2dyWQYqodVkDcRrpqIAJzb1yk7bEzalD7tmzavbbSj5NziVU77SE5Y571xsPaJiNhUy82pp+8EpRo+dStna/mKa5d5OHkFZcYL47XyxtSuKNemXCAqNnxVDV3cx5eQPMEsuV7RHZxsekj1nIf3a4d6Cmos83EpqchF+U+2TkPIPICiKKgrM8+fafqTILJxuQh36ZOaigqwkV7c2NGJ26dgMpGbeACRJFY16Onvh1/DjjvwwB5fJ8jGWuOvMD8Gh2ec2drAiByyQcQVRR6VdBfO6YfUjBc2A1AAqC/lAFvyJabl7Nv2uvXVzbLh00y/c2VyI9zcGN3UD5VgR+tACK1irNvDHN9U8accSRzVWXD5EdB5ks/tN9klI1xi5Du6cn2mc3CaPpc6MmqubWNdVaACPwQY3ZwqW3DrebL7XJVVbWykh17VvrQ2c+K3+S8tQWuZdaUluAGUoAnc5E1z4fkO0hdUX4+p6h7Dqcf6+Swzbby8ZLDKHHZccEE8qJx4+7qREC95AMdLrOzF3eLe9p9x0VHi1enTpnveyjbOotb2wtsypb6U7LKrjvfW9e3dPLg2MVuUc2gBtXQdYcGkkxWTbkZWTFnM3GcX1n7mmrp9/a4yy3ddjXYqM5DcSHPbAOvctxrJCKWH6pEe6Dbp89mupOV5jfUMC9LH9+c9zP0eW/cJYxXV24gy0PjkrhFugltnh5Y8MMmT36b2Cc+F2i8aiuSQyvTwyRW75G7BdG+hftaQhngdB/zVNWRE3W/V9oAkb6RuvIYd9KmOBm4GTM62ES+Bq4hCzIeJlwqWy4CQVh9D5wkO9g5N92RMOcSepx5Om2GNHuJjKeKMIIZF5+ENurK0yjt73BLMQQ9pwx5jZfXjXwi4WJVGVVW0Clj8n2BOeTikDLPW0e38d0cQnGbuGTVu1bJD3n2xt3EKDYLJSKg2kmqIqt6umvMZ4yPDPu318YCeto8HQ3Vbd2UcT+17cHuE/ucWsu5n5vO4Rw66ZQY6ET1t3e1wFtlXQI18xQV/jl2ydRpXXXYNX45Y5VlYXFa6mjeloos5NeLtDERxGgV9Ifu2s7Ku+b5tN5rm+NM85Ct8Qa9YuHFAFGK40upwpX6sXkIuNt1ZmIjb7qVmQBE07LJ7fMcKYE1x64CCRBNfTdO7GZhSBBQ30fYYIAoLqPh6HB0Ya2wrOfGBYiAOYZsHo7CZ8dqd8pM154N1+rKnDxhxVEnM7p9bPq2Vw021Q0bCccmQJSc/OnbqDl1ipE08fDKZ9dt+Y4rWbzi5J3K8XH1DZsppObAfF95ncxvFw01XfeVMvI8k8UWNn2o+LVsiMH0jiPf1hRMgetY+tEvcgpfWlnl1Zzu2pfWuadTeN6ecR5NfWsMq0wXH64yT90UGcKYY45PfDUC1RMHl/e93cBTrWk8Z9mansNV4s2zJ1NDRzas0T3Y/NFzFB82CIHRJ7wWGbnOLlfDaLQXHjauNiaOZUEs0ISNHK5sgpGJ7/cmaeEcvCM7XnWnShBtZy9yodxvI89uit42kVOdbgiznXJ1lawPbotr0TFvzDq3sJ5TjqZz098AHDqaWZUl5yX3Vbwd2ZSoxAb353NcBTWLVhs137eNmxigO9cq06829qXT7s/urlFKBTYk9637PvLphos+mM4tGLK0opDimRMTtL0ddWBjRpaaw7jXh213qmof5qPZSkUu/zgsMv3SPn2XdzobrQlXBPXZZ7eu3m2TTXVFhgnmZPb3s34Rkzc9ZgPhcae2TQ/DFaE0I+ohVXOd5fBgSlPmSh4oJT98/WofX72cNFHa4zuz3LDnZT5vYVkB1S1M1BycyqolnTDasyLn0ueR2Ld3QiWAlMl1L8GNbQxraXZuRrQcDfXbfcJHtF5F72hbF8+Hu8Pl7iUQreKjR/f12S4T4S17xbh81hZIKR3EU0hhg9GDNSC+Vpd8tWh1kzokiaQiVWMX7bW6uzbz4BUPVj5S4v5j2JFStpHy92bImeHapOM7kzbmNC5l2Nz1R+u+L8NqZhvrp0uNTVe5s59p6Qc5x8pu6dT1clzTQnW71Jg5nty4UAckkAfPLkAkzLiOFmD6YL9ytDjE4qwVzGZQuVjzHcHNwJr8mOt7HOPb/dtQlX1+8tXCP9Fe2ISxDayu16MzrCsTC16UvvU6Uxx1Gt3tuDUX13FFNtyn274pLZ4Ndbt6255ftrr61iZ8x3zYJR+uIxprNSeBFs/RnDKToEn+2jKnvDjFS/cG1/TYuFkddxvzfRP1w4szQKQpOWu43adKPJ34uyPO033aunajeDZNK9vZBbxvesu368d1sIBiFGtzVEZngh+ufG/vOjZ33hALUYvPTsZr940pVdn1iY2EKPLHmmpJhXZZbuCN+ZcyBycel+vuWastfz4G17BxdUiOKavkS/mlohflO4y5zbaE8U+Q7UhQ1qkzUdk0nX6fEVu9ksOhmhD0eEV3ncxClJ0qd7zyTX7fPI4KD495j+fFnbDxqwcuA+Nsw+TMdkaVbv+cx+nFiWfXx6WK+qt8+2gMt/vSpZy6j3QvLS+qbOE7ANHTwaLOaOjD07meu65XnHw+hDvlwOqV+y0MTGE7U7iaPrDCRnYYHqZrWDZhbuS39umdevXeJ7AnoBxxHd1h2y2FearpmFeOLTJr4mHD0QcZiBcn+iC3Qh9g3yRSl4imacO1nLfOEXVx9+ydHhr0OjYEy6y+MU902Ti6e6x1/GOaPHVGKuLIaO5M7GBEoxyXd4F3AQo95Y+H/ECQCmVkn5Piqu8jWFkl1Q3Ck0277J7m+0xU0Xv6dm5OeJwlaw9/Jle0jt9JeTAf/m7cWps21GmvvE4aupEW9RZTuIUVtvFRQUZjS7VczgaKaho5Y5/eKwrV16eLcyfsikInx31tMa/EU4ywI5uuyg+la+MSvXnaqmy/4dIp9zfYdRHfBrrH8y2LJ/vo9MlM3yugeC1iJva2rOv8jJztJ3LKNOLA7V4vxgNA9BggEosTTUAbQAIPgGhfhWEOZrAOEEV82F9mnOatFCD6x2a9447bKHFcrx+dUS+AZ8BSYVV+HOMW537pwNwdSZgNHg9bm3FdwXnPVlQ3nguMnaZsMDPlnGETjgKGc+U7qJJiMI/amesicpLtubI9guk8eTlOHcUNKeu+Vn6iAaJb2L2eX6i6ngJWqF3VoKdvxQ7NvhyXU4VzdK3M861Tt5mrq01ZpZxTuPHFlgiGt6Gsgsyf86Sn2CRYjrXthQqrOIura21btdh2ZNP02MyHEY59pgorwVWrXagg9saF6tCE8b55dVeKw5Tv2KmcBZznycytz11N3/hOMvTnlExE+Sp4RPLZFZ4bplzWVvEuG3HKYwvGz1h2xdc/3lSButCz8+vQ0WLstVlyztZZD5NLVk/tJKtdiXh160QWrl7/9s1rqC3m+Aab4y5yMHbGQ94672tNEk2UtZhoa4PWnyu/3sp1/yqezMWcbeDdGxeRI7cCXsJ9DS6tdm5THB+Bs45DMzmejmiNOMfXKOd8YXun5xyFybzFNbi+BurWztQdRg/SEcBGibDTPNlSZVv96nmy2a067tPUMo+qDsemaNFixAYz9yZkMFfyzIzsHquOPnSr63677Nti0R7oNiRh6gJn342LTJ/bfTfcfZQ3Hr/J6C7nJ9anLczra1uzS6LVVT6jipoyLQQMG+xxfGyRxY7R2bz2nKLN2/NgmrD2PpdHPwelEgxXbANP0K2TwCstKnudGxKlz21JMoymcMvV9pzXMV/CfEMmDEnA9Q3U+MW451nGmOyb4EddWcWwupwHBMKElbiAC59Pt9l6TWBu6cYJ8NmoKNjpNF0KqynSsLphNW9Jc21KZQpXd6Y+xHZlAY91IcNZPNeJY+6VFtkpfVAr3phRZk4kAS4+NKiY4gE+Ip3cLPZG+YibKMzErtC4K8FVrQhnvGi7+Dkyl2pO4Wc31YJ/g6FtMbnSlcgj0x3PkDnjiPSNAoY1AA70HpV9juIs4B0Q9kE/8FKcGnJ4A8NAv7xxAhjdrWO7mRcZ7znn2ORMTzZ5zTDuw8aJz5FeOthgbGvMSKUMP3FMFiNZ+U2cPRvlHDkWLLjtxTBPmynU+xLGuC+fnTnTUW8q6KTV6eLHOXSbZtfueGF2L/dr65vcyDbRiqf5kW3G29pxeSw7tuuV2dd2kb5belQaPrYbGmOr5RmYiEXyvNzM+Tws6nSbj8mROaIrdSW3sjpLjvCMefKd2eepsFehjCwd9s1ybaOvby0G4aqqEvFI255fT+uS8+rd8VAr7NytGeQtH/nlqn+J7UHqV5LPTKtYXMCSqq4y71jRVs2t1AFI305XZmETU0x+fIuhRVRT7+ONesw7Xl33kcRBmJ4tgcsIbtm56eTiaHXFle1C3pqppMdvrJa/vNfG5WTHG7yGi092CXYGQ7mqNQQ50dORZGfvXIs8eH1dla0U+Ijy8mMd3y3Zic0ft5WJL5COntxxqS3H2KnicjsiXGQbTqLzfD7zKuuNW9MLG0eXm8xrqOBqbWIYWSoprmerYiKtNmPuYB+dcc6PyMrKy9ymXje/MZNd6EmsnUmc7HTEYGjCPE+cUOiVFB+jjQh+X0TE3JL0ZT3rM25mWvHaPd3khPmE1o0pV8flbsxBitZpx+TpgX+nGPocbUd5BFkS9fD4TN6KcFPJeq65h0QT7TVTGjA3EdxAIRhfnixEQE/rkN29Prob8sjFnuvl8Soz2ct167EzwSsbeivbK+pa12cNEweI6GooNCXT79vEg5po78zrneKwNtn10tQf48emzmu3SXymvul5GiPimJM3vSGSL2vrrisC7zRK1mdUdn2Z4K8M2Ys62TbfEzdUUUEzC9FQ26xzEtO3NlGeD6ODbH0VHKph3NaZWXUiZs7090zfmGZPrtUZmFhPLEC0LriW43c3svs0yo+nT4W8uWObW221258XpzaKJq7OXELeM7ZHdc5WYWzCtZCOYYBoDAryTYfO5ljldH9GLTm7aQ3F4TzcwtjhsswiTR93kYPRtgq44PcmogEQvbpx8SX//NqqGwEQhfEbrMX+boEE+seJCQGIQCfOemEtRbBrgY1PYYV9wHLBC6kA0Zr9dqTEn9G9hzn1J6hafv5OcMjEYPM5Gfu1sGNhbeHX45CFrZnhd7yl6p9hwz9xzESXiewSGYg+O0SmRIeIlIjs/RT4rxdc/vjur5jhv4PYIfr+f0AOEYkRnf0JJ/0dHPrv8PxLRn1T6er1Q8quxr87+lc8qf8Rr83ERN//Bb4cwiteYFroAAAACXZwQWcAAABiAAAAhwAkLB3UAACAAElEQVR42kydZXwTadfGxyeuTZq60lKh0EJxXdxZdHF4gMV1cXd3Fnd31xYKW6BQKFIX6pq0jfskI++Hmw/v7pf+li5Nk5m5z7nOdf0P/G7NuzXv1ngSPYmeRFbCSlgJ/Ap+Bb+iIAqiIGoftY/aJ3AIHAKHqFBUKCrk3+Tf5N/kj+SP5I9EniPPkeeYDJNhMi6BS+ASuD+4P7g/BFsEWwRbuI3cRm4j84J5wbxAJ6AT0An4YfwwfhhxIk7E6ZjgmOCY0NSrqVdTL0OmIdOQqRKrxCqxf45/jn8OEUgEEoFwBVwBV6A0SqM0sZ5YT6yHnkHPoGeQH+QH+UHfoG/QNyQdSUfSUQkqQSXcUG4oNxSKg+KgOG4Tt4nbRB+gD9AH2MHsYHYwrISVsJL6k/qT+tMz1TPVM9U03zTfNN+4zbjNuE3CSlgJqx6lHqUexfzN/M38bZ5hnmGeIXfJXXIXloalYWlQH6gP1Ic+RZ+iT9lm2mbaZnpcHpfHJbgjuCO4wzvAO8A7wOvL68vrawu0BdoCmRqmhqlBuiBdkC5wMpwMJ5smmiaaJspSZCmyFFGMKEYU49ru2u7aLjwgPCA8gM/H5+PzPbc8tzy3aA/toT3wMngZvIz+h/6H/ge+AF+AL+A78Z34zrcP3j54++CQ85DzkHN1yOqQ1SHSNGmaNK1FtxbdWnTTHdId0h1ilaySVX4TfBN8E1w6d+ncpXNJq5JWJa0aZBlkGWQx5BpyDbn0IHoQPchR6ah0VMKz4dnwbHQeOg+dJx4jHiMeg25EN6IbmX3MPmafdJp0mnSaKdGUaEok7aSdtItmiWaJZkkXSxdLF3NVXBVXhbF/sH+wf9AH6YP0QUSACBABi7Ioi8J34DvwHfEU8RTxFNdS11LXUrfILXKLOBNn4kzUXGouNVcwTzBPMI/4SfwkfiIfkA/IB3IqOZWc6nrseux6LJgkmCSYBFVClVAlZsWsmJUeQg+hhxggA2SAGtMb0xvTFbWKWkVtG2EbYRshakNtqA3qCHWEOnINXAPXgNQj9Ug9XAKXwCWoL+qL+kKzoFnQLK4P14frgwpQASpgFayCVXDtufZce2giNBGaCF+CL8GXXMddx13H6UQ6kU5kVayKVWEXsYvYRWwdtg5bh0QgEUgE3ZpuTbfW3tPe09777Pzs/OxERiGjkFHdX3R/0f1FzJ6YPTF7aB/ah/Zxa9watwa5jdxGbnMZXAaXgd/Cb+G3ODWn5tSIHbEjdk7GyTiZ46Pjo+MjpIbUkBp/h7/D36HRaDQaTS2kFlILMQtmwSzakdqR2pHB7YPbB7fHH+GP8Efu9+737vdMDBPDxFjeW95b3qNhaBgahjxCHiGPuJ3cTm4nyqAMyrBd2a5sV9Ez0TPRM9gJO2En+w/7D/uPME2YJkzznvWe9Z713PDc8NzwdPZ09nTmFnALuAXug+6D7oOmh6aHpofOF84Xzhduj9vj9lg3WzdbNxsGGwYbBgv2CvYK9nqDvEHeIO0S7RLtEgkloSQU5Av5Qr6uQ65DrkPKDGWGMqPuTt2dujsmnUln0tm62brZutFRdBQdhc79Y+4fc//gNJyG01BGykgZmcPMYeYwno/n4/k8nIfzcGwftg/bx/Zie7G9oHKoHCrnveO9471DJiATkAmIHJEjcu4N94Z7wyEcwiHsJnYTuwl/gD/AH+Af8A/4Bw/uwT14A6+B18AD92jQhaALQReU7ZTtlO2wKqwKq+JOc6e506gQFaJCt9VtdVsFWwVbBVvxsfhYfCw7ih3FjkLSkDQkDbytSAKSgCQgG5ANyAZ4DDwGHgM+Tqgeqofqm9o2tW1qq43TxmnjjH5GP6OfcZVxlXGVq9nV7GquJCqJSqLmZM3JmpNN1U3VTdX0GnoNvaYktyS3JPfzh88fPn/wkB7SQ/rf9L/pf5On4ql4Ki6cC+fC2QHsAHYAE81EM9GeKE+UJ4p/jH+Mf4xfwi/hl3geex57HtMaWkNrwI2KL8IX4Yt4pbxSXqlormiuaC50CDoEHbK3sreyt5LOls6WzsYWYYuwRcR4YjwxHglAApAANBFNRBPxXfgufBe3nFvOLScnkBPICcggZBAyqLqiuqK64q3kreStJK5zXOe4zlJWykpZ+1/2v+x/eR1eh9fhDHIGOYOsKqvKqsryy/LL8gvKDMoMymxX066mXY00SholjareUL2heoMO02E6DJbAEljCdGG6MF24WdwsbhZbwVawFdB4aDw0HuNjfIxv6WjpaOnoDnGHuEOYR8wj5pEqVZWqSiX/Iv8i/0LnSudK50pJjMRIDDyQ8bf4W/wtNAGaAE1AQpAQJISMICPICH4uP5efq7ApbAqbcKhwqHCo6KjoqOgoP4Wfwk/h9eL14vUi+hB9iD54Np6NZ6OxaCwaaxlvGW8ZX9G7ondFb9Ue1R7VHs1YzVjNWHwWPgufxRAMwRDcXm4vtxdRIkpEiWM4hmOEklASSuQEcgI5AT+EH8IPoZZQS6gleD3geOV6cj25nlABVAAVwBvhjfBGqC/UF+oL94B7wD0cFofFYSldX7q+dL31lvWW9davvF95v/LYV+wr9lXazLSZaTPLVpatLFtZNrRsaNlQcKTyHvIe8h7WK+uV9cof2A/sB9Y8tHlo81BlmjJNmeY71Xeq71TEB/FBfDw3PTc9N8FBgHRHuiPduePcce64o6+jr6Mv9Tf1N/U385p5zbzGfDAfzAdpibREWiKhSCgSKugq6CroygQzwUywt95b761HK9AKtMJV56pz1YHjxpvoTfQmwk/hp/BT6A50B7pD62k9rcdSsVQslWvDteHapKhT1CnqoM5BnYM6q61qq9qq1Wq1Wm34/fD74ffNgeZAc6Dpnemd6V3+9/zv+d9lwbJgWXBAr4BeAb1cJpfJZXKSTtJJOvVOvVPPa8VrxWvF+DK+jC84hbxCr9ArtP5h/cP6h32xfbF9sTXUGmoNZWYzs5nZxpbGlsaWRBKRRCRhKVgKloLQBE3QhKfOU+epg/ZD+6H9gihBlCBK2CBsEDYgY5AxyBjiOfGceI7+h/6H/ud96X3pfUldpa5SV6kv1BfqC/uYfcw+xm5iN7GbaDVajVbj3/Hv+PfG1Y2rG1cXi4vFxeLAV4GvAl+pQlWhqlB4J7wT3okmoAloApaAJWAJcDPcDDdzg7hB3CAulovlYtFUNBVNBV97f3p/en96hnmGeYaxEWwEG8EcZY4yR6GH0EPoIbQd2g5th6PhaDgangJPgacgu5HdyG4ykowkI9lQNpQNNZw1nDWcZeWsnJXnZuRm5GZQg6nB1OBCXaGuUOea5ZrlmlW9tnpt9dombZO2SUueJc+SZ8UzxDPEMz7Gf4z/GH+58+XOlzs3SBokDRK2B9uD7cEWsUVskdfutXvt4NC3/7D/sP+A7kH3oHsYgiEYwqQz6Uy685LzkvOSDbJBNsiyzrLOso76g/qD+oOKo+KouOrE6sTqRHOJucRcYs+0Z9ozkc5IZ6Qz3AnuBHdypjnTnGnuMe4x7jG0iTbRJv1m/Wb9ZmwXtgvbJcmV5Epy63R1ujodlUllUpnUBeoCdQG6Cd2EbgbMDJgZMDP8e/j38O+CzoLOgs7YCewEdsI8xTzFPMV6wnrCeiLieMTxiOMheSF5IXn8IH4QPwh5iDxEHpqWmpaaliJrkbXIWu9n72fvZ20bbRttm/qM+oz6jEqukqvkmp43PW96XgvXwrUwqPAwaCO0EdrIdGI6MZ2wrdhWbCu0CloFreL+5P7k/kSnoFPQKdQoahQ1CnfhLtyF/Y39jf2Nr8XX4muRt8hb5C10HjoPnWeeM8+Z58h8ZD4yvx6vx+vxpnNN55rOhWeHZ4dnC4cIhwiHeGkv7aXRgehAdCCUCWVCmYgCUSAKtiXbkm2JrEJWIas4giM4gqVZmqVpM22mzcgP5Afyg1xDriHXoBiKoRg3mZvMTaZn07Pp2dhn7DP2mfub+5v7G/KBfCAftgPbge0AHtdUPpVP5ddxdVwdVzuldkrtFGeVs8pZ5fnP85/nP8QP8UP8tL21vbW9kV/IL+QX/zj/OP84U8FUMBXcfm4/t5+1sBbWUs+v59fzn/Z92vdp3wmHJhyacIhIJBKJRGgJtARaQmtpLa0FFzp7nb3OXkfL0XK0HDy/WT2rZ/XgKIdXw6vh1Wwam8amoWPRsehYzsN5OE/T06anTU/9x/uP9x/v+eD54PlgnW2dbZ1tyDJkGbICywPLA8uReCQeiSfvk/fJ+wzHcAwnChOFicK0JdoSbYk8Vh4rjzX+YfzD+AdDMRRD8Rk+w2d4SbwkXpIz2BnsDObf5t/m31ZoFBqFRrJYsliyuEHdoG5Qe//1/uv9l5ARMkLG3mJvsbeUt5W3lbdN2aZsUzavmdfMa+bf4t/i3wKfmumb6Zvpm6uzq7OrMytmxayYOkWdok5hRBlRRpQRrYnWRGv8Pn4fv8+8Z94z76EcKAfK8WR5sjxZqAJVoArMhJkwE28gbyBvIDwZngxPxo/hx/BjoOxFApFAJLDKXeWucleeqzxXea51m9ZtWreRvJa8lrxGGpFGpBFeCi+Fl2JTsCnYFCQbyUayoXHQOGgcs4fZw+yBR8Gj4FHgYoKT4CQ4iYwj48g4KBgKhoLBIYg+Rh+jj+mb9E36JqhgYBksg2VQEVQEFXG7uF3cLmQcMg4ZJ/oi+iL6ApoA2T3ZPdk9a6G10Fpo+5/tf7b/OTgH5+C8N7w3vDesV61XrVe5g9xB7qDzmPOY85jskuyS7BJrZI2s0RBuCDeEkzPJmeTM4pTilOKUkiUlS0qWtLrU6lKrS/AAeAA8wHvde917nX5CP6GfoNloNpqNzcPmYfOQTcgmZBMWjoVj4VwJV8KVENlENpHNHGOOMceU25TblNukxdJiaXHN7prdNbtrvtR8qfmimKeYp5hnKbYUW4rrkuuS65IjzkacjTjLr+ZX86tdAa4AV4Dnuee557mGr+Fr+AVtCtoUtEF0iA7RedI8aZ40eiY9k56JP8ef48+16dp0bTqonMQ3xDfEN/gd+B34HQLVgepANTQZmgxNhm5Dt6Hbth+2H7YfUk7KSTn6Kf2Ufqp4qniqeKp6rHqseozNxmZjs7VB2iBtkKitqK2obV3nus51nc1tzW3NbaV3pXeldzHyNnmbvM3oGB2j4+K5eC4eYzEWY+nx9Hh6PO8J7wnvCbQOWgetQw4hh5BDnJ7Tc3roFfQKeoVKUSkq5bpyXbmu5X+W/1n+59dFXxd9XZQQmRCZEIlPx6fj091/u/92/40WooVoIT4Rn4hPRCejk9HJsByWw3L2FHuKPYXsRfYie5EypAwpgzPgDDgDRmEURrlV3CpuFYqiKIpyb7m33FvuFHeKOwUTMAETnJfzcl5uB7eD24F4EA/iQWAERmBuK7eV28qX8CV8SYviFsUtiqEmqAlq8u/t39u/t76tvq2+be6z3Ge5z2qaappqmox6o96oFwgFQoHQeMB4wHgAHFWSIZIhkiGIC3EhLluVrcpW5VjpWOlYmaHIUGQoIltFtopsRZaT5WQ5bsEtuAX8vkgYEoaEeYu8Rd4inown48kgD+SBPNgN7AZ2A12MLkYXcypOxakoC2WhLHglXolXBvYK7BXYCyqECqFCr8Fr8BpEG0QbRBv4+/j7+Pvc3d3d3d3JE+QJ8gToiLFz2DnsnFwpV8qVjnBHuCO84U3Dm4Y3vDxeHi8P3YXuQnfhc/G5+NzmK81Xmq8g55BzyDlNo6ZR00gOJgeTg61rrWutaxWYAlNg4Jb4NvDbwG8DPbGeWE9sm/o29W3qqWXUMmoZth5bj63HGrAGrMH9wv3C/cICW2AL3P1+9/vd76P90H5oP9VU1VTVVAy6D92H7mN+mB/mh+xEdiI7uTQujUsj/yX/Jf917XPtc+0DKhEWiUVikYgW0SJaaA40B5rDvefec+9NV01XTVc/3Ppw68Ot0PLQ8tBynxKfEp8SZ6wz1hnrifREeiKFMqFMKMPGY+Ox8WwUG8VGsZfYS+wl0EJzSVwSl8SuY9ex6+B6uB6uh0fCI+GRcAu4BdwCPgQfgg9Bj6BH0CM2n81n8yF/yB/yh4/Dx+HjzCJmEbMI9JVQKBQKhbI+rA/rw03jpnHTAnWBukBd6Z7SPaV79An6BH2C9Jn0mfRZG6YN04YJeBnwMuCl86XzpfOl45Pjk+MTnA1nw9moHbWjdvcg9yD3IHY8O54d77jpuOm4qZulm6Wb5brhuuG60eNFjxc9XkSpo9RRat4R3hHeEW+GN8ObAQoDeC48F54L3jdQ1dHNdDPdzM5mZ7Oz6Sq6iq6yVlorrZViQkyICXD0gyO14WrD1Yarmu2a7Zrt0jBpmDTMrXAr3ArqInWRuki+Jl+Tr0G7IC2TlknLiKvEVeKqxWFxWBy8qbypvKmQGTJDZpqhGZr5NeHXhF8TQDvFe8V7xXuFLcWWYkvl8+Xz5fMxFabCVNpSbam21HjXeNd4VzlTOVM5Uz1ZPVk9me3IdmQ7Mv8w/zD/CFOFqcJUpVwpV8rDa8JrwmtQE2pCTeJW4lbiVuAdQPjP+c/5zwXBgmBBMO1P+9P+XAQXwUV4unm6ebrhJ/AT+AnkKHIUOYrOQeegc3Av7sW9vNa81rzWtp22nbadj988fvP4DfQOege9E78RvxG/0V3TXdNda3zd+LrxtXmFeYV5heOU45TjlMPsMDvM7CB2EDuIDqQD6UA4Do6D4+AQOAQOQS4iF5GL8Ex4JjwTXNbgfgKdy++vI7lILhLKhrKhbMSAGBADeJ5xXbguXBf2Nnubvc2QDMmQHqvH6rEiU5GpyNTIE5EnIk/ognRBuqC8r3lf875qzmvOa87H5cTlxOV013fXd9fDM+AZ8AzwUwxTDVMNU5HLyGXkMqJBNIiGlbJSVmo/Yj9iP+LIdGQ6MtM6p3VO60y3olvRrYCQ4WJdrIulAqgAKgDqDHWGOjvHO8c7x4ObivFj/Bg/Z4mzxFniNrvNbjPyL/Iv8q+7xF3iLqHGUeOocewOdge7A72J3kRvNmY1ZjVmEcVEMVGsP68/rz//I/FH4o/E9/+9/+/9fyaxSWwSB68JXhO8hveW95b3VsvX8rV8ZjOzmdlsdpvdZrdhgWGBYUFD14auDV1FpIgUkfh+fD++Hz+IH8QPIiiCIqj+if6J/kmeLc+WZ+NN4k3iTZI8lDyUPKz31nvrvX6Nfo1+jZpQTagmVHBCcEJwQvCX4C/BX+qj6qPqo9Jcaa40F3x2plJTqakU4bZwW7gtrgeuB64H2DRsGjZNlCxKFiWL94v3i/eLikRFoiKigCggChA1okbUbB+2D9uHDqaD6eD0benb0rdp7Vq71i5Si9QitX6RfpF+kXmaeZp5Gv2MfkY/AweTq4uri6sLqEvYMewYdgw3nhvPjYfPw+fh84SQEBJCoh3RjmiHf8O/4d/QY+gx9BiyBFmCLPmtY9VxdVwdu43dxm5jvjJfma9QBBQBRUBRUBQUxexidjG7WPBvG7YN26YpqymrKcuZ6Ex0JmoCNAGagOAXwS+CXxjbG9sb22fvyN6RvQO05a17tO7RukfMgZgDMQckwyTDJMO8aq/aqwY6kLhcXC4uF+0X7Rft96z1rPWslVyXXJdc//Lyy8svL8u/ln8t/0rOIGeQM4QfhR+FH0GvjbpQF+riirlirpi+QF+gL3hrvDXeGvwz/hn/LGgQNAga+O357fntwbEC3YJuQbfIa+Q18prvJd9LvpfsFfYKe0UT3UQ30cwkZhIzyafKp8qnSjlNOU05rXZ57fLa5aZLpkumS8wAZgAzoDKrMqsyy3rHesd6x6AxaAwal9aldWnB8y+yZ2TPyJ78fH4+Px9uhBvhRuop9ZR6arPZbDYbPgAfgA9QfVJ9Un3yPPA88DzQpGvSNem0lJbSUqQGqUFqmBvMDeYG+5P9yf7EPmIfsY/2lfaV9pWmK6YrpivsBnYDuwEB5yvxhHhCPOH15/Xn9efCuDAuDK6Cq+AqjsfxOB6uxJW4EmmPtEfaI3ORucjcypeVLytfvh7wesDrAZIPkg+SD9hgbDA2GP4B/4B/iAeJB4kHiTJEGaIMXg4vh5cDNUPNULPpT9Ofpj/rG+ob6hvqN9dvrt9sW25bblvu0rv0Lj3Vi+pF9QLPGKQv0hfpC2RJ7z7vPu8+tpgtZos5F+fiXByf43N8qAQqgUogLaSFtNw8bh43j95Ob6e3A1XGhtgQG2K5YblhueHWuXVuXbwwXhgvRBvQBrQBFPW/sn5l/coi+5J9yb59vvT50udLxMaIjREbJUGSIEmQIF2QLkgHkp0iR5GjyAkSB4mDxJXVldWV1fVZ9Vn1WXdy7+TeyYUckANyEGOJscRYr8wr88q8X71fvV953XjdeN2AiMrYGTtjJ7YT24nt8DB4GDwMqF/sd/Y7+908yzzLPCv/Zf7L/Je5P3J/5P5wvHW8dbxtTm5Obk42XzRfNF80/Gn40/Cn5Ifkh+SHz1afrT5biRHECGIEVAaVQWWW25bbltvCo8KjwqOWpZallqUV7gp3hdvRytHK0SpySeSSyCWCBEGCIIEfyY/kR5Z5yjxlngqqgqqg5BXyCnkF1Ag1Qo2aSk2lpjL4SvCV4Ctwd7g73J05wBxgDiBtkbZIW7qGrqFr6qfUT6mfotPpdDqdWCPWiDVBX4K+BH1BV59bfW71OWI4MZwYjrRD2iHtkHwkH8n3NHoaPY1cIVfIFXqrvdXeanQmOhOdCYYVT28/vf30drGh2FBsaPm65euWr8V3xHfEd9CL6EX0IvYee4+9p7/SX+mvRD+iH9GPm8RN4ibV1dbV1tWWni09W3pW16Br0DXoVuhW6Fa4Z7hnuGcAfYidwk5hp1BvqbfUW2QOMgeZAwkgASRAxiJjkbFYBVaBVYBLljvKHeWOsjVsDVvj0Xv0Hr232FvsLW5MaExoTLAkWZIsSbbutu627kQJUUKUyPPl+fJ8Zx9nH2ef/M/5n/M/+0v9pf5SoDv7X/a/7H8ZOgAdgA54Z3pneme269yuc7vOgjWCNYI1jdpGbaM2oGNAx4COpiRTkilJ3EncSdyJqWPqmLrwS+GXwi8FPgt8FvgMugpdha4yKIMyKNeD68H1YEqZUqaU7c32Znu7ert6u3rrluuW65bX6Gp0Nbra0bWja0dr32nfad9ZJlgmWCbYEmwJtoTqmOqY6hjnPuc+5z4LbaEtNPhTx1PHU8dTYa2wVlgLkzAJkwVDC4YWDBV0F3QXdI/LjsuOy24saixqLKoYUDGgYkBz3+a+zX27H+t+rPsxQZYgS5BFBVPBVDAcDAfDwb/Vsh7eHt4e5C5yF7nLN9Y31jeWcTAOxiG5LLksuSyJl8RL4plQJpQJbTjccLjhMDjaNDM0MzQz4C/wF/iLd5F3kXcR9nsi9h56D71nF7IL2YXIS+Ql8hIlUAIl2Hq2nq0nF5GLyEWgmbcOsA6wDvi08tPKTysbZzXOapz1Oftz9uds+X75fvl+3mDeYN5g9TH1MfWxIFuQLcjG7GZ2M7thHMZhnKvgKriKxqTGpMYk6w3rDesN4VjhWOFY0DZb31jfWN9AKkgFqfhJ/CR+klAj1Ag1Eq1EK9HyzXwz3yxpkjRJmvhH+Uf5R0EtBV2HrkPXPRM8EzwTPP4ef4+/o5ujm6ObwWFwGBziXuJe4l71J+pP1J/wD/AP8A9od7rd6XanjTwjz8j7Evgl8Evg8FHDRw0fJTopOik6GfI65HXI6+r06vTq9Oq91Xur93pJL+klLXWWOkudOcOcYc6QSCQSicTY09jT2FN+XX5dfj37afbT7KfhrnBXuEv8U/xT/JML4AK4AFcbVxtXG2wyNhmbjJ3ETmInwTOMSWQSmUTdOd053TlsGbYMW9YipkVMixjQHTffar7VfAv34B7cI9wq3CrcCp2ETkInuWaumWsGU0h3qbvUXSqCRJAI8v/m/83/W+XwyuGVw0FFSHIkR3K1L2pf1L5IqE2oTagN7x7ePby7ZaNlo2WjcLNws3AzmovmormmV6ZXplfUaeo0dRrTYlpMS2+kN9IbXQKXwCUw7DHsMezRt9S31LdkWjItmZZkKVlKlhJGwkgY2aHsUHao3WV32V3kJnITuQmDPkIfoY94MV6MF6OH0cPoYTBtBr8kjdAIjcCb4c3wZvgv+C/4r8b9jfsb95dVl1WXVYuiRFGiKGWlslJZKb0ivSK9IhgtGC0YDcYa5pvmm+abyAxkBjKD3knvpHf6TvSd6DsxKj8qPyqf147XjtcOaBiySbJJskmgPGSGMcOYYcRsYjYxGx4ED4IHeX29vl5fx23Hbcdt2z3bPds9XISLcBFsgk2wCfbAHtgDZEbhZeFl4WXheuF64XoFT8FT8NzV7mp3NUdyJEc2HWk60nTEKDPKjLKW51qea3mOW8Gt4FaUxZXFlcV5DnoOeg42ZzZnNmciFEIhlO6I7ojuSCPRSDQSrIk1sabGF40vGl84w5xhzjBjpjHTmOmZ75nvmR+3KG5R3CLtMO0w7TDhcOFw4XCmHdOOacfFcXFcHPmB/EB+AFILfBu+Dd9Gf6G/0F+SOkmdpE6QJkgTpAmnCqcKp4IJF56FZ+FZAqlAKpD+HPVz1M9RZBPZRDZpCjQFmgI2iA1ig5z3nfed991X3VfdVzVajVaj/bn55+afm93D3MPcw4IfBT8KfvTd8t3y3RI2Mmxk2EigpJvHm8ebxwubhE3CpoI+BX0K+lgsFovFIvks+Sz5HHky8mTkSeQf5B/kH6FaqBaqzWnmNHMauAacnZydnJ3kz+XP5c+lC6QLpAsa/2n8p/EfzwbPBs8Gm8VmsVlgwzLDMsMyvAgvwotYnMVZnF5GL6OXgZLwtwbdF+mL9AVl1+vA14GvA1cUrChYUaAarxqvGp9QnFCcUEw+JB+SD8HsiXhKPCWeIgORgchAMNSM7BbZLbJbOC+cF84DjTfhITyEhwb+kjX0GnqN2+K2uC3mruau5q5Al+dmcDO4GbxUXiovFZ+CT8Gn8LryuvK64v3wfng/iqVYiqWr6Wq6GgxHec95z3nPfT2+Hl8PkoQkIUmgzgBKkj5AH6AP0P9P/z/9/6J6RPWI6kFtojZRm8T54nxxfr5vvm++b0VBRUFFQQ2/hl/DB+8M9457x71zaBwah8Z6xXrFeoVwES7C5erq6urq6rPFZ4vPllavWr1q9Wpg8cDigcWJ0YnRidEKhUKhUIAC3F3prnRXenZ6dnp24j/wH/gP6iv1lfrqzfZme7Oh4dBwaDj2BfuCfYH3wHvgPcCVYPPYPDbP+7j3ce/jwO3dZkubLW22VNFVdBXts8pnlc8q51rnWufaqryqvKq8+xPuT7g/YfDmwZsHb/aJ9Yn1idW10LXQtRisGawZrMlanbU6azVoEaQzpTOlMz9Ff4r+FB3oCHQEOkCvqmxWNiubA+2B9kA7vy2/Lb+tdbt1u3U70AJhO2yH7UDK8dngs8Fng8fP4+fxcyvdSrfSNdc11zUXQw+gB9ADzAfmA/OBHcYOY4fBA+GB8EDgxYFj4Bg4BklGkpFk0JZbX1tfW19zr7nX3Gu8G94N72a/ar9qv+pt423jbYO2QluhraD2UHuoPWfhLJyFq+aquerq3Orc6lzgg6EL6AK6AAiVaDwaj8aTA8gB5ADJWslaydrgI8FHgo/gp/BT+CnQqVFXqCvUFY7hGI7BrbgVt4IhKOVH+VF+oHcDhg37Y/tj+2M8AU/AE1StVa1VrVVVqipVlWOcY5xjXOP6xvWN6y3gJqq31FvqfSb4TPCZQOaSuWRu/Yr6FfUrwIXufOx87Hzs3eTd5N3kqnHVuGrA2AT0LO5R7lHuUUwak8akWS5bLlsuA1sIY2SMjJF8Sj4ln2LPsGfYMzqFTqFTMH/MH/Mn25BtyDbMS+Yl8xJMDmgxLabF6H30PnofTCA8yzzLPMvoN/Qb+o3QJrQJbZppmmmaaQ23G2433DYGGYOMQY2HGg81HrL/a//X/i+vH68frx84GRTDFcMVw72tvK28rXQLdQt1C/2e+D3xe8IL5YXyQtVn1WfVZ+08O8/OoyEaoqGY9zHvY96DOgkIMT4mH5OPSZAhyBBkUEJKSAnFA8QDxANcs12zXbOdhJNwEtwebg+3pyS7JLskW3pPek96T2lSmpQm3njeeN54dDW7ml3NIiORkchIMC1iMRZjMbgP3Afug2aimWgmqkf1qB55gDxAHuQuyF2Qu+BH2Y+yH2XJp5JPJZ8KNgWbgk3AruCt8FZ4K8znzefN5yExJIbEYlpMi2mJS+KSuJSFykJlofCF8IXwRWRNZE1kTdLspNlJs2NuxtyMuRkoC5QFyqR+Uj+pHzmHnEPO4d/g3+DfkFZLq6XV8jR5mjwN2Mr4Wr6Wr3WGO8Od4dQkahI1CeuGdcO64Tl4Dp7jTnWnulOJN8Qb4g37N/s3+zejZ/SMHkzp3e3d7d3tLX9Y/rD8AatgFaxqmtg0sWliJVPJVDJ57fLa5bUzzDXMNcz1+nv9vf7uSe5J7kmOpY6ljqWMklEySnA4Au8AqkN1qM6Waku1pUJroDXQmqQDSQeSDsiey57LnhMziZnETLo33ZvuDSx7hJ7QE3rw7KHf0m/pt6C0YCKZSCaS0TAaRgNsfWBawIaz4Wy4rkxXpiujaqlaqharxqqx6oSghKCEINk12TXZNVWxqlhVbEw2JhuTGzMbMxszlW2VbZVt3QfcB9wHwr+Gfw3/6rPOZ53POgfjYBwMW8VWsVW8cbxxvHFAsBWPEo8SjwJ+CstLy0vLSyaECWFCrEetR61Hye3kdnI7k81kM9n6P/R/6P9oTmlOaU6h59Pz6fnmanO1udp6yXrJegk2MAbGwKDd0e5ody6ai+aigRsGuYJcQa4gK5GVyEr0DnoHvUM/oB/QDw4MOTDkwJCH9of2h/b4zvGd4zv7V/lX+VehcWgcGofX4XV4nb3Z3mxvVqqVaqWarqQr6crWrVu3bt3aj/aj/WiqN9Wb6q08pjymPCYvlBfKCx33Hfcd90u/lH4p/VJfWF9YXwhdga5AV8hWZCuyFRwLx8KxvJ68nryegmhBtCAaFPvKJmWTsgnoRrSRNtJGroAr4Aqc0c5oZ7RssmyybDLmxJyY03vMe8x7zO10O93O6m7V3aq7ZdPZdDbdorxFeYvynPSc9Jz0imsV1yqu1Xys+VjzkbbTdtoOtHVQZnpPeU95TwHrHLDagWkgOYucRc4iB5IDyYHtZrSb0W7GNP00/TR9B2cHZwcnREIkRDIdmA5MB+DJRLPQLDTLY/FYPBZOzIk5MSiE6cP0YfowY2EsjIX9xf5if4FuGubDfJj/0/XT9dNVX1JfUl8CRJD2t9rfan/Ls9iz2LOYvkffo+/9evzr8a/HadvStqVt81nrs9ZnbZs+bfq06dNrUa9FvRYZfxp/Gn+aL5svmy8blhiWGJbQ7en2dHt7H3sfex90L7oX3SvgCXgCnifUE+oJ9dZ567x1ziJnkbPIf7v/dv/tgl6CXoJepW1L25a2NQwyDDIMCiVCiVDC29rb2tsavgffg+8h5BPyCfkE/4p/xb8CkRD7C/sL+wuDMRiD8Uw8E8+EQ+FQONQSYYmwRJTmlOaU5lDHqePUcetF60XrRTBlAzPkjHEZ4zLG6Uv0JfqShg0NGxo2VAmqBFWC3A+5H3I/FCwtWFqw1Ca2iW1iGqMxGitMKkwqTMqT5cnyZPzp/On86Z2LOhd1LordHrs9dnvkrchbkbeStEnaJK1fC78Wfi184n3ifeKd753vne+rqWqqmpJ0kHSQdFD+rfxb+TeZQWaQGaJWolaiVo4ljiWOJQKtQCvQirqKuoq68n7yfvJ+hnwL+RbyrcX8FvNbzK8LrQutC2WcjJNxGgQGgUGALcQWYguRU8gp5BT8Cf4EfwJjb3glvBJeyf3L/cv9C5phRsbIGBkloSSUhF3KLmWXKq4primuNQxoGNAwQNtB20HbwfuX9y/vX8AXit3GbmO36df0a/o1sAdCKVAKlEJ1o7pR3ehD9CH6EPuafc2+Bm0HrxOvE68TvBfeC++NwWKwGEwdog5RhwCvhP6S/pL+kn6Mfox+TLWgWlAtUEvVUrUUnCT80fzR/NGicFG4KJwby43lxgrjhHHCOODL4B3iHeIdApcOsDQyPIbH8ISUkBJS8Dh4HDxOt1+3X7cf2gXtgnaRmWQmmckL44XxwoIsQZYgi88dnzs+d0wdTB1MHaDP0GfoM5Bp0LUH1x5cexDM2uCj8FH4KHYUO4odhTpBnaBOcE+4J9yT28Zt47ZlTc6anDX5fsX9ivsVjpaOlo6W9BX6Cn0F2Y5sR7ZHtI1oG9HWleXKcmWV+ZT5lPmAWR5Qb91L3UvdS501zhpnDfC+1HSv6V7TvWJ/xf6K/TKxTCwTazI0GZoMcb24XlyvuqC6oLog6iXqJeoFNGggVFoCLAGWAHVPdU91TzKBTCATLB8tHy0fsZHYSGwkfh4/j58H5hBnvDPeGe/Z4dnh2SEwCowCIxij4vfwe/i9hssNlxsuS8ZIxkjGGNIN6Yb0+un10+unMxOYCcwEMMkXnhOeE56zf7B/sH9g+Syf5UMMxEAMNAWaAk2BJ8AT4AncRG4iN5H7wn3hvhhuGW4ZblnSLGmWNGkXaRdpF9C7eXEv7sXB3I2dzk5npzMzmZnMTLe/29/tj3fBu+BdyBZkC7IFcI8B6x/6Ef2IfvQme5O9ySaryWqyhtwIuRFygznBnGBOqCPUEeoIqBqqhqrxc/g5/By4zWo71Xaq7ZTdIrtFdgtbti3blh0AB8ABsGSsZKxkrJ6v5+v5WovWorWwvqwv6ysLkAXIAugQOoQOifBGeCO8QMJwyVwyl0xqkBqkhuDZwbODZze5m9xN7prsmuya7Cj/KP8of9kF2QXZBdkN2Q3ZDdkS2RLZEozz4Xw4H7gV3ApuBYRBLp1L59KBcZNbw63h1mhnamdqZ74Oeh30Oojn4Dl4jtCloUtDl5I5ZA6Zw93j7nH3XN9c31zfhAOFA4UDm3Y27WzaaVtkW2RbhN/B7+B3wH1Teq30Wuk10RnRGdEZwXLBcsFygiRIgiQwAiOw0Puh90Pvg3EmuHzBh0SuI9eR6zSLNIs0i/xb+rf0bwkUYaKZaCaaxS6xS+wyBhuDjcG89bz1vPXgWSKyiWwiG0VQBEVAj6HH0GPhB+EH4Qe9SC/Si+ir9FX6Krjgom9F34q+VcPWsDVsY4vGFo0thGKhWCju+LTj045Pv9Z+rf1aWxJQElASADo7YHlD/VA/1I9pz7Rn2tNT6Cn0FF1bXVtdW1e6K92V3ni98Xrj9Xaqdqp2qu7Puj/r/ixiZsTMiJnCd8J3wnfcL+4X94tfwC/gF/Af8h/yH3K3uFvcLSARoyloCpri8Dq8Di94tlkHWwdbB7s7uDu4OxAOwkE4HL4OX4eveZt5m3lbABKABCB+9/zu+d1rE9Mmpk0M8MkZ/Ax+Br+aYzXHao5F9I/oH9Gf15nXmdcZuMH0Dr1D75DL5DK5zGAxWAyWprVNa5vWKu8o7yjvxOyP2R+zHz+EH8IPyUfIR8hHNO9t3tu8V52uTlenC+wCu8COtcHaYG2o1dRqajVwmWL4n/if+J9sW7Yt2xYuhovhYmCLY1PYFDZFf0Z/Rn/macbTjKcZubdyb+Xe8uvr19evb+PUxqmNUyERJIJEPogP4oOw3dhubDf7evt6+3pwpbvWu9a71js8Do/D43zkfOR8BCoG82LzYvNidVd1V3XX6B3RO6J3BJwMOBlwUrpPuk+6TxmpjFRGAidCyaqSVSWrwEQaeM8DvAHeAG/At4BvAd8aqxurG6sxHMMxPIQKoUIoJ+bEnBiwmXqcHqfHyf/I/8j/yBk5I2cEF717rnuue24FXoFX4KI6UZ2oruxa2bWyaxKlRClRiq+Lr4uv24fYh9iHgNnc6JOjT44++XjZ42WPl+nidfG6ePc79zv3O+s76zvrO9DPsrvZ3exu5CfyE/kJUj2lR0uPlh41TTJNMk0CPqo2vdv0btM7MSExITFBtFS0VLQUDMuFP4U/hT8ZPsNn+L/9Ed+gb9A37DR2GjsNC2ABLADG3KqlVUurljpSHCmOFJvJZrKZ9KX6Un2pslxZriwXR4ojxZFAmMW6YF2wLhaTxWQxqSk1paZEm0WbRZs1zZpmTbP5rfmt+a3H5DF5TDXjasbVjLP/Yf/D/od6tXq1ejV6FD2KHqW30lvprdYv1i/WL7Z8W74tX3RJdEl0iX+Bf4F/AXztbulu6W6JYAiGYMAmhAEpEg6EA+FAEBuib9G36FvgeMoozijOKH4nfyd/J68qriquKi5JK0krSeOmcFO4KUQekUfkNX1s+tj0sTy4PLg8mB5Lj6XH/vZStoXaQm29cq/cK/eO9Y71juUucZe4S1B3qDvUvXl18+rm1UaFUWFUWIdZh1mHZVZkVmRWtJ3VdlbbWTETYibETGjKb8pvyv/05NOTT0+oXdQuahdQcsEwHloJrYRW6jvrO+s7qzuoO6g7COQCuUBOvaReUi+BlgMUMm4CN4GbIFkkWSRZ1FTRVNFUIW2UNkobq19Vv6p+5YxzxjnjgBtJVa2qVlUDt1b3Nd3XdF8jnyGfIZ9BUiRFUrm7c3fn7gZV4I/iH8U/ipkvzBfmCzjyQAQKzUAz0AysL9YX6+tyuVwu15cjX458OVLVWNVY1ZhZk1mTWeO32G+x32Jfg6/B1xDXM65nXM+2lW0r21aC3pBaSa2kVoq/ib+Jvwk6CDoIOlBlVBlVJn4pfil+6ZrpmumaWdmysmVly1/GX8ZfRvEJ8QnxCcpKWSkriAyE2EJsITZ3kDvIHWSMM8YZ40SfRZ9Fn4n+RH+if51fnV+dn3uRe5F7kWuGa4Zrhu8b3ze+bxKFicJEofKX8pfyl6WfpZ+ln3uce5x7nLWbtZu1m2eIZ4hniChdlC5KB1WdqcnUZGoiL5GXyEuYAlNgCnRTl01dNnVhI9lINpLL4rK4LKCmAP/1y3Mvz70896b3m95vejv6O/o7+v8+/jSchtPQNE3TtDvQHegOdG5ybnJucnV0dXR1ZOqZeqYeGLjwf/F/8X/ZC+wF9gLn5JycE6TzgO/AOtE60TpR66P10fo0z2+e3zz/XfC74HfBmf9l/pf5X3VZdVl1WdOSpiVNSwrGFowtGFswsWBiwcT6h/UP6x+GTgudFjoNe4W9wl5Zn1mfWZ8B0xwuxaW4lP3B/mB/QOegc9A5eDg8HB4OjDTaKG2UNqo4tji2OFY4TDhMOKxuSN2QuiHoLHQWOqvzwM4DOw/UbtZu1m4OPRt6NvRsy/Mtz7c8D7Si8K7hXcO7gmeqLd2WbkvXJ+oT9YlelVflVcF6WA/r0WK0GC0GqRXvYu9i72JHqCPUEWo4aThpOAlSJRUBFQEVAeAo9Gnj08anjbpQXagulLWWtZa1hqfCU+GpIOvHZXPZXDb+Hn+PvwfuTYiFWIgVtxe3F7cH32MpsBRYCoIWBS0KWkTqSB2pK+pb1LeoLw3TMA23bdm2ZduWrZytnK2cqD/qj/rXHak7UnfEm+pN9aY2bGvY1rDNvMy8zLwseH7w/OD54sPiw+LDxepidbG6qa6prqkOtAjmJnOTuclnnM84n3HMGGYMM6Z5VvOs5lnFj4sfFz8WlAnKBGXoug/rPqz7AH+Fv8Jf0Qg0Ao1gzjBnmDN0DB1Dx9zrea/nvZ5Fm4s2F23G0/A0PE11Q3VDdcPnpM9Jn5MmqUlqkjJtmbZMW0+Tp8nTRO2gdlA7QL8TNjdsbtjcIbwhvCG8lm9bvm35Fmi1ztPO087Tv4vNOcgcZA7bl+3L9vVM9kz2TAbCgW6RbpFuUfOv5l/Nv4BsyAxhhjBDaBkto2XlvuW+5b5aVstqWcVFxUXFRWAL5o/nj+ePl02RTZFNIXeTu8ndhISQEBLg70bciBtxs0lsEpv0dc/XPV/3uB+7H7sfa6O10dpoujPdme4cpY/SR+llZplZZj5jPGM8Y/SZ5jPNZ1qrra22ttoa1D6ofVB7Za4yV5nrCHAEOAKqoqqiqqLoADqADmCOM8eZ4/BQeCg8lJvNzeZmo3yUj/K5zlxnrjM3jhvHjWPmM/OZ+e5p7mnuaVQOlUPllCwuWVyyOGdpztKcpdw37hv3DViARKGiUFEoRmIkRgJjIHWWOkudRZYjy5HloMOC/gf9D/ofeL4GLApYFLBI+k76TvruF/8X/xe/fkT9iPoR/Yb1G9ZvWHhqeGp4KrQN2gZtq0ar0WrU1tLW0tYSHNCWDZYNlg1kBVlBVqhOqE6oTjAexsN4QLpGd0N3Q3cDHOhZc7PmZs2tOV1zuuZ0LBwLx8I8HU/H07Hd2e5sd3Td2HVj142FD8IH4YNAMucwDuMwoNIqJysnKyeDIUDb1m1bt23d81vPbz2/tY5tHds69pv4m/ib2D3FPcU9BbEgFsSCXcWuYldB+iLsRNiJsBOTz0w+M/lMh1kdZnWY9W3qt6nfptZtrttctxlOhVPhVBBPALN6Tx9PH08f9hB7iD2E7kf3o/uh0dBoaLRX6pV6pSBbgu3B9mB7gKquvai9qL1YMrBkYMlA7QjtCO0IaaI0UZoYcjLkZMhJ2SHZIdkhfAQ+Ah8BcRAHcSKlSClSAgts87Tmac3ToLfQW+gtsh/Zj+wHT68WZAuyBenTwaeDT4fm4c3Dm4e/fPby2ctnJEMyJNNqWKthrYapGBWjYiQJkgRJQlH7ovZF7c2dzJ3MnQgfwofw4T5wH7gPyDBkGDIM6ObMPGYeMw/0gGBKCDz1MAuzMOt96H3ofdg0vWl60/QPkz9M/jD5W923um912oXahdqFzQ3NDc0N5BRyCjlF8UjxSPEIOLvZ7ex2drvkieSJ5Am9lF5KLwWRh4A9AXsC9hRfK75WfC1rVNaorFF+WX5ZflmtidZEa4JgCZZgCZqgCVo/Uj9SPxLoZ86Nzo3OjfyX/Jf8l/BieDG8OOhI0JGgI747fHf47qjMrsyuzIZz4Vw4t3l68/Tm6Y4Njg2ODbwBvAG8AaJ/Rf+K/uVecC+4Fwi6A92B7mCeMc+YZyzCIixCRVPRVDRby9aytR2hjlBHaH2X9V3Wd5l3YN6BeQeG5AzJGZITvy9+X/w+3y++X3y/EMlEMpGMj8HH4GOAsQFaAC2AFrAv2BfsC2m9tF5aL5fKpXJpN79uft38Or7t+LbjW4lCopAouGAumAuGPkAfoA/oD/QH+gPkX9F76D30HlKBVCAVIAfHX8VfxV8lWyFbIVuh6qjqqOro5+vn6+cr6CvoK+gL7mNSS2pJLZFL5BK55AJyAbmAXE+uJ9eTQWQQGUS2JFuSLclaspasDesX1i+sn+Cc4JzgXJu7be62uTvePt4+3g53gDvAHdj37Hv2/cARA0cMHAE0p7sd7na42+HDXx/++vCX65jrmOuYNEYaI43hs3yWz9J76D30HrfBbXAbvFav1WsF9Rw0GBoMDYZ4EA/igegSnAfnwXngmKC+U9+p766BroGugW6v2+v20s/p5/RzYHx7Me3FtBfTflz/cf3H9cb6xvrGeuYsc5Y5C3I43B3uDncHeMuCsWAsGCsLKQspC3GqnWqnGthIMAIjMMI90D3QPdAT44nxxLhlbplbxpvDm8Ob4+7v7u/uH3Aq4FTAqZYVLStaVnggD+SBWDtrZ+38OH4cPw54X8U3xTfFN1VelVflTeqZ1DOpZ/Tp6NPRpxv8G/wb/B3BjmBHsHu8e7x7PML5cX6cH7IUWYos5dycm3OTxWQxWQyfhE/CJ72R3khvJNIH6YP04a/mr+av9jzxPPE8ARUPO42dxk4DgxcQTmJnsjPZmcJfwl/CX4PODzo/6HxQalBqUCr0N/Q39Hc7TztPO88yzTLNMs3EkRNHThypSFekK9LBEQA4AkCb4V5xr7hXcGu4NdxakiPJkeTEF8YXxhf2PNbzWM9jA6cPnD5w+ujk0cmjk2c/n/189vNJoZNCJ4UmU8lUMiXIFeQKcqHWUGuoNXwRvghfxP7E/sT+RGEURmH5B/kH+Qe0N9ob7c3MYGYwM8A8K3Bw4ODAwXFkHBlHMkVMEVMUuClwU+CmNhPbTGwz0bHAscCxoGFhw8KGhYYxhjGGMXpfva/el7JTdsrOiBkxI2avsdfYa+hWdCu6VTBRMFEwUQEpIAUk/yz/LP/MK+IV8YpA2w9iGgiLsAiLylE5KgcGOmoGNYOaASoh/Un9Sf1JfbA+WB8MHYeOQ8fZSewkdhKhI3SEDumEdEI60TyaR/PUNeoadY1fe7/2fu1zjucczzlObiW3kluN4cZwY3jVi6oXVS+AmAKNgEZAI4ilxFJiKf0v/S/9r3GScZJxEnGLuEXccqJO1Imyf7F/sX9xrbhWXCvBecF5wflQfag+VA+yN/60P+1PB9QG1AbU+un99H56cNP6pfql+qViwCOAvEJeIa+ALR90KGwZW8aWMTbGxtig/6D/oP/YTDaTzYQ/wB/gD54vni+eL0Q1UU1Ut2vRrkW7FkXZRdlF2cDW3sXRxdHF0c/Rz9HPQdaRdWSdd5l3mXdZyMaQjSEbgT1XFauKVcW2LG5Z3LL4VbdX3V51+7z/8/7P+/Gf+E/8ZxtFG0UbRcLThKcJT6NTo1OjU/H/4f/D/0c9ph5Tj8nn5HPyuXq5erl6OSiKhS6hS+jy/un90/snXAfXwXWOtY61jrUgB+yRe+QeOcjfAYsw6PsikAgkAqnvW9+3vq/us+6z7jO8D94H7wu+Gnw1+CqQ+JJDk0OTQ217bXtte0EAwTrfOt86HwQ4QRzR/dP90/2Tf4R/hH8ksCawJrAGSC1UGBVGhQmThcnCZOcd5x3nHXu6Pd2ejlxDriHXvL29vb29vde817zXiC3EFmIL15fry/WlhlBDqCH0QnohvfAz9Bn6DNVcrrlcc3mecZ5xnnHwicEnBp8g/Al/wp/dw+5h9xAdiY5Ex9hvsd9iv6UcSTmSckQRo4hRxLABbAAbkJeYl5iXWDe8bnjdcPlD+UP5Q6AdBmoDtYHa2uTa5NpkXaguVBeqqdPUaepq99burd2r+Evxl+Ivb5Y3y5vlY/Ax+Bjqaupq6mqAaEzWkDVkjWaoZqhmqKvIVeQqsq23rbetR5DpyHRkOlQH1UF17Cx2FjuL9bAe1oM2oo1oI5FOpBPpwDXg+ez57PnMPGWeMk8rYytjK2OBXwBI+IQv4Uv4ynfJd8l3jRaNFo0WBUwNmBowFcqH8qF8jIfxMJ7MLXPL3PxH/Ef8R8Q0YhoxLeRhyMOQh+OZ8cx4ZurXqV+nfvWx+Fh8LCBJUnOo5lDNoWKoGCqGai7VXKq5BMkhOSRX9Vf1V/UP7hTcKbiTZL1kvWQ9UoQUIUUglk6PpkfTo729vL28vewP7A/sD7yIF/EiMAzDMCxwC9wCd+KWxC2JWyTLJcslyxMuJVxKuKR/rX+tfw3Pg+fB87L4WfwsvrvZ3exurvpQ9aHqQ/+R/Uf2H+k33G+433B3njvPnVc4uXBy4eQGtAFtQIkEIoFI8LX6Wn2tvP28/bz90gRpgjQhfHv49vDt6kfqR+pH6hbqFuoWPIJH8AioP9Qf6g9HwpFwJHIEOYIcQdYh65B1YE7H6TgdpyNOEaeIUyDsVTuwdmDtwGvWa9Zr1q8RXyO+RgDFXHhQeFB40HHBccFxQdBD0EPQQ/pG+kb6pmle07ymeYKLgouCi+D0KJIUSYok1duqt1VvI9YQa4g1AekB6QHpfv/4/eP3DwixgT7UJ8onyieK6cP0Yfq4Ul2prlSb3qa36UFWDrjNlFXKKmWV84HzgfMB8IUyc5m5zFx0w+YNmzdshnpBvaBeXC1Xy9VyZ7mz3Fn4HfwOfseVcqVcKRvChrAh+nv6e/p7+BP8Cf4kqyarJqvmS/8v/b/0t4qtYquYbku3pdsOuDLgyoArozuM7jC6g/iV+JX4FX2DvkHfsE+3T7dP90z0TPRMZLKYLCYLGJls42zjbOOAFTVga8DWgK0hg0IGhQzS99L30vcqu1d2r+yeYY1hjWENLIJFsAipRCqRSqVX6VV6pXwpX8oHI2q7wW6wG6y/rL+sv8ynzKfMp7iF3EJuofe99733vXCvcK9wL3ocPY4eBxM32VPZU9lT5AxyBjljPWw9bD0MMqnhaDgajprMJrPJnDs4d3Du4GJHsaPY0cPSw9LD0rJry64tu1ZPqp5UPenuubvn7p4zPDc8NzxXhihDlCGtlrda3mo57yzvLO8sSHT49PLp5dMLv45fx6+DhsP50PnQ+ZB1sS7WJdom2ibaJlAJVAKV66Hroesh3B5uD7cHyTuQRQaYCigeiofiTf+Y/jH9Y7QZbUabzxufNz5vfE/7nvY9TefSuXQuW8AWsAWgx7RusG6wbtA16Zp0Taatpq2mraErQleErmgxp8WcFnOUB5UHlQfhfDgfzm/Oas5qzgJeA4qkSIr0fe/73ve97aXtpe2lX75fvl++h/bQHtqxzLHMsYy3lLeUtxQIH2Vdy7qWdXVMdEx0TJRdkV2RXUE3jNgwYsMI+Bx8Dj4H94Z7w725RC6RS/xt3d/KbeW2UkOpodRQ8D1Co9AoNH6b8m3KtylfF35d+HUh6Ln6afpp+mkWLFywcMFClVQlVUmxM9gZ7Ax4Kdqj2qPaozatTWvTGr8Zvxm/lW0u21y2WXFDcUNxQz1aPVo92jXSNdI1UiwUC8VCdY46R51j3WTdZN0EABjBacFpwWnSNtI20jbGw8bDxsMNAQ0BDQF1I+pG1I0w/Wf6z/Rfc1xzXHMc3ZfuS/fF3Jgbc4NuRf5F/kX+RSQVSUVSbD42H5sPvYHeQG/Id+Q78l2zulndrM6/nn89/3r4j/Af4T+CLwZfDL6Y2jW1a2pX/jf+N/63JL8kvyQ/abw0Xhqf9TDrYdbDlJyUnJQc7Bf2C/ulGK8YrxjvN81vmt80ab40X5ovuCW4JbjFbmG3sFs8bzxvPG/IHeQOcoflhOWE5YQzwBngDICb4Ca4CTQcYATrjHJGOaM8ozyjPKNAdhko45AX8kJe2AybYbN5pnmmeaa5h7mHuQfRlmhLtFXHq+PV8UJWyApZyApZIWuprlRXqqux1lhrrPZr9mv2a+ErwleEr4h+H/0++j0VSUVSkUC8oN20m3ZjsVgsFls/oX5C/QTyGHmMPFZ8ovhE8QnJEskSyRLJbsluyW59nj5Pn9dQ1FDUUGTeYN5g3sD6sX6sX1T3qO5R3XkxvBheDIYMQAYgA5i3zFvmLTeYG8wNhsZAY6Ax8B/wH/Af7Fh2LDsWcFHAhaX/W/+3/m/FFsUWxRZwJw2fNnza8Gmzds/aPWu3IlIRqYgENnVYDathNfj7wVgm+FjwseBjorOis6Kzzdebrzdff2J+Yn5i7hPXJ65PnOKw4rDiMDOUGcoMjcqIyojK6Ih1xDpin6s+V32uenTt0bVH17ybvZu9m0HjKh4oHigeqEpWJauSwxaFLQpbpDynPKc8x//A/8D/ADLzxDJiGbEMjGOhHlAPqAc8HZ4OTwfPJ7O/2d/sn9ac1pzWbK+0V9orQTzIzrfz7fzo0OjQ6NAQVYgqRKX4W/G34u9KspKsJFOaU5pTmr2jvKO8o6R7pXuleyW9JL0kvQD2g5JRMkom+CL4IvgCnky8jbyNvI0A5aP+rP6s/gzIUs27mnc177JttW21bWUb2Ua2EWA/wDCY7kJ3obsA0BZZQBaQBXQ2nU1nA7EgtXVq69TW8Dp4HbwuPCU8JTxFEiYJk4Spy9Rl6jJwsdb71fvV+7nGu8a7xtfeqb1Te6cppCmkKaToQtGFoguSK5IrkiuCu4K7grvyUfJR8lHR6mh1tNq7wbvBuwHEs0w/TD9MP5r/av6r+S+QQxSoBWqBGruF3cJugRDKb1aCT5NPkw/iSfGkeFJA/IGpZWqZWmYEM4IZwWpYDathcplcJhcKh8KhcOQschY5CxgdoENRXVFdUV3ptabXml5rpLgUl+LuGHeMOwYpRoqRYu46d527Dh+GD8OHwaxeHC4OF4cTJ4mTxMlAUaAoUASfgc/AZ67GXY27Gqc36A16A3wLvgXf4pZyS7mlQSOCRgSNGFU2qmxU2YinI56OeKo4ozijOOP7wPeB7wOQiklYnrA8YXn40PCh4UPVcrVcLXdXuavcVeDuISeRk8hJXD6Xz+WzN9mb7E0wSHZWOiudlRpfja/GN4YXw4vhBT8JfhL8RPZd9l32Hcgcg5hBzCAmuV9yv+R+0A/oB/Tj/af3n95/yhXninPFIPnPb8Nvw2/j+er56vlKvaHeUG88lz2XPZfZVewqdhVmx+yYXRGtiFZEC1YJVglWkQfJg+RB0NDwpXwpXwrZIBtkAykXJpaJZWLB62TeMe+Yd6CrBeZm6CX0EnrphbyQF4IyoAwoowKpQCqQEmmJtEQKstfCacJpwmkxZTFlMWWKt4q3irf0LHoWPUveQd5B3gG6BF2CLv0gfhA/iE/jPo37NK55TfOa5jXmjeaN5o3yFHmKPEVsFpvFZpBEKkgtSC1IlT+RP5E/0T3UPdQ9BKbFoNlBs4Nmg0j+hycfnnx40vyg+UHzAwyI91AFVAFVcEpOySmBxQwk+YH2Cp2BzkBnsI5YR6wjyPsyKkbFqIBiXvN3zd81f4cMDRkaMlT6VvpW+pY4TBwmDsP/wP/A/7hxN+7GTX1NfU19f2fcCI7gCGgHtAPaIdwk3CTc9NPx0/HTQZIkSZKDhw4eOngoOYocRY4yzDfMN8xXdVB1UHVoObLlyJYjcw/mHsw9GLAkYEnAkrY32t5oewNKhBKhRPcx9zH3MXCQySfKJ8onssvZ5exy7DX2GnsNKCveft5+3n4YhVEYBTIt6J/on+ifI9NGpo1Mq2Pr2DpWN0o3SjeK8WF8GB9fpa/SV8keY4+xxwpPF54uPP0i+EXwi2BXmavMVSaeJJ4kniQcJBwkHMQ/wD/APwCdhc5CZwHcjFfFq+JVgVJdMlUyVTJVHiAPkAfYFtoW2hYCDJcl3hJvied14HXgdQDJYxBb8J70nvSehBWwAlZALsgFudgT7An2BJQEJUFJwFPqGegZ6BmY9yjvUd6ja/HX4q/FR86NnBs5N+hy0OWgy0mmJFOSyX+d/zr/dfo2+jb6Nsb+xv7G/rk1uTW5NeAyRYegQ9AhORtyNuRswJfgS/AlUoVUIVUAR8DA8QPHDxyfH54fnh/u993vu9/3irYVbSvaQn9Af0B/gJ5dc05zTnMOcG/4E/gT+BPQDbs27NqwCylECpFCYGNlJIyEkUBfoC/QF5ZkSZasCqgKqAowmUwmk0nbU9tT2zOXzqVz6apRVaOqRplCTCGmEGdrZ2tna6Pb6Da61QnqBHUC15przbUu/FD4ofBD0bWia0XXNB80HzQfLKssqyyrqg5XHa46XHKw5GDJwWhjtDHaCMbMeW/y3uS9EXQSdBJ0kkyQTJBMED0QPRA9gGqhWqg2t2duz9ye7lB3qDs0Eo1EI1HlWeVZ5VkwThHOEM4QzgA//feAKAfNQXN40bxoXjQEQRAE4afx0/hpYI3lArlALhDqCnWFujLDmeHM8LoTdSfqTgCgGfBS1r+pf1P/5sy8M/POzCs4UXCi4AS5klxJrpTlyHJkOfJ18nXydQDVheM4juPcXG4uN9f43fjd+B0gs1AZKkNlDa4GV4Or+UzzmeYzYPZOtaPaUe1smbZMW6Zzm3ObcxuHcziHMwiDMAhjZsyMGeSY8Qa8AW9g+7H92H5AmKUj6Ag64vdZUYwUI8Xkf+R/5H9x/eL6xfUj55JzybnW6dbp1unFw4uHFw8XnhKeEp4SLhYuFi6uEdWIakSCs4KzgrPoLfQWeityZ+TOyJ12p91pdyK9kF5IL/G/4n/F/5rnmOeY59SdrTtbdzZgbsDcgLmkhtSQGvdR91H3Uf8j/kf8j4DBcIWpwlRhwrgyrowrA88nkC1Bv6Hf0G90d7o73Z3px/Rj+tU11jXWNSoaFA2KhuKlxUuLl6ZHpUelR4X8FfJXyF/AzXih3YV2F9rxffm+fN83T948efNEjskxOebMcGY4MxqeNzxveJ7BZDAZDGEjbIQNUDh8hvgM8Rmy+Ofin4t/Sm5Jbklu7YnbE7cn7s3pN6ffnOaF8EJ4IYGjA0cHjtac1JzUnOz7oO+Dvg9AcBHAIfgP+A/4D8TN4mZxM9GD6EH0APk+vpwv58ud7Z3tne1BnJzryHXkOsIL4YXwQnwUPgofxS5gF7ALuMvcZe6yNEWaIk1RG9VGtRFkgn9qfmp+aq6qrqquqr7/+/3f7/+CVCD/JP8k/6RMIVPIFORaci25ll3JrmRXQslQMpQsMolMIpN5k3mTeVP9tvpt9dv03fTd9N1cb1xvXG8s7yzvLO98Cn0KfQpNX0xfTF+ondROaudvF4abcBNuuAFugBvMZ81nzWdBEpo+S5+lz4LbQIAJMAEGB8FBcJAVt+JWXPtW+1b79vSt07dO3wLGm4nNE5snNqsSVAmqBGGoMFQYyj5nn7PPKw5WHKw4iJahZWgZvyO/I79jVFlUWVSZ7ITshOyEi3ARLqJR16hr1LlNbpPbBK2H1kPr41LjUuNSgTeh/lv9t/pv3698v/L9inOJc4lzCTBqc5+4T9wndINlg2WDhaEZmqFhMSyGxewH9gP7AaDmHDqHzqED7EfzZPNk8+SCMQVjCsY0SZokTZJB9wbdG3SPF8WL4kV97/C9w/cOTfOb5jfNbxzQOKBxgLm1ubW5denu0t2lu3UluhJdCXGZuExcBrON0JuhN0Nvjl05duXYleoR6hHqEdBp6DR0ml/OL+eXf634WvG1ArAAwgvDC8MLVemqdFU6cO0oRihGKEbw1Xw1Xw3GkwJ/gb/AH3Q0XoVX4VUAyY6/lL+Uv5S5y9xl7oIDq1nXrGvWAckAX4mvxFfajtuO245X96zuWd0TzMlvSG5Ibkgu9b/U/1J/8Pq59dx6bj3fyXfynaBPJLeQW8gtoFcVZAoyBZk+B30O+hzk3+Xf5d9VLFYsViwmV5GryFWgFwNal/us+6z7LL2B3kBvcGlcGpfGO8I7wjsC2gxthjZ7B3oHegdCx6Bj0DGWYzmWAw6L397OFDgFTuHN5s3mzcbysXws31PtqfZU06/oV/QroPNV/Kj4UfGD9Wf9Wf+QjiEdQzqWu8vd5W7bXdtd213/Rv9G/8Yu67qs67IO+NIk7SXtJe2BJ8y+yb7JvqmKrCKrSP4//H/4/0heSl5KXoa0DGkZ0jLsbtjdsLuONY41jjXpE9InpE8QmAVmgVnkEXlEHhD6wEBS4jcKcyQ0EhoJsnKeXp5enl55/fL65fVrSGpIakiyHbYdth1ubNvYtrFtS09LT0tPi9oWtS1qG6Y2TG2Yan1hfWF9AQ2ABkADwBuhu6i7qLsY5ApyBbl6Z/bO7J3ZRdRF1EUUioaioSgvkBfIC0RqkVqk1jvUO9Q71L3VvdW9tc3tNrfb3NYv1y/XL/+Z/TP7Z3bR+6L3Re+l66TrpOuwndhObCcYLtqe257bnnt6eHp4emClWClWCqVD6VA61YXqQnX5fWPYWTtrB2NjmqIpmiITyUQy0b3Mvcy9rGR+yfyS+QXHCo4VHHPNd813zc/rnNc5r/ObfW/2vdkHaLUghQIpIAWkAHFvoF+7drl2uXZpUjQpmhT8En4Jv1SdXJ1cnRz4IvBF4Av/Y/7H/I9J/5T+Kf2T+cX8Yn5pHmseax6HrQlbE7ZG59Q5dU5LL0svSy+gRwOOCneTu8ndBPQHMSWmxJRjlmOWYxbAzkLdoG5QN1OmKdOUyU/jp/HTyDAyjAwDPbhnpGekZyT7hH3CPskcnTk6c7TkveS95H3khsgNkRvAuBqEOKrd1e5qd/LH5I/JH9EitAgt8uP78f34Pjd8bvjckM2RzZHNAeMgcYO4QdzQ8mzLsy3PwrPgWfCsxoWNCxsX+h/wP+B/ANAsOSkn5aSAdICuVq5WrlYipUgpUgq3hdvCbYGTyRXrinXFlswrmVcyj5xGTiOn6Xvqe+p7lkeWR5ZHhkwJmRIypZWylbKV8on7ifuJu2x82fiy8cAQ5zPTZ6bPzPGa8ZrxmvH4eHw8nnQx6WLSxcClgUsDl0qOSY5Jjgl7CHsIe3h+eX55fuEd8Y54R95e3l7eXnUPdQ91D2D4F+QIcgQ52kBtoDZQdE90T3SP+EX8In6BJAwEQzAEc2bOzJnxbfg2fBtIgTV2buzc2JmCKZiCQf5LuFK4UrhSNFw0XDSc7EX2InsJigXFgmIkCAlCgrC32FvsLSDmFtPFdDFdBpVBZRDsgB2wA66Fa+FaqBgqhoqRWcgsZJaEL+FL+LyDvIO8g4AI5Wnraetpq1imWKZYJjVJTVITcEeBsJS9l72XvRcww1AHqAPUAcsHywfLh7oXdS/qXoApAsgYIt+Qb8g3agG1gFrAlDPlTDnWFeuKdWUamUamkV3GLmOXYQOxgdhAgEkFaCGmhClhSoh/iH+If8DXtn62frZ+tre2t7a3gghBhCDCdsF2wXYhaHnQ8qDliUMShyQO6VTTqaZTjeKE4oTiBMgkoi3RlmhLRYAiQBHAi+BF8CIAgtbU0tTS1NJCWAgLkY6kI+lIU++m3k29QUsR0yGmQ0wHlVFlVBkxaCg0FBoKxo2gIWdcjItxeRu9jd5GJ9/Jd/Kp69R16nr1/Or51fPRPDQPzYtQRigjlNxL7iX3EgBPoRPQCehE0JygOUFzJt+dfHfy3b5X+l7pewXY+yVFkiJJkfKS8pLyEvA7A6gX84p5xbwCTaZ4gXiBeAE4pIANNPl08unk0wDWgw5Dh6HDuJXcSm4ltgnbhG0ix5PjyfFEDpFD5ODReDQeTcVSsVTs78RtL1cvVy9BpCBSEMl147px3cCzCoxam/ya/Jr8LCWWEksJyL2YNWaNWQPSqwCf5VF4FB4Fs5ZZy6z9jT+cS8+l59pxO27HsefYc+y5O8Ad4A5Qd1N3U3cDcSW8E94J7+TY79jv2O8sc5Y5y8hb5C3yllvgFrgFro+uj66PJsyEmTCg5oMAJMBEA7cWwFGA3Ih3iXeJdwngdgIRAUg26Eh0JDqS7Ep2Jbta/ax+Vj+QwOZuc7e52+al5qXmpbk+uT65Pg1IA9KACCABJICkqdJUaapfJ79Ofp2ER4RHhEdUz1TPVM/sVrvVbgURTXATVh2oOlB1wHLXctdyN+pM1JmoM0KdUCfUCTYKNgo2+vf07+nfk9+F34XfhZfPy+flA8QZBpkgE2QC+wXYp+xT9ik0FZoKTbUfsh+yH3KddZ11na05WnO05mhzaHNoc6hzqnOqc2rg8cDjgceB9koOJ4eTw6UXpRelF8dSY6mxVExUTFRMFPE/4n/E/wAWBzBDuCfcE+4JePu8Zd4ybxkAH+Iv8Bf4C5Bxs3S1dLV0BcBW8KQMbwxvDG+EMRiDMcbEmBgTcFD5JPgk+CRAbsgNua0V1gprBdDT8dn4bHw28IOTjWQj2QhGsFQgFUgFAsmj8d/Gfxv/tUy3TLdMV+xX7Ffsrz5Ufaj6EPBYsiPZkexIMAeEt8Bb4C3QJ+gT9AkcIoB7CRoXISkkhaTL4DK4DLJRslGyUa6rrquuq96V3pXelbZrtmu2a/xKfiW/8v+nfcQqsUqs0pZry7XlnC/ny/mCUvf3z3JADsgBPO+/4YtGzsgZAdWO5+a5eW4gyQL4GIAIcuVcOVcO+El4CB6ChzjuOO447gBTYfLfyX8n/00fp4/Tx4tbFLcobuGf75/vnx8qCZWESoAW+LPiZ8XPCs8qzyrPKlpFq2gVeLUil8glcn3N+5r3NQ8gKxIXJi5MXFjeqbxTeSeQaHL6On2dvhhw8DB9mb5MX66eq+fqQYDJe8F7wXsBxJzRs+hZ9GzdwrqFdQv5Lfgt+C1cQa4gV5Bb79a79X4j/Ub6jQxKD0oPSo+LjYuNiw06HXQ66LR0j3SPdA/RiehEdOId4x3jHXMxLsbFoEpUiSqB64gn5ol5YrAGozGkMaQxxEJaSAsJBpaAPI71xHpiPd357nx3PvmV/Ep+FdJCWkgj85B5yDx0NDoaHQ13hDvCHUGAEPaFfWFf4g5xh7hD/kn+Sf5Jn6PP0edMvUy9TL0cYofYIQa7PKQZ0gxpBlwAF8AFZrlZbpYrVihWKFaAFgSoUFwql8ql/j5S/+b+5v4GlzVIzAHPpB2zY3YMTCcBM11MikkxSU4np5PTvayX9bIOlUPlUDUebzzeeNxx1nHWcdZzznPOc46dx85j52HHsePYcdD0AGwr2PgAUsKggUfWIGuQNZ4TnhOeE5gRM2JGaC40F5oLBUKBUCCtoBW0AnzwYAGJpq+mr6avqchUZCr60vtL7y+9gTjSlteW15YHL4IXwYt+M/gKkUKkUNhW2FbYNsonyifKh/4f/T/6fw99H/o+9LXvte+173VJXBKXRA2rYTUcnxqfGp8KYgtgRB39b/S/0f9iEA7hEA6GGMBtSPeke9I9zd/M38zfgD6ePzx/eP5wfYw+Rh8jr5HXyGsKSwtLC0tFmaJMUaYyWZmsTJZ3lneWdzY9Nz03PVd2VHZUdgRFC+yCXbDLq/VqvVrrGesZ6xlyL7mX3IuWoCVoibCbsJuwm1PpVDqVIMuBp+ApeApw2KCf0E/oJ/oX/Yv+BRZpCHQCnUAHqJjIe+Q98h6YenlxvDhenOmG6YbpBl/AF/AF6E/0J/rTONQ41DhUXCOuEdeov6q/qr8CJrhAKVAKlGBLTElTSVNJk1aj1Wg1tbtqd9XuYoGCeZG9yF4EEi56Db2GXuO+cl+5r95gb7A3GAJbO+KheCgeoBMBPNn+0P7Q/lCVqEpUJcLpcDqczl3gLnAXnP2d/Z39XTtcO1w7jOeN543n3Q3uBncD0gZpg7QBFyio/1gH62Advy8UAiIgguIojuIAtoY4ThwnjqOd0E5oJ8A5BpMGSkEpKAX1P+p/1P/oP+k/6T+pcqqcKncscixyLAJTwryavJq8GrVD7VA7oo5HHY86brpuum66Tt4l75J3o2ZGzYyameOf45/j/+nXp1+fflmuWq5argJh1mP0GD1Gu8PusDtyvbneXG/Z8LLhZcMBfDbkacjTkKcYl8vlcrnQPGgeNA84lrz7vfu9+8FE3U27aTcNuNKeIE+QJ8iFuTAX9nP6z+k/p6O30dvobXO+Od+cz1/HX8df92jQo0GPBsnby9vL2yfdSLqRdMO93b3dvZ3pz/Rn+lP7qf3UfpvX5rV5wb0LQF7e797v3u+8q7yrvKvUA+oB9aD+dP3p+tNg3Y9muma6Zjo0EBoIDbS5bC6bSwpJISkEeN+C14LXgteAi23tZO1k7STpJ+kn6Ue2J9uT7asmVU2qmgSqQDQQDUQDRRaRRWSxyW1ymxyQ17ztvO287Ux1pjpTnXGKcYpxCufgHJwD6gJ1gboACxugsgBVmm1mm9lmgFSE4+F4OJ7Xh9eH18exx7HHsQdYC11nXGdcZ4A1VnNVc1Vz1bbdtt22Hdjx0FPoKfQU3BfuC/flRnGjuFHcWm4ttxZEHgBhwXvce9x7HKje4NgF9+ZvGnEMHAPHQM+h59BzsAIEOFqBQRlEYaFJ0CRoEkAaoU7UiTptwbZgW/Cn55+ef3ref2D/gf0HRs2Omh01GzAOGq82Xm28minKFGWKDJWGSkOlUCKUCCW6pbqluqVgkhjQOaBzQGf0C/oF/WJdY11jXVM+vHx4+fDmic0Tmyeia76u+brmKzodnY5Oh42wETYiT5GnyNPiocVDi4fyKngVvIrGwsbCxsLyiPKI8giQwzfoDXqDvvpx9ePqx+VcOVfOgS1BTdubtjdtL00sTSxNBIlbMKa1FFoKLYXWEdYR1hE/b/289fOWeLd4t3g38Yp4RbzinnHPuGeuna6drp1NA5sGNg3MNeeac80gQBsxL2JexDyPr8fX4wsODoZlWIb1bPFs8WwBowCAwHI8cjxyPPKu8a7xrsGT8WQ8ubmkuaS5BPDBgReUN403jTet/lX9q/pXgm6CboJuTU1NTU1Nb+e/nf92fuPnxs+Nn+EyuAwuAyNMEBAARwkkgSSQ5Pf+qhHcCG4EOCzgFfAKeAUxiZhETBJViCpEFfYEe4I9gRNwAk4g+Cb4JvgGsje8tby1vLWUntJTeqYH04PpAeKg8Gv4NfxaOFM4UziTV8er49V5H3sfex/TqXQqnYq/xF/iL5E3yBvkDbIQWYgs5N/j3+Pfw3vjvfHeCI7gCA4QjKSe1JN6yRvJG8kbNoFNYBPY0+xp9jSBEziBc5u5zdxm+wn7CfsJLoaL4WK6f+v+rfs30p/0J/2rllctr1oedi3sWti1+E7xneI7xTyMeRjzMPmP5D+S/wBW4x+SH5IfEnuSPcme5BjjGOMYAwZipqmmqaapvwtwaCe0E9qJfkY/o5+dcqfcKQcLJ2TbZNtk2+w19hp7jbCzsLOws/mM+Yz5DDD/2/JsebY8tifbk+0JcKXIeeQ8cr6puKm4qbg4qzirOAuHcRiHAbgOvFnAVf1sxrMZz2bE1MbUxtT2vdb3Wt9r/t/9v/t/L8fKsXLsGnWNukb1/6v/X/3/6ny3893Od4GxmOpOdae6cz+5n9xPYiQxkhjpmuia6JoIKjBJtCRaEg3oIuDN+g0xQ1AERXh2np1nJ4YRw4hh+sf6x/rH8BJ4CbykVFQqKhUB5iS8AF4ALwB9H/4R/4h//L12TANpIA0YbgC1l2VZlmUBFwpM1Ouv1V+rvwbkWW4Zt4xbFtoztGdoT9k+2T7ZPnGaOE2cxp3nznPnweoLKoFKoBLAagrEF/FFfBUnFScVJx2ljlJHKYBtAJ8Z1A5qB7UD4GtkB7ID2eF56nnqeYoOR4ejw8lh5DBymDhUHCoOFRACQkD8PlteIa+QV6CaBCAQqUAqkAqctc5aZ23mvsx9mfvubbi34d6GKblTcqfktp7YemLrieCdqVtct7hucc6VnCs5V/z3++/33y/tKe0p7RnwPeB7wPeEJQlLEpYAq27jtcZrjdeqdlTtqNqBAQIGK2AFrMAz1jPWM5aup+vpeiqVSqVSwd4Md193X3dfZjmznFkOkHi/dw3gGI7hwAsAwL/4PHwePg9UPOQr8hX5yj3CPcI9wvE/x/8c/wOzbtBDgTBT3ua8zXmb3/z15q83f8U+jn0c+7jua93Xuq+/Fv1a9GtRK0UrRSuFbqhuqG5oQE5ATkCOZ45njmeO1dfqa/UllaSSVIJyG4CjiYfEQ+Khs8JZ4awA2q60pbSltCXov37nKP7j/uP+i38W/yz+maHB0GBoyJmdMztnNiCMA/I1q2W1rBZ8J5QL5UK5gDiLrkPXoeu4+dx8bj6IrXIduA5cB9CRMSlMCpOCbkA3oBuwQdggbBCgxdXU19TX1DsKHYWOQngVvApeBcAboKYEUiSAQbr93H5uP/Qt+hZ9Czpc4BcFsVVoEDQIGqTIVGQqMh3+Dn+HPwAYwU/gJ/AT0DbBD+AH8AOwkQEvxAvxQoBEs9E22kYDywq/jF/GL7MTdsJOXHx98fXF15G3I29H3u5woMOBDgeAMdr/h/8P/x9haBgahuKb8c345uIrxVeKr7DRbDQbDdRHAOUOzwjPCM/osb3H9h7bMbob3Y3uxu3j9nH7gL1Bq9QqtUr9Bf0F/YW6/9X9r+5/jmuOa45rthe2F7YXwFmQkJKQkpDSz9vP288bNzxueNxwYOAHDm7Mi3kxr6ynrKesJ3eMO8Ydaz7YfLD5oH2KfYp9SnFRcVFxkV1ul9vlrgWuBa4FWpPWpDUVFxQXFBd4/bx+Xj8A0vj1+tfrX68BMVI8VDxUPBQeD4+Hx+tcOpfOJSmUFEoKAx8FPgp8BGLUIrfILXKD4CVbzpaz5WCtoKfeU++p9xR6Cj2FwKAMmC3EX8RfxF/A+/xp/af1n9Yzc5g5zBxAwOUGcgO5gYSJMBEmOBPOhDMB7BXLwDKwDMdcx1zHXABk/k0IvoBcQC7QOXQOnYPOQGegM8xl5jJzGTgINAqNQqPwGDwGj8Gab8235gPODP2d/k5/B9IA4BS4w9xh7jDgcOKOcEe4I56FnoWehdAiaBG0CBA7wQEHFh4RfYm+RF+wlQ+kAnU9dD10PTxTPFM8U+Rb5FvkW8A8DhCzwGcNJgG2LFuWLaswszCzMDNBlCBKEH089fHUx1NfU7+mfk2NjI+Mj4z3Pel70vdkzaSaSTWTwHEpCBAECAIsdovdYk9xpDhSHDiKoziKEeVEOVHO9GZ6M71rt9dur91eX1NfU18Dym0ZLsNlOLAcwHPgOfAcqUPqkDpGx46OHR07WDJYMlgiOyc7JzsHwpMgHAjoueJEcaI4EYif8jh5nDyuUFOoKdR0C+oW1C1I3kveS97Lucy5zLms+Wjz0eajOa4cV47LONE40Tjx4/qP6z+ur/6j+o/qP74N+jbo26AEW4Itwebiu/guftmQsiFlQ8K2h20P2x6REZERkQHQFwAvLMoWZYuywRyeeE28Jl77jPEZ4zPGfMx8zHwMeBncGe4Md0bDyoaVDSsb/2v8r/E/TxtPG08bsDQRbJQDmRyQcUND0BA0BPy//OX85fzlILhtPmI+Yj5CXaYuU5dxAidwgjpEHaIO0T3oHnQPAiIgApJek16TXpMZZUaZEdigDQ8NDw0PzZPMk8yTwMCV+859574DBgtYD4T2QnuhvX5fasDBkc6ms+nAAAM27gFaOqDpoR7Ug3pAKyDKEmWJsszTzdPN062clbNyVA+qB9UDuLv4o/ij+KOYxcxiZjE3hhvDjXnY4mGLhy1AAB+YDeVJ8iR5UplvmW+ZL1gFEDQxaGLQRMUexR7FnuT45Pjk+KLcotyi3MufL3++/FmzW7NbsxsBKGawqgH0ShzEQRwEUv2GSEOkIdLeYG+wNwCbR2S/yH6R/VSXVZdVl0EF4xztHO0cDV46ODjAklNttjZbm/11/9f9X/eXzi+dXzpfw2pYDRuTEpMSkxK0Nmht0FreFN4U3hR6Aj2BngAjMAIjFS0qWlS0sEN2yA4BkdCisWgsGkOiIdGQaOhm6GboBtgjbh+3j9sH8DfMd813zXcbyAaygQRqEPDrMOFMOBOORWARWIQaV+NqHFwQhvaG9ob2df51/nX+GSszVmasBGv/UC2qRbUgTgSS+cA4C4wlQM7A/8H/wf8Blym2AduAbQBOJk+tp9ZTy4xiRjGjwAZOwED/7VVfja5GVwNEYnBNcE1wjW+ab5pvmjhHnCPOAdKfV+KVeCWgGAfNASgYEC/iRbzsanY1uxroOsBZAF2DrkHX7K/sr+yv7BPsE+wTwPzUFe2KdkWraBWtonkYD+NhfCvfyrcCrA94brl7unu6ewJnB2Abf/L95PvJF2yJETwQPBA8IBeTi8nFpkJToanwN0lmjHCMcEzd07qndU9LL5ReKL2gDlOHqcPsLewt7C0wUA0A/cMb443xxoCdiq5yV7mr/Ivxi/GL0frQ+tD6EMC4fBN8E3wT7Lvtu+27XdWualc1UGWMb4xvjG8CWge0DmgNtgNU2CvsFXbrOus66zpVoCpQFRhwMeBiwEX+PP48/jytW+vWuvVSvVQv1a7QrtCuqFpStaRqieGm4abhJpj5+/j4+Pj4WDALZsFKoVKoFAIbYQNWBawKWKVpoWmhacFlcplcpuM/x3+O/+rN9eZ6s7C9sL2wPdjnBPopAEfHwH4xDMMwDAyAfwcyt4ZtDdtqU9lUNpWni6eLpwuYzwPREqjAQGUm75B3yDvCBcIFwgX2GfYZ9hlgBoc7cAfucEldUpcULAMCKxUNhwyHDIfqJfWSeom/2F/sLwa0TykjZaQM2HzMW8Zbxlumu667rrueJ84T54mBEx9sHwVTSKBrg/Kf6c50Z7rzK/gV/AphjjBHmIMsQBYgC7DN2GZss2uDa4NrAyAAWgOsAdYAciQ5khzpw/gwPgwgE5sJM2Em9L/0v/S/wBYuyWTJZMlkwH7R39Tf1N/0/8//P///QtWh6lA1GLaYx5jHmMfEBsQGxAYUfCj4UPABIM5a3ml5p+WdQv9C/0J/BKxodi1yLXIt4tfya/m1nvee9573n/BP+CfcABtgA8yaWTNrFmeIM8QZbsSNuBFbka3IVlQ3qW5S3aSCyoLKgkoAMm9Kb0pvSi9ILkguSJbapXapPaguqC6oLiQoJCgkCNDsm9s3t29u/6vgV8GvgtrDtYdrD5fmluaW5rq8Lq/LK5PL5DK5VCaVSWXute617rXOo86jzqMVhgpDhaHZv9m/2d/20/bT9jOgMqAyoJIOooPoIJVAJVAJAOwQyKSWnZadlp3EYmIxsRhA7sFeJdE80TzRPNAbgu0uSVeTriZdFSJCRIgAchKYUcJb4a3wVrAzmFATakLNRXFRXJStq62rrSuEQRiESdpJ2knaCd4L3gvek8fJ4+RxwKOFW8It4ZaAru766vrq+ur3h98ffn/4HvI95HsIDofD4XDvNu827zYwhZRNl02XTQdMN2Ybs43ZBtaeBqwMWBmwEuzDBGB+gHWkblG3qFu4G3fjbgCrJavIKrLK/6D/Qf+DinxFviIfjI01/9P8T/M/sDJV01bTVtO2zY42O9rskLaStpK2AvZci9QitUgZNaNm1A6JQ+KQAGyW44XjheNF2ZyyOWVzwJnwOflz8ufkkrklc0vmChOECcKE/v79/fv7T06ZnDI5BV0jWSNZIwGrF5ovN19uvmwZYhliGaLVaXVaXe723O2525EVyApkBUA3Cx8KHwofBt0Luhd0D7Av6kvrS+tLVbNVs1Wzm1s1t2puxfvF+8X7FfVP1D9R//jU+tT61MryZHmyPCaBSWAS6lPqU+pT0iLTItMiG1IbUhtSbR1sHWwdnNud253bxQHiAHGA+In4ifhJQJeALgFdopFoJBrpEdYjrEeYMEoYJYyK7h/dP7q/dK10rXSt8I3wjfANDMEQDAFpEdmGbEO2gbErmDYS54nzxHn3SfdJ90kAyKrvX9+/vn9WblZuVq7BZrAZbGBPUvOA5gHNA8AkAFoMLYYWg2Kc2cHsYHaAQxMwidlANpAN5ISckBPik/HJ+GTuIfeQewhwoiAO4FV6lV6l4qbipuJm6L3Qe6H3JMskyyTLgIRI/k3+Tf4tKBGUCEoANFuv1+v1etsZ2xnbGQCeJziCIzi0I9oR7QigOaAYAMYY4DYThYhCRCG0l/bSXsCSA/sCTCqTyqQi5ISckAMzIHCsiyeIJ4gngOw1GJoBcw4QdW06m86mA4g2BV/BV/DVGeoMdQYYczFhTBgTRs2mZlOzrROsE6wTEpYlLEtYRgwlhhJDYQtjYSxMtb5aX60HBrH6f+v/rf/33t57e+/tLa0srSytBI9uwLH0OeVzyudUH3kfeR95ZJ/IPpF9eCd4J3gnfFN8U3xT6sPrw+vD/f/0/9P/z5hrMddiroGAIlhAQ3eiO9GdAMS9KKkoqSgJ4FBNG00bTRuBaxHEjKS9pb2lvb06r86rE84TzhPOC3se9jzsOcijcbu53dxudXd1d3V3XI7Lcbnruuu66/rvTeI3uBvcDbCwmlEwCkbh7ent6e1p6G/ob+j/s+Bnwc8C1yvXK9er++fvn79/3v7L/sv+C1uBrcBWVGRVZFVkgR1UYNQKlvsA5zsAeEB5UB6Uh13CLmGXSCNpJI1gl5Urw5XhygAMKuMC4wLjArDTMmJsxNiIsX5WP6uftWVmy8yWmcAXAFiabCwby8Za31rfWt8WYUVYEaaP1cfqYwElXDleOV45nu5F96J7WY9Yj1iPOCOcEc4IsD6J+E58J74HJAYkBiSChcyCeEG8IB64MKiOVEeqoxt2w24YPY+eR8+DxJw3wZvgTQBND2AWAO+asZexl7GXp8RT4ikRPBM8EzyLmB4xPWJ6wuCEwQmDRe1E7UTtwG0moASUgALraBO7JHZJ7BLniHPEOdB1hesK1xVmj84enT3a3Mvcy9zr86bPmz5vytfka/I1IAXmWuFa4VoBdh2BxCooS224Dbfh4aJwUbiIV8+r59V7Z3lneWcFRQdFB0WLroiuiK5wi7nF3GJmO7Od2e585nzmfNZobDQ2GrmP3Efuo/65/rn+OTD8d7zQ8ULHC/FX4q/EXwmtC60LrQu/EX4j/EZQWFBYUJjmpuam5iZPyVPylMQEYgIxATTS2FnsLHYWLUAL0AKwucCR7kh3pLND2CHsEBD3FlQKKgWVtYG1gbWBOUE5QTlBHqlH6pH+hH5CPyHdVN1U3VTgGHROd053Tqen0lPpqWAGxz5gH7APQF3IvGHeMG8A7QRAHTyvPK88r4hnxDPiGQgCQE+hp9BTJoAJYAIADBkwQ4CBDuwjACZpm9vmtrkFjwWPBY+Bem7Ptmfbs8F/Z4+wR9gjAMPKNDANTAMAz3u9Xq/XSwkoASVARiOjkdHwJngTvAmLx+KxeHYru5XdChfChXAhEUwEE8GOeEe8Ix64yLkB3ABuAOD6SeZJ5knmhaAhaAgqXCJcIlyiP6A/oD/g3O3c7dwNXFw8ikfxKMAWlL2TvZO981vut9xvuc8Unyk+U3hmnplnzrqTdSfrjumu6a7pLjp1wtQJUyfovum+6b4Vby/eXrz9+fzn85/PD+oQ1CGoA1/Gl/FlpuWm5ablIOgN2l2wKMd/kv8k/0m+a33X+q6VCWVCmVA1XTVdNd2/1L/UvxS+Ad+Ab5SfKT9TfqZyfOX4yvE59Tn1OfWAXAYWBSOxSCwSGwvFQrFQ7JzYObFzQISh7nnd87rnKp6Kp+L5/fL75feLvE5eJ6+D1cpA7XDmOfOceQAuA/w62CxsFjbL+YfzD+cf3gfeB94HYBkDu5fdy+61+9n97H7mc+Zz5nM1eTV5NXn54nxxvpibyc3kZiaeSjyVeMq4yLjIuAgoKHQtXUvX0ivplfRKQDIBsGUuhAvhQpAeSA+kB38DfwN/A3OPucfc0wzRDNEMiUmNSY1JBVZaECsAwQTah/ahfX6Td1diK7GVTdFN0U3RwNgDVG/jJuMm4ybbI9sj2yPyPfmefI/1xnpjvcGcjupEdaI6ASUJPH3BoSZ8K3wrfKusU9Yp6+Tr5evl68XbxdvF2wG3znHScdJxUvA/wf8E/wPgCqvMKrPKAFBfvkm+Sb7Jd43vGt81gvmC+YL5ju6O7o7uoG1yep1ep1fhq/BV+ILtxfYMe4Y9w5PjyfHkIA1IA9IAVgJ5xnnGecahC+8vvL/wPuikPiZ/TP6YDKixgZ0DOwd2VqxWrFasNqWaUk2pzhnOGc4Z6DJ0GboMugHdgG6oOBWn4oJ3Be8K3uUUO8VOMfeYe8w9ltEyWkZ/6f6l+5fuNYU1hTWFpUWlRaVF+pX6lfqVWpfWpXUB1HrY+bDzYefjb8TfiL/BC+IF8YJ0ybpkXXK0IloRrZCWSkulpcCfBJgI1EHqIHXQG+gN9Aaq+6j7qPuAHQdglTTdgm5Bt2ge2DyweSDYPgtkPbwt3hZvW3Sy6GTRSXmmPFOeWTu0dmjt0LqJdRPrJho6GToZOnnHecd5x2GhWCgW2hzVHNUcBdwTsB/sB/uBLbZg4x6w66Bz0bnoXOQWcgu5BQp8/6H+Q/2Hgo+8+X3z++b3pnGmcaZxAPkFVnrIj8qPyo9GmiPNkWYwDAHeUWosNZYa6y50F7oL3SvdK90rf3sNwp3hznD2LfuWfct38918N9oZ7Yx2BmlaAIJ2RDmiHFG2mbaZtplgZRIZQ8aQMeQ8ch45D/SYrnpXvaueLqaL6WKiF9GL6AXi/5SBMlAG7jn3nHuu8Wg8Go/itOK04jRVQ9VQNZSX8lJeMBcJOBtwNuAs/R/9H/0fkUqkEqlA4BV3FHcUd5T+kP6Q/kBbDW41uNXgT6c/nf50uv5J/ZP6J+HLwpeFL4tIi0iLSANvDcCWN01pmtI0ha/iq/gquoluopvEY8RjxGPAGnvzdvN283YQRhaECcIEYTWdajrVdGpa2rS0aSmIF/rf8r/lfwssxhCJRCKRSPle+V75HhoGDYOGgW5FUaooVZQGbAnYErAF6DcAjMGuYdewazwtPC08LczPzM/Mz8TdxN3E3cBKCeowdZg6DOSM5pXNK5tXylfIV8hXuIa4hriGyO7K7sruGpuMTcamGkONocaAR+FReFSdpE5SJ7Hst+y37Nc91j3WPQbdHFiJBj5OeBI8CZ4E0nlwGpwGpwHXPNOR6ch0BOv9ABKjqbaptqm2oU9Dn4Y+gJrCteBacC2YTCaTycT34HvwPUqP0qP0SKdJp0mngb1Qupm6mbqZZDaZTWYzS5mlzFJiMDGYGAxcG+w+dh+7D4BrqXgqnopHk9AkNAl8v6fcU+4p5yiO4ihKSkkpKRFABBABuAk34SawMQssXnNMckxyTBL/Kf5T/CdgY7odbofb4VzlXOVchQagAWgAAIq41rjWuNaIGTEjZpCuSFekq0FtUBvUTCFTyBTy3/Lf8t8i15HryHXCSTgJJ1C8nCnOFGcKht/Eb+I3gQmk1Z5We1rt6dO9T/c+3T8M/TD0w1DEhJgQk3uve697r3yOfI58jiBbkC3IZr+x39hvsBt2w24ezaN5tDXNmmZNAymFsqSypLKk+vv19+vvg+3V0mhptDTaFemKdEXaCm2FtkJxO3E7cbuaoJqgmiAFrsAVODwNngZP00JaSAsB4A52EDuIHUQXogvRhXwxX8wXYyewE9gJWkSLaJGjs6OzozNxg7hB3GAvs5fZy+6J7onuiSJEhIgQz3TPdM90wJEyTDRMNEz0rfWt9a2tml41vWp66efSz6Wfm5FmpBmhHlIPqYfMemY9sx4w/Fkba2Nt6Bv0DfoGLIcApn2wZh6aBk2DpgGbCpAB7WH2MHsYPAIeAY8AwDQww4KOQkeho/BueDe8G9BtwfO1ondF74redH+6P92fekY9o55ZVlhWWFaIGkQNogbqLnWXuosfx4/jx+VX5FfkV8CgnbpB3aBuOMc6xzrHEl+Jr8RXUKECdAcYBgOyLwBEg+UcAKTG0/P0PL2JNtEmGkQ5xA6xQ+yoXFG5onIFgKEBn4Jsv2y/bH9Ifkh+SL6PzEfmI2tKbUptSq3D6/A6XNVF1UXVRYALcAEONgFTEVQEFeGKc8W54tBuBd0KuhUAGNRIz0jPSI9mhGaEZkRJXkleSZ5mrGasZqyz2lntrAahZnu+Pd+eHzQhaELQBNEb0RvRm5jnMc9jngPxM35q/NT4qaoFqgWqBVn/y/pf1v9C54TOCZ1j6Wvpa+nbYGmwNFhiB8UOih3U9b+u/3X9r0d5j/Ie5T47fHb47ACLlEWFokJRoeOG44bjhmiSaJJoEkhZuNPcae40uBQuhUu5z9xn7jMwqNhO2E7YTtTvrd9bvxczYAbMAJbdaAdqB2oHai5rLmsuV7etblvdFkwYwUVZr6vX1ev0WfosfRZY+EEZKSNlBK0yoCoA8A3gJgAzPx1Gh9Fhv0lwTtgJO+Gb8E34JrCn/TbX7oH3wHvALA8UA8hh5DByGBAvIR/IB/Lxmegz0Wei/Yn9if2J2+V2uV2i3aLdot3AAA1i5mQZWUaWcRu5jdxG40jjSONI0KYApDMaioaioUAjBG4tpAXSAmkBllj83kdKikkxKYgTxAnibO9t723vQcgTvgBfgC8Q9UQ9US89KT0pPal4oXiheGHQGXQGHcCtMl2ZrkzXxhGNIxpH2P3t/nb/pqimqKYoYLyOeBbxLOIZgAMASwwIsKMdJnaY2GFim05tOrXpJOKL+CJ+/r/5/+b/W/ez7mfdT1A4M0eYI8wRsMYv8Z/EfxL/AXvvfVf4rvBdEWuKNcWaxN3F3cXdY9Ji0mLStOHacG04WKhAiSgRJQIP8w5BHYI6BA1SDVINUoWZwkxhJt5K3kreSkDP1fhr/DX+IGumsqgsKgtzjDnGHONt4G3gbWD3s/vZ/YDjC7bSElVEFVGV/zr/df5r+0b7RvtGWk2raTVQlaqnVU+rnqaWqWVqGeB7BIcGhwaHplalVqVWZU3ImpA1ASy5kg+QD5APaOrb1LepL4iNA12NW82t5lYz65h1zDr4LfwWfouAf9KRdCQdbDAHCxSxQ9gh7NBvr0EAF8AFgJQt24ptxbYCYVGge8H/g/8H/w+ugWvgmuYjzUeajwC2ibWvta+1r3GpcalxKQhKuK+5r7mvWX5Yflh+AJ+ZsExYJiwDqyywMdgYbAzXnevOdYf+gv6C/vKu867zrkNj0Bg0BnuJvcReKuwKu8JuXmNeY17jCfYEe4KV15XXldddKa4UVwpxibhEXAJbIQQCgUAgwEvwErxEf0R/RH9Etli2WLZYrBVrxVobaSNtJFhoAcw50v7S/tL+gF0jvyy/LL8M3n/0sOqw6rAK1Af2zvbO9s6g9XUNcA1wDWg43nC84TjJI3kkT/1Q/VD9UHNBc0FzQblJuUm5yW+e3zy/eWDIGnYo7FDYIXBFi2+Lb4tvg1F9WXZZdll27JLYJbFLLJmWTEsmgEAAyCmITdrr7HX2uqioqKioKDKWjCVjwdMIHGqGt4a3hrfgLke7ol3RrmWjy0aXjQYmsoYODR0aOrhyXbmuXGdHZ0dnR3oXvYve5d7t3u3ezRPxRDyRqZ2pnalduCHcEG5I/5j+Mf3j54LPBZ8LtLe0t7S3QMDcbrfb7XbA3NUUa4o1xS16tujZoqd/oX+hfyHY9GIPtYfaQ4F1DtoCbYG2gDkgshhZjCwGTzLuCneFu8L+w/7D/gN+UzaZTWaTQTSA7cx2Zjs7k5xJziT7IPsg+yD4J/wT/slv4jfxm8DWP3uEPcIeAdDQgNZCxpFxZBzwicOj4FHwKPFH8UfxR0yDaTCNS+VSuVTMYGYwMxgwjEFvJa+WV8urQZjda/QavUZgaPbJ8snyyQIwEo/NY/PYXC9dL10vwYXutDvtTnvp2NKxpWOpJCqJSnJ+dH50fnS9cL1wvQDL3Ew7TDtMOwgZISNkMV9jvsZ8BSYfDLuP3cfuAz0peV/yvuR9ljuWO5Y7xn+N/xr/ZaYwU5gp+Bn8DH7GL8ovyi8K5PBdda46V13Ty6aXTS8btzVua9wWfDr4dPBpaBQ0ChoVWRJZEllSNKFoQtEE352+O313RhFRRBShmqGaoZqRkJ6QnpAOGOLYcmw5tlyyQrJCsgIcFmK1WC1WA0IZYMA1mZvMTWYQYgSr1okmooloSrucdjntss8Lnxc+LyRnJWclZwGdstJR6ah0SJIlyZJkcMk2lDaUNpR+3vN5z+c9NqFNaBNiEAZhEDg6G2Y3zG6YDeVAOVAOd4A7wB0ARtgh6UPSh6R3etbpWadntetr19euP5JwJOFIAmCDAFA9tA/aB+1je7G92F5AfuQknISTAOs+YLxAG6AN0Ab0CnoFvQKOZiqLyqKyoBAoBAoB8VdPR09HT0d1qjpVndrxYMeDHQ/iZtyMm0sulVwquSRqIWohamFQGpQGJWhfgHvCOM84zzgPwAuBkdf7yvvK+wrswyzRlGhKNBKNRCPRaEZpRmlG+X7w/eD7QbNLs0uzy0t4CS/hSHWkOlLhXfAueBfwswPvPB1Oh9PhwFsGqHz8mfyZ/JmAo9KobFQ2Kj/Ufaj7UBfYPrB9YPvkjckbkzciuXdz7+bebbrWdK3pGlQFVUFVlecrz1eez9qRtSNrR/zk+Mnxk0Hyy7nFucW5Jc+aZ82zelEv6kXxcrwcL2/Xu13vdr2V3ZTdlN2AXlw+p3xO+Rc+3K8AAIAASURBVBywT0jTXdNd091Ua6o11YL9u3X/1P1T9w/A94ClM4AOgLZD26HtvIe9h72HmXwmn8kHxa+1p7WntSc4GiqSK5IrkmUtZC1kLYhtxDZiWwVbwVawwGoM5oNAiTE1mBpMDeQh8hB5iKAIiqCKS4pLiku+Z3zP+J4BFhoDphsYLTvqHfWOeqAeOe467jruVhRXFFcUSxwSh8TRaUSnEZ1GjH45+uXol7gYF+Pi37Y4MSfmxCzFUiwFD4YHw4PB8QdgGNAL6AX0AloILYQWAoIve4O9wd5g4pl4Jh7/G/8b/xtEjrrs7LKzy85u47qN6zau1YBWA1oNCMkMyQzJTJiaMDVhavsx7ce0H5PUI6lHUg8NX8PX8IGpBoADnR2cHZwdwKgK2HmB1QTtgnZBu6hL1aXq0uh70fei74EblVxNriZXqxQqhUrRRt5G3kYO/LTEHmIPsQc8+UBJAJjgWCKWiCV6zB6zxwyWIALKlCXKEmWJun3i9onbJ0pXlK4oXYH5L/Vf6r9UGaYMU4YBXn3xxuKNxRuVjcpGZSNwK/v6+vr6+moXaBdoFwRND5oeNB1YvUDryx/KH8ofCsbDJrfJbXLjB/GD+MFWAa0CWgXw+/H78fvhGI7hmEgukovkIL9GZBPZRDb2GHuMPQbYD2Bn8xz2HPYcBuYy0AyTUlJKSsHKVJlJZpKZSjaXbC7ZnLcgb0HeAvFq8WrxagC5B/eub4hviG8I0KLKxpWNKxsHPEZAcjKON443jgd/CvzR3BxuDjcHXgYvg5cBm2wIFoKFYLUBtQG1AYVEIVFI9Dzd83TP0/F94vvE9/FZ7LPYZ3HNzZqbNTeBLQfYiJHhyHBkOCixQZ0EdhYA6CBAPIKPH6hBsWNix8SOSaaT6WSa94P3g/cDCAfAU2XvYe9h7wFGvD7FPsU+xR6lR+lR6t7p3une1Wyr2VazzZpnzbPmAUwqiDa4U9wp7hQIhVAIFdWL6kX1wFcJxUD/19JZhkd1bm1427hLbOKekBAIkCDB3d3doUhLT4FCobi1FC0ORYMGDe4huAbirpNJMu665fxYub5//c7hlGRm7/dd63nuOxFJlF2RXZFdEfQX9Bf0ByufMc4YZ4wzbjFuMW6BZb+uSdeka3JFu6Jd0bwhvCG8Ia5qV7Wr2n7Xftd+13jMeMx4DJJqwdHB0cHROlpH6+hHyY+SHyWjzWua1zSv8dJe2ks/sT2xPbFBQxSSN9553nneeebH5sfmxwAAdc53znfOT/oj6Y+kP2AvLdQJdUJdRPeI7hHdi0qLSotKbbNss2yz4lfEr4hfAZ618GPhx8KPwbcHjEStpOlMLBPLRN+j79H32CZsE7YJqo+g7Kk4XHG44jDwhOAWQ1EURVEugUvgEqh9ap/axzrCOsI6AvxMaM6LGkQNogY4sD+Z82TOkzlgmfpw7cO1D9d0d3R3dHeAW2IqN5Wbyj0qj8qjguYJTuM0TncN7hrcNTj1YurF1Itgj4+fGz83fq7+gv6C/sLG6o3VG6ufG58bnxtxB+7AHYgEkSCS1u4KfHT4DJ/hQ5MY6P0wfcaysWwsO9Ev0S/Rb9azWc9mPYMyftGUoilFU0BqCIMPnoVn4VkEJwQnBCfkH+Uf5R8NoYZQQ2jd4LrBdYOLlhQtKVrS8l/Lfy3/uTa6Nro2Ak6D28Rt4jZhPIyH8cSp4lRxKm8ybzJvcnhMeEx4DNiUZTGyGFlMc2NzY3MjzMacNqfNaaPGUGOoMeoEdYI6gd5P76f3W45ZjlmOEX2JvkRff72/3l8PE3Dzb+bfzL9BUSzsStiVsCtBi4MWBy3GZ+ln6Wfpi7sUdynuohFpRBqRqquqq6qrp8BT4CkIbhPcJrgNvLzgVC85LTktOR3li/JF+QIPBx4OPExNoiZRk3TLdMt0yxrHNY5rHCd/L38vf9+ialG1qNRKtVKt9JvmN81vmuB/gv8J/gdnIyqACqACYJvdmnGuRWqRWmwPtgfbQ3WgOlAdmo3NxmYjWLbdHdwd3B1AZgUkE0G+IF+Qb/9k/2T/FJAdkB2QDXMUQNoHTg2cGjj1ybQn055M0+/X79fvZ29nb2dvbxjWMKxhmOOU45TjFBlChpAhjJyRM3J0GjoNnQZtZkhSj/OO847zdlR3VHdUY2VYGVYGz9eaXjW9anr96Pqj64+uyBpkDbIG7lPIFmQLsgWatcx4ZjwzHsiZ9FX6Kn2V4TJchhuwP2B/wP7pnad3nt4ZsqPwxFI71A61A14cmpOak5qTJJtkk+zITpGdIjtRm6nN1OaKbhXdKrq9H/d+3Ptx0A6CnxJ2A7uB3YBKpHiweLB4MHsXexd7F783vze/N/A8w1+Evwh/If5d/Lv4dzhsGB4YHhgegJsZlNeGa4Zrhms+oU/oE1pyLbmWXHI4OZwcblplWmVaRZ2nzlPniWKimCiGrwQ9gZ5ATwjtF9ovtF9GXEZcRhxWQpaQJSSQhxJ3Ju5M3GkoNBQaCkGKoP2u/a797ta6tW5ts7nZ3Gy2RFoiLZGaIk2Rpkjyu+R3ye82nU1n0zWqG9WN6khbpC3S1qG4Q3GHYkjPtIltE9smFlpdrKusq6yrwEVkj2GPYY8BNQySjWQj2b6VvpW+laSMlJEyl9lldpmdHCfHyTHvN+8375eGS8Ol4Q6FQ+FQQICEO447jjsOlp3e697r3utVzipnldOwxbDFsMWT6kn1pCpjlbHKWFiFOo84jziPsAPZgexAr9vr9rqZE8wJ5gTE7JkVzApmBZQVtV+1X7Vfv/p99fvqZ5ppmmmaCVxveOFGv4t+F/0ualbUrKhZsIJFliJLkaVA04M/B9uAbcA2wJMJ6Y30RnpDyzYFS8FSMNEm0SbRpoLEgsSCxJrimuKa4sYtjVsat5h0Jp1Jh7QgLUiL6j/Vf6r/XCNcI1wjKvWV+kq9eq16rXotPgAfgA/A9Jge00MZle5P96f7Y5ewS9ilVpm2ElNiyvaH2x9uf7j9nvZ72u8RRYuiRdHkUHIoORTm6Rwfx8fxcb1cL9cLaVuoRvkKfYW+QvEb8RvxG5i3Uf9Q/1D/QIzRkGBIMCR4S7wl3hJJsaRYUmzaZtpm2sYdyx3LHYvvF+0X7RdZ46xx1rialJqUmhRnqjPVmWqdbJ1snRy+LXxb+Db4NQTWB9YH1gPNg95Ib6Q3wl8YWr/iInGRuIg4RBwiDrEPsQ+xDwFVg7OCs4KzApoknraetp62qA/1oT52NjubnQ2nIigfkhVkBVkBv2Dg5MuT5cny5NoNtRtqN4j7ifuJ+8GRUF2iLlGXwPgRe4w9xh6b6kx1procU44pxxS8PHh58HLgzdUl1yXXJcO8W5ujzdHmwD7f3mxvtje3HpN1iA7RwSubiCPiiDj+Xv5e/t6EhISEhARhg7BB2EDsIfYQeySdJZ0lnSGh8M3zzfPNA/cdRsbIGBmcVKAIgAgQASLArmHXsGtoBpqBZvD78vvy+w6dM3TO0DmRkyInRU5yXnBecF6oyqvKq8qDbKrvqe+p72lol9AuoV1iX8e+jn3dMqFlQsuE4sriyuJK7RftF+0XyD2SMWQMGQMTL1yDa3AN9hJ7ib10D3YPdg+OnR47PXZ6ZHlkeWS5WWFWmBVBSUFJQUmB3wO/B373zfHN8c3Rf9d/1393JDoSHYkQQrQV2YpsRZqumq6arpgLc2Euz1nPWc9ZT64n15PL7snuye4JXBrvQO9A70Dr39a/rX8DzcF62nraehofemXolaFXapbVLKtZBipjK8/Ks/LQcrQcLYf/gnKGcoZyRnP75vbN7YGH73fb77bfbTwbz8az4RP6NfJr5NfI4oXFC4sXwjw0UBOoCdQIU4QpwhTI/RCbic3EZoZkSIZkp7PT2ekQEWHOMGeYM956b723HiDPuv90/+n+A0McNh2bjk33XvRe9F6kDlGHqEOAfi+1lFpKLZVrKtdUruHl8fJ4eTwBT8AT6EP1ofpQEKjnu/Jd+a7CkYUjC0cajxuPG48Dx9wx3zHfMR/5H/I/5H/QeEEWIYuQRey+7L7svuwWdgu7VbacXpBekF4QOj90fuh8iIB5F3kXeRd9nPVx1sdZNc4aZ40TvY/eR++33ubYCBthw3EeSC9w5VaVqcpUZYlrE9cmrrX72f3sftzl3OXc5WbcjJtxXISLcJGnzlPnqVNkKjIVme5r7mvua1UzqmZUzag7WHew7qCz3FnuLIeIHNmebE+2p2PpWDqWWEwsJhYL3AK3wO2X4JfglxCWEpYSlgLHAxgLt9neZnub7aAbbNrZtLNpp8vf5e/yNw00DTQN1FXrqnXVcJmwX7FfsV9xKp1Kp9LhcDgcDhhW0z/RP9E/gTsqhB/CD+H7tD6tTwsD0taafMW9insV9+rr6uvq66xJ1iRrEhRimn40/Wj6wTKyjCwj9GUbujR0aegCWUFuMDeYG9wajC8MKAwoLJhcMLlgctissFlhs2QVsgpZhXSAdIB0AN6AN+ANfpgf5teaDyQPkgfJg+w57DnsOc5zznPOc9Quahe1y+f0OX1OCMPIlsiWyJYA91eyQ7JDskNTo6nR1Nhb7C32Fr6Wr+VrH+kf6R/pQeXTV9xX3Fd8d9XdVXdXuW64brhuFD8oflD8AOLx1jbWNtY2htmG2YbZwFiyFFoKLYVMH6YP0wf7jH3GPsMBGa/Cq/AqgGEEeAO8Ad5psdNip8UOfTH0xdAX9Vn1WfVZeeo8dZ46KzMrMyuzYW/D3oa9sKOkplBTqCnwxYAuGybFpJhUeFp4Wnh6WOKwxGGJKZwUTgrHFGIKMYW0mFpMLSbYuwGBmFSTalIN6at6e7293l59v/p+9X3jn8Y/jX9aO1s7WzszLUwL0wLeUe487jzuPKFcKBfK2QfYB9gHgGsVGBUYFRgFS19MhIkwUZt1bda1WQc0m7yHeQ/zHobWhtaG1tZKa6W10pboluiWaBjDyq1yq9za0LahbUNb3RbdFt0W7E/sT+xPopqoJqolKyQrJCtAgAESWKFT6BQ6wbJCwHfaftl+2X65YHfB7oLd8jp5nbxOViurldX6hvuG+4aTb8m35NvAisCKwIpGV6Or0aW4o7ijuAMbqDd73+x9szfsUdijsEfe497j3uPUTeomdZOQETJCBv5rONPgi/HF+GLYK9EojdKo74jviO8IJGOEHCFHyBFdEl0SXSKvkdfIa8oBygHKAdB6g5Qm3C7t5+3n7ecFMoFMIKuZXDO5ZnLL2ZazLWeNicZEY6K8m7ybvFvpldIrpVd8Sp/Sp+Rd413jXWvdW71D36HvsE5YJ6wTE8PEMDFQHgfkDX2bvk3fhnAZmFWiwqPCo8JZJItkkRABy7uadzXvqvmt+a35LfT7mFqmlqllZjOzmdmIE3EiTmjnwdIp6k7Unag7sdWx1bHVvOm86bzpQlJICsn85/nP8583/dT0U9NP7n7ufu5+ijJFmaIMzljNOc05zTmQvPZ4PB6PB8K+kLAAXTP/F/4v/F+kw6TDpMPi38a/jX+b+jD1YepDe7o93Z5eOqB0QOkAuVqulqtLN5duLt3c0tTS1NKE8TE+xv9x98fdH3e9Xq/X6wW/MmgRASzG8rK8LK/ovOi86Dww9cjR5GhytDfSG+mNNH81fzV/5a7jruOu4/q4Pq6P6ch0ZDriC2YvmL1gdvn48vHl40EUAQNDw0fDR8NHkHiCvIuP83E+DoAVYW9hb2Fv8V7xXvFerAlrwpqIFCKFSCngFHAKON12d9vdbbd/g3+Df4Pgs+Cz4LPriuuK6wr1N/U39TfajDajzV6ul+vlAtsEtuuaZk2zphnsK9R96j51H/fgHtzjmOiY6JjY1LOpZ1NPiUaikWgs4y3jLeNFN0Q3RDeoUCqUCg29FHop9JL8b/nf8r8/R32O+hzVsrFlY8tGV4grxBWCLkQXogsdRY4iRxHssNBINBKNxKKxaCwaRKhkG7IN2QZ6JqJvom+ib4l9E/sm9g1kBbICWep76nvqe/eq71Xfq3694vWK1ytsbBvbxobnGUAsMBtmw2wQEYFhgVgv1ov13bHuWHesrbSttK3UNNY01jS20dBoaDSYZ5pnmmcauxi7GLvIN8o3yjcK7wnvCe81LGhY0LCgvra+tr6W3E5uJ7dTGVQGlQGsS18HXwdfB2wnthPbKdwp3CncGd8uvl18u+DDwYeDD/N68HrwehiDjcHGYCqHyqFyIHVk6m7qbupuLDQWGgtNm0ybTJsgwaEr1hXriv2z/LP8sxzljnJHuVvtVrvVXofX4XX4V/lX+VchkUgkEuka7xrvGs95yHnIeQhzJu5j7mPuY9Vp1WnV6UgikogkCJgxWE5aTlpOQhwsrSmtKa0JJhbW49bj1uNUOBVOhRd8Lfha8JVVzipnlStcCpfC1Xi08Wjj0VRlqjJVWb6tfFv5tqDXQa+DXhv7Gvsa+wpCBaGCUOEE4QThBKaeqWfqIaohRISIEIEPH7TbrPHWeGu8fph+mH6YH+qH+qHUDeoGdQN6uuQichG5iHxAPiAfNC5uXNy4WDVaNVo1usqvyq/KDzA6kj6SPpI+TWlNaU1pBb8W/FrwKyuRlchKhMM1cBcRSOmyEBbCwuPwODyOxWFxWBxorXhPeE94T8BHyvXd9d31/ZXsleyVrGRMyZiSMZIcSY4kp/xs+dnys1gIFoKFoCvRlehKeDa3hvwVmAJToDPRmehMiL0qWAqWghW4JXBL4BbzEfMR8xFIVJqbzc3mZvcL9wv3C8l7yXvJeyKNSCPSSg2lhlJDy6uWVy2vQG0DlSygyIHuDKoWIqFIKBLCykU8WzxbPNtP76f30zcfaz7WfEx/U39Tf5PVyGpkNcL0Tuun9dP6uZe4l7iXACsGhqLen7w/eX8ydzB3MHegVlOrqdVkF7IL2QUAippqTbWmGjuCHcGOyA/LD8sPQ2mMM58znzMfYJPjRONE40T8E/wT/BOEo8pR5aiC3KOkSdIkaXIFu4Jdwc0Tmyc2T3SMdIx0jJQ1yhpljUAkArcrCJZtM2wzbDNKB5YOLB3IGskayRoZFh4WHhYu3SndKd0JNUVoaLAfsx+zH8N8ln2bfZt9myqiiqgirAfWA+sBgeDo49HHo49Dz4v/hP+E/8SV4EpwJZgumy6bLsecjDkZc9J5ynnKeUoeJA+SB5WdKTtTdkbCkXAkHN5I3kjeSHDhUd+ob9Q3mMUDghj4J+A+AOgx5w3nDedNnDPOGef0Y/ux/dgkn+STfBBFwCsGqutanpan5Znmmuaa5iK7kF3ILqhyw0gCOY2cRk4TVUQVUUVvpbfSW2EezbFyrBxrx8EdB3ccrNKoNCqNvru+u757TXpNek16VVJVUlUS1LdpJa2klUbciBtxPa7H9Tg9l55Lz4V/Q2exs9hZDDgh7G/sb+xv6TbpNuk28RbxFvGWeL94v3g/4UfhR+HHukN1h+oOmZeYl5iXYByMg3HEfcV9xX3Ny8zLzMuwcdg4bJzvuu+677rvtu+27zbKoAzKQNrJsMawxrBGdEJ0QnQCW4+tx9aTX8gv5BdkJ7IT2cnz8Xw8HwC6/Tf5b/LfpJ6qnqqeKrktuS25TQQQAURAOC+cF87D53ee33l+5wakAWlAYlgxrBgW7wPvA+8D6MmDK4Irgis0uZpcTa7UK/VKvdhx7Dh2XHNVc1VzNUYVo4pR+Rb6FvoWJl5KvJR4KYATwAnghBSHFIcUU3FUHBWHSlAJKnG+d753voeHP2c0ZzRntCfbk+3Jrr9af7X+KlD3m3hNvCaeQ+gQOoTiMnGZuMz3w/fD98PWYGuwNUDgBKARMLTkhfPCeeGcYk4xp5h7kXuRezGvPq8+r77uYt3FuotGqVFqlIJNT3JBckFyod2GdhvabYh7H/c+7n3PUT1H9Rw1/u74u+PvdsvsltktM21H2o60Hekh6SHpIWkxaTFpMQFnA84GnAX/glVulVvlaA1ag9aAaBAoTa3WgGfEM+IZsJbJG+QN8oaql6qXqtegkYNGDhoJ+Oiq7KrsqmzNMs0yzbL6NvVt6ttABxem+bAZhBkVtZZaS62FsxF2D7uH3YNlvOgX0S+iX3i/8H7h/QLZ9iC/IL8gPw7KQTloY35jfmO+ZZhlmGUYmKLKD5cfLj/s0Xg0Hk3ztuZtzdvsP+w/7D+cX51fnV9hVwjuTcC8wpUIPDNQ06C1tJbW+tr52vnaOSQOiUMCMA/4chrtRrvRHmIPsYfY/b75ffP7hrkOug66Dvqr/dX+at8D3wPfA/IoeZQ8Kh8nHycfVxJdEl0SzTvFO8U75TQ7zU6z7J3snewdsJGoGqqGqlHtUu1S7TKPNY81j606V3Wu6hyYhzABJsAEcCtR29Q2tU2ULEoWJRMDiYHEQNJLekkvmGVB9dJS1FLUUtSY0JjQmGC7ZbtluwX8AtVE1UTVRHi5tE6u88g8Mg9yVJSAElCCGzU3am7U3L1+9/rd63DpZQqYAqYgsDmwObC5e2H3wu6Fo1ijWKNY/Tr069CvQx9FH0Ufhe+l76XvZVFQUVBRUBFdRBfR9eH14fXhzT2aezT3sMy0zLTMVKWqUlWp4QPCB4QPgPAdwJYBpg7eN0BDM36MH+On0Cq0Cu2Q4iHFQ4rDgsKCwoIEyYJkQTIvjBfGCwNwu/Ol86XzpYW20BYaWLzkPHIeOY/+Tn+nv6MUSqEUUNEJNaEm1LzevN683gHqAHWAmlfAK+AVhHnDvGFexzfHN8c3nUvn0rngbKpMUCYoE3RXdVd1V0Ew2cBuYDewzVXmKnMV1Keoi9RF6iL+Gn+NvxZYBBaBBXwN9p32nfadtl9sv9h+8VR7qj3VMHsDxguE4Nz93f3d/TlpnDROmqCPoI+gj+6I7ojuCOc05zTnNMFL4aXwUtzr3Ovc64gGooFoCGoKagpqMgYaA42BpgmmCaYJihGKEYoRwjHCMcIxAZ4AT4AHtlpQ/YFTV8WDigcVDwZkDMgYkAF6ZJibM52YTkwnyy3LLcstViWrklUJOE7yHfmOfBf5KPJR5CN2BbuCXeHL9+X78oM2BG0I2iC6JbolusX4M/6MPzwDyBKyhCxRKBVKhdKd785358N9qrltc9vmtqBhyHiS8STjyZMpT6Y8mcK6zbrNuj3WONY41gh7eAhO6BfpF+kXERiBEVgVu4pdxTaeNp42nvbIPDKPzLbMtsy2TJ2lzlJnmbwmr8kLoRr2S/ZL9kv0JHoSPcltx23HbQeSZDgawxOLvYK9gr0iuTq5OrkaemTgAf9e873me80n8hP5ibStsK2wrYBKO/2Qfkg/ROPReDQejKO0kTbSRsbKWBkreh49j57nTuRO5E5Ef6A/0B8wN++8sfPGzhsNdw13DXchwOiJ9cR6Yvnj+eP54+HOa/hm+Gb4Zh5qHmoeCrFsmJCR9WQ9WQ/XC3egO9AdCIIT+PNB6QxIRXh5KQ8oDygPwCXDtMe0x7QHUlkR9RH1EfVQ2/dmebO8WdXzqudVz8OAjKucq5yrnEsaSSNphMq27ZPtk+1TqDxUHip37HbsduxuNdANZAYyAz39Pf09/fXn9ef15wHN6ZA6pA4pfyF/IX8h4LBKdpXsKtllyjRlmjJBF+bo5ejl6FUrr5XXyhtyGnIaclqhFLgBN+Aha0LWhKyBRi9mx+yYHaRbgFQn5hPziflQYJe3l7eXt39/6v2p96fu9L/T/07/oANBB4IOyNPl6fJ0iJ5169OtT7c+ncSdxJ3E2GpsNbbavN683rzeFmQLsgU92P9g/4P9b/Vv9W/1lbsqd1XuKr1Xeq/0Xun40vGl4wHpTPYn+5P9PRGeCE8EMJ8cpIN0kO4Yd4w7BlwrABKCIIp/kX+Rf1FKbkpuSi47iZ3ETkJJlERJc5G5yFwEww6InnlHe0d7R9O36Fv0Lbor3ZXuSvYl+5J9qR5UD6oHo2N0jA4OUFB69JvlN8tvVlifsD5hfZxsJ9vJhoyUY4djh2OHYrRitGI0BBvr99fvr99v32rfat8KlQeP2+P2uNlWtpVtZaKYKCYK/i74V/wr/tX9w/3D/QNSl6y7rLusu9g77B32DqT1So6So+QAW7f/4/6P+z9OnJ44PXE6yKtVbBVbxQ75I+SPkD/UIrVILcLMbrPb7Ib5clhlWGVYpayTrJOsE1R5xMHiYHGwdaJ1onViK5ZvHDoOHcdfxF/EX5T4OfFz4mfdF90X3RfQQReeKjxVeKq5a3PX5q5MKVPKlHr8Pf4e/9hPsZ9iP3mCPcGeYP55/nn+eWk/aT9pv5CqkKqQKtFg0WDRYDCPQ0IZbHfQ3hdZRVaRlSPnyDlyaKnmf8z/mP/xrfmt+a25SdWkalIVbC3YWrD1reCt4K0AP4ofxY8GOAIcAQ7Hccdxx3H1cPVw9XBdT11PXc/KfZX7KvfB+M7a19rX2hcsbIbVhtWG1VCLpo/SR+mj1BXqCnUFao3wT1hTWVNZU1ubaxpGw2jgNgeEk+ARwSOCR6QcTjmcchg4PPp4fbw+Xl2uLleXm56Znpmeue+577nvebZ6tnq2MhFMBBMBHyaYm4NDC2rmgAUTJ4oTxYkpQSlBKUHis+Kz4rPOEmeJs0T3Xvde9x5qF64CV4GrAGrpwlxhrjDXd853zncODuwQgIagEbYIW4Qtgumad7t3u3c7FNcg1EsMI4YRw4T7hPuE+/Ah+BB8COg0onhRvCheZ35nfmf+8sjlkcsjJ0omSiZKeop7inuKAX0L/w6Ezqlz6pwhG0I2hGwQlYhKRCWVtZW1lbUNrxteN7zu1L1T907dncedx53HOa84rzivglKDUoNSX71+9frV65KwkrCSMBhjJv2U9FPST63X7BZvi7elnlPPqeco7inuKe41I81IM9JypOVIy5GYtJi0mDRVgipBlWC5ablpuQnLAe8x7zHvMckHyQfJB+8w7zDvMChU2aJt0bboenm9vF4OAK68BXkL8hbYKBtlo1wrXStdK58GPA14GgAxjG6sbqxuLLDRFZcVlxWXlb8tf1v+tqmlqaWpxcgysowsOA1IfVKf1NdU1FTUVAQ+Wvg1ULFULBVLdaO6Ud3QX9Bf0F9oNs2m2RDUp/fQe+g9xHZiO7Gdaku1pdqC9KetoK2grUD8XPxc/NzKt/Kt/EJfoa/Q13yw+WDzQaA+wnkL+LW+Ul+prxSwE/gkfBI+CVKXELYRLxAvEC8Ijg+OD44PHhk8MnhkLa+WV8vjXuVe5V4NzQvNC80z7DDsMOwAYbUrwBXgCmgdC9fhdXgd+wH7AfuBZ7lnuWe5c6dzp3MnEU/EE/HeN9433jfwswXYJPoP+g/6j6SrpKuka+LAxIGJAyFs7VnqWepZyrnKucq52ub3Nr+3+R15j7xH3rumu6a7pguHC4cLhwfcD7gfcB/6ffhY01jTWFPg4sDFgYt1gbpAXSBUc3jPeM94z5x+Tj+nH7Cq/Rf4L/BfAD/oxhGNIxpHQD0vNiY2JjYG1sOSG5IbkhuKfop+in6gUQ98Fvgs8BnfwrfwLZDx8zz1PPU89YZ4Q7wh5Y/KH5U/EqwUrBSslOASXIKLlouWi5bD3t4+3z7fPv/jy48vP758s+bNmjdrYMCP78B34DsKXxS+KHyhva+9r71vbbG2WFtCeCG8EF5KZkpmSiarHasdq12RvcheZLddtl22Xdbe0N7Q3gAQO1S/8XH4OHwckJnAbw4MLfIj+ZH8CHlw4jPxmfiM6TAdpgOse+ja0LWhawEK6Ozo7OjsqDqmOqY6Nrh4cPHgYn+2P9uf7RjvGO8YX7mucl3luiJOEaeIA0Vy7A32BnsDH1A4J8EqCTxuSD+kH9KPd4Z3hncG5uapxlRjqhG0p/rO+s76zlAtarrZdLPppr5Z36xv1jfoG/QNoDx0pbnSXGlYB6wD1oFoS7Ql2jIEQzAEvKCFMcIYYYxziHOIcwjZlmxLtgWdEFyVAvsF9gvs15fpy/RlgnYF7QraJZkvmS+Zz/ayvWyvNEeaI83hreCt4K1gzWPNY81r/Nz4ufFz21/a/tL2lygmioliCIBH2Tl2jp2DTkQnohMF9wT3BPdMNaYaU03chbgLcRcgGGpNt6Zb0w0XDRcNF8OvhF8Jv6IeoR6hHqHsreyt7A0Nb+iONRobjY1GyGUL9gn2CfaBExLymSAyry2uLa4tDrkbcjfkbsDMgJkBM93/uf9z/6dZo1mjWQPXe32WPkufde/0vdP3TqsVaoVawT3GPcY9xn3GfcZ95vzV+avzV0g5AuxGp9VpddqClIKUghROT05PTs+WvS17W/ZCpAtE1qx1rHWsdb4uvi6+Ls1zmuc0zyHnkHPIOb5hvmG+YZxgTjAnGF+Jr8RXQmmJdYN1g3WDb+Vb+dawdmHtwtrJAmWBssDKvyv/rvyb+In4ifhpiG6IboguqSapJqkGyumWyZbJlsmaXZpdml2evz1/e/6mHlAPqAfQWiH1pJ7U00JaSAsBvYp/wj/hn4C/ENQS1BLUkhibGJsYq3uke6R7xNnF2cXZRfxB/EH8UTWiakTVCG+mN9ObCQyIVpFrOb+cX+6r8FX4KiBRLl8sXyxfDMd85yLnIuci6gJ1gboArhi4l3maPc2eZp6dZ+fZoS4hyhfli/KTlEnKJCWsWfDj+HH8uGKAYoBigPCc8JzwXKA90B5oD9gdsDtgd9mcsjllc9o62zrbOgkYwQG8F2B4MBEJ/Tn059Cfgcrtmuqa6poqDZOGScMq51XOq5zH7Gf2M/ulB6QHpAcMZw1nDWfZHDaHzQHXh3KicqJyYmv/n0/wCb7ps+mz6bNwiHCIcAi/il/FrwrxhnhDvLxQXigvlLExNsYGuoWGTg2dGjoBFLChvqG+ob5sY9nGso2Q74anGiw1QWAFOA3cgBtwg36VfpV+VfGvxb8W/0omk8lksm++b75vPjueHc+OhwaOY5FjkWMRnUwn08noInQRughGpugt9BZ6C7uMXcYuo9vQbeg27gDuAO4AUX9Rf1F/V1dXV1dXbC+2F9vrmuSa5JrEY3gMj4Eae9DmoM1Bm+FoDz7jL2e/nP1ytmZIzZCaIaxcVi4rl/cX7y/eX/ArJLYQW4gt+F38Ln7Xo/AoPAqmjCljyqKvRl+NvtrpUqdLnS7pl+iX6Je0+n3/5/qf63+wJHGRLtJFuva49rj2CPYL9gv2Q/kJCUACkAD6Pf2efg9QVONL40vjS/E58TnxOfQP9A/0D0DRk81kM9mM/4b/hv9GTiInkZPgqSxdK10rXcv7yPvI++h/0/+m/03JKMkoySjIPLmvuK+4r1g6WTpZOtXJ6+R1cuEm4SbhJkVHRUdFR+Me4x7jHkIcJg4Th3GOc45zjuu36bfpt0VGRkZGRgIawfXU9dT1NDIlMiUyRT9GP0Y/BlaJRSOLRhaNhNNS2yVtl7Rdor+rv6u/y7awLWwLvIkB5emc4JzgnBBwMuBkwEl+Bj+Dn+GIcEQ4IrxjvGO8Y5xrnGuca3KO5BzJOXLv873P9z4T9UQ9Ud9vUb9F/RbVXa27Wne1eW7z3Oa5vmRfsi+5FS7YRDVRTYYThhOGE5AagEg/hLmMDcYGYwORQ+QQOfRUeio91bvNu827Db+N38ZvA0YCzUVz0VzgErG2sLawtuAVeAVe4bvgu+C7wDrDOsM645a6pW6pd6h3qHcoJsNkmKzmU82nmk+yAbIBsgFRi6MWRy3usqLLii4rYCUs2CDYINiQ+yb3Te6burl1c+vmsp6ynrKesjuzO7M7A0sOWAncV9xX3FdeoVfoFYKDj3uce5x7vH1m+8z2mRF+EX4Rft713vXe9TAcgW0pPhofjY9G/kD+QP7AZmAzsBnwMYIGsOeV55XnFYSI2MXsYnYxVogVYoXu6+7r7uuQlQATMCxYIKjIHcQdxB0kwkSYCGPnsHPYOY7HjseOx/xqfjW/WpOiSdGkeEQekUcU+iL0RegLpUgpUopAp6sN1AZqAzlBnCBOEHcwdzB3MBbADmAHsCteVbyqeCV7LXstex2wIGBBwIJKVaWqUoXhGI7hwO8L8wvzC/MTV4urxdVhXcO6hnWlX9Iv6ZcAG0XXo+vR9R2tHa0drYpFikWKRWmb0jalbQJKmnuQe5B7kG2vba9t72PNY81jzd0Pdz/c/XCz+mb1zep7p+6duneq4GHBw4KHX8d8HfN1zMdDHw99PFTWtqxtWdtWVqSbclNucgu5hdzii/XF+mLJ5eRycjkUt4FKC54FsolsIps8HzwfPB+oCqqCqgB0XyvcQkSKSBFEOGCFSeVSuVQuEOIIC2EhLOgd9A56h4txMS4GMiDeMN4w3rDAp4FPA59GPYh6EPUgvCm8Kbypw8AOAzsMjB8ePzx+uO5X3a+6Xw37DfsN+6FKBVRx13nXedd5W7It2ZZMl9KldKmzylnlrPL29vb29vYL8wvzCwvzD/MP8weNoi5Ll6XLEuYJ84R5rq+ur66vZR3LOpZ1bEloSWhJ4NE8mkcLfhX8KvgVxpUQU3Dcddx13HVPdk92T/aZfCafCZYn8OKmp9HT6Gnw8aLD6DA6jDuZO5k7GcQ6+FR8Kj41ZG/I3pC9sFyHLzlvP28/b39Au4B2Ae2g8uD44vji+AJkpkhDpCHSoFihWKFY4enm6ebphv+87OdlPy8TV4grxBVwgXekOlIdqbCSDE0PTQ9N9+f6c/25gg+CD4IPaDQajUa3TGuZ1jKN6En0JHpGnog8EXmCP4M/gz9DsEuwS7CLKqFKqJJGtBFthIwoWryheEPxhqLuRd2LumcmZSZlJv2Q/5D/kJu+mL6YvlTsqNhRsQP8aL6ffD/5fmrY3rC9YbuuQdegayCHkcPIYdCORX5DfkN+Q+Yj85H5qAyVoTJEj+gRfev2qhKrxCphLUpFUBFURGssZA+yB9nTyqz1o/1oPywMC8PCWD+zfmb9DP1dkE9AbbIV85VL59K5bV+1fdX21fyj84/OPzqoclDloErFBMUExYSwf8P+Dfu37ay2s9rOarjdcLvhdv64/HH54xr/avyr8S9HqCPUEWrmmXlmnrvMXeYuo1PpVDoVhGmwvlD4FD6FTzlPOU85DyCFyDBkGDKMtJJW0goC05oNNRtqNrjPus+6zzornBXOCqh3wsYeQzAEQyAu4tV6tV6t46njqeMpNhGbiE0kgoggIsh523nbeZtj5pg55ghzhDnCLMmWZEuy5W3lbeVtlYnKRGWiZK9kr2Rv1N6ovVF7o2XRsmgZvMTlOrlOrnNfcl9yX6JOUiepk03aJm2TVrtcu1y7XPWL6hfVLzK2jC1jc9Zx1nHWEbw0XhovTfqz9Gfpz+xwdjg7HIDogY2BjYGNqh2qHaodkNQGMQ1AvcKt4dZwK9ie+F34XfhdvMHeYG9w9u3s29m3AfNVcL7gfMF5Op1Op9Op36nfqd8rb1XeqrxVf6T+SP0RmBpb71rvWu9aYi2xlthWKXsbqg3Vxiq2iq1ioBnBIgU+IgAYBUIcXO+RUcgoZBSklODcAFw5NAVNQVOgrwJlAfBXtVpHTiInkZP0DfoGfQP+OahLoUKJdcO6Yd3oLDqLzgpPDk8OT+5a0LWgawH+B/4H/sd34Xfhd2F4RHhEeIThf4b/Gf4Hs2CD0qA0KF0lrhJXiVPqlDqlMKkCCBh5jDxGHhPOFs4WzvaP84/zjxMcERwRHAnJCckJyQH+Xd7ZvLN5Z0XDRcNFw8kR5AhyBDmdnE5Od7R1tHW0ZcYyY5mx0KvxfPF88XyBOKGsi6yLrIvEKDFKjA6tQ+vQUkFUEBVEa2gNrQGZGH2HvkPfMe8y7zLvAtdy+9ntZ7efbcEtuAUPvR96P/S+nJATcgIwbs0/mn80/6ivqK+or/CEecI8YYlYIpaI+Yf5h/mHRVPRVDTVdLTpaNPRi+8vvr/4Pu5r3Ne4r/iOFzte7HhBzCJmEbMcdY46Rx1IarjTuNO40xz+Dn+Hv6edp52nnavYVewqNtvMNrONO4k7iTuJ24nbidtJz9Kz9KxHVx9dfXT1c9Hnos9FgkuCS4JLzaebTzefrv1c+7n2c8n9kvsl98szyjPKM3wNvgZfA+zUrLOts62zyYHkQHIgeY48R55D4Ou2HdmObIdmLbRmoZsL4FHYq4N0BoJsYHsCn7WD6+A6uMh15DpyHR2ODkeHw10PGHZg22WSmCQmCYlD4pA4AHLAiwDwfsCQlIXKQmWhqj9Vf6r+TPuW9i3tW1NGU0ZTBvC4VZgKU2GeTE+mJ5N6Tj2nnoNLXV+iL9GX1OfW59bnghWYXk+vp9dDzBCcdMHhweHB4WahWWgWwovDGGOMMcZYPls+Wz7b1trW2tZC4xaUzmQBWUAWwMuL+kH9oH54l3iXeJdQ2VQ2lQ2nFtdA10DXQEdXR1dHV2j/wVeF1ZPVk9XTs82zzbON9tE+2icbJhsmGxZhjbBGWAMKAgoCCuLj4uPi47r4uvi6+AIqAioCKlg6lo6lg41hLCuWFcuSDpQOlA5UrFOsU6yDF/f3P77/8f0PyG+Z95r3mveidrFdbBd7Xnpeel56X3lfeV/Zp9in2Kd447xx3jhThanCVNHqgEuUJEoSKS/lpbysEawRrBHWPdY91j2vG183vm60bLFssWxJt6Xb0m3l98vvl9+vWFaxrGJZ8ZviN8VvrCnWFGuKpb2lvaU9fPvxZfgyfBnYBKBvT9fT9XQ9FMPBgwCCQLiF0Y/px/RjSAcAIgJpQpqQJu4u7i7uroSGhIaEhhGiEaIRomPSY9Jj0sYFjQsaF2B/YH9gfyCdkc5IZ/Qeeg+9xyxiFjGLkIfIQ+QhpHNAzwU7MihBQMY8qHNQ56DOKdEp0SnRU3xTfFN81Vg1Vo0BTCc2NzY3NhdqUuXscnY5+03+m/w3+fo1+jX6NYa5hrmGuXB4917zXvNeC/4n+J/gfwY8HPBwwEOQ+OTvyN+Rv6Ps77K/y/6GeJ0HDix9PX09faE/6Nvr2+vbC1MoeDOgh9HD6OFWnAaBEigh7S/tL+0vChGFiEIMEoPEIAFEkXW1dbV1tW2jbaNtI0DisXwsH8uHj3Lq9dTrqde7a7tru2v9BvsN9hsc4ApwBbhAKgk/NzKOjCPj4PbqH+wf7B8MhPdyd7m73O1m3Iyb0XzRfNF8gfQmaooyRZmigLMGpW84bXg+eT55PoEjljxBniBPgFqU5c/yZ/kDE/Kp7antqc00zTTNNA0AoyAiriivKK8oL9AX6Av0BYcLDhcc9szyzPLMav2hvKHf0G9A34NWoVVoFdQUYVgK4Bj8d/x3/HfuBO4E7oSgn4J+CvqJtYq1irWqddG4P2J/xP5e3Xt179U9/Hz4+fDziiJFkaKIN4s3izdr3YB1A9YNyJmTMydnDvoafY2+RsKQMCQM6o7MSGYkMxLUPFg7rB3WDjNiRswIyyLgUSFzkbnIXHGluFJcmdIjpUdKj6nEVGIqAWND60nrSetJu9futXulPClPymv6q+mvpr/y++b3ze9rWWdZZ1nnZJyMk3HTbtpNA083NiQ2JDbkt5TfUn5LUa9Xr1evfzbj2YxnM96Qb8g3JJhYwCaAjcZGY6NdM1wzXDOgmOBL8iX5kkAvBtJ6eKETJsJEmKRdpF2kXeBWK9AKtAItV8aVcWXBlmBLsOV7yPeQ7yHhY8LHhI8J/xz+Ofwzuy27Lbtt4qLERYmLYDoly5XlynK7hHQJ6RLCusO6w7qj7qfup+6HeTAP5km4k3An4Y5wvHC8cHz1tupt1ds45ZxyTnnd/Lr5dfNriBqihojrG9c3ri/Rqhqei83F5sIJAzmDnEHOgNGRtYa1hrXGU+gp9BRigVggFkhdpi5Tlz/f+Hzj841KaaW0Utp+ZfuV7VeKikRFoqLqY9XHqo85M5wZzgxPJ08nTyesM9YZ64zn4rl4LsDzwDECHFx0NboaXc1dwF3AXQABN0JDaAgNzF7jD8QfiD8wpXBK4ZRCVYGqQFVgc9qcNqd0u3S7dHv42/C34W/xWrwWrwWPNszD4jPjM+MzXxteG14bYKeGslE2ygb/LroH3YPuaXW9gearHdoObYcsRBYiC5lTzCnmFOElvIQXqktUO6od1c7MNXPNXKCzNTxpeNLwBJ58gWcDzwaedbldbpcbjqhUHpVH5bk3uze7N4NLnRvFjeJGdR7WeVjnYXGmOFOcCYaK0mZps7QZVKpw14PpHVDwqJ+pn6mfW5fBQ+mh9FB0KboUXQpgeGj10E/oJ/QTy2XLZctldgY7g53hWeJZ4lkC1VZwsnOHcIdwh4B0MG5/3P64/eCDiNodtTtqNwyAHHsdex17K2MqYypjgucFzwue50xwJjgTUv9O/Tv1byDJlGhLtCXa9yffn3x/snJa5bTKaZHrI9dHrgcxUwKRQCQQBJqEJqFJUNOh6qg6qo6yUlbKClwwoIkh95B7yD3kP+Q/5D/1O/U79bu6m3U36252+tDpQ6cPyR2TOyZ3rMqoyqjK8KX70n3pkN1pPfFUIVVIFfoQfYg+BIUNPL2AaQT+XYVCoVAoMnIzcjNyAVGldWqdWienM6czpzNMq/Un9Sf1J6Ezr92j3aPdA5knXk9eT15PwWnBacFpsUqsEqsSLAmWBAuE9m09bT1tPQEWA+RJRIpIESnokVtfc17Ui3qpN9Qb6g3eGe+Md4ZDKJyERIdEh0SHLP9a/rX8WzK9ZHrJ9EBuIDeQC2JF/Dp+Hb8OrTdSRapIFUhR2ZHsSHYkkUQkEUmKa4primu91vVa12udTCgTyoTCPcI9wj3RZ6PPRp+Vd5J3kndqTd+7KTflhhYeNgQbgg2BXhCYn4Dj2wokKmQKmUKQooKeFUlAEpAE8Lc4djl2OXZRk6nJ1GTuQ+5D7kPaSTtpJ5irUmemzkydCb8jYimxlFgq3yffJ9/nLfWWekuBncL6hfUL6xfdMN0w3bD/2v3X7r92b6+/vf72uuVPy5+WP1PTU9NT0z/pPuk+6fpx+3H7cZEByABkAP5bn9/6/NaH+kx9pj4zW5mtzFagyXoJL+EloKUKryTyJfmSfJk3IW9C3gTvZe9l7+XO/Tr369wPQlVlG8o2lG2AEiBTwpQwJSAVdd133XfdB9Ys7LkkpySnJKfG/Rj3Y9yPxb0X917cG7xcMdtjtsdsh0AwxBv82/m3828HPhNQ28ANCwzjtmu2a7ZrFrVFbVFrb2lvaW/B68N63Xrdev3HjR83ftyw9bD1sPWA4gDmwByYo3UEcAm5hFxCLagFtaC30dvobQDGI3OQOcgcsPZC5rpDcIfgDsG2IbYhtiFgCwlID0gPSKdn0DPoGUQZUUaUYT+wH9gPzzTPNM806G/YF9oX2heKNCKNSNO3qm9V36p+w/oN6zdMUCuoFdRSfIpP8UF1z97L3sveW3Ck4EjBEYBRozloDppDbaG2UFtaEWHd0G5oN2jxsp6wnrCeYAOwAdgATI7JMTlBEiRBQhYA1re0m3bTbsATiteJ14nXqcQqsUocsDlgc8Dm8N7hvcN7B04JnBI4hcPisDgs7gfuB+4HoploJpq/W75bvlvKC8oLygu+/vj64+uP3Gm503KnNcY2xjbG9qJ6Ub2opaVLS5eWOp86nzqfVk2umlw1GSJD+B/b/9j+x3ZsDbYGW0PoCT2hh3kMHAAhFIuTOImT3h7eHt4eX/Vf9V/1fj/5/eT3E9gzvBqvxqvJO5R3KO8QsZxYTiwPex/2Puy9OEYcI44BDhPnJucm5ybs1MY8GvNozKOMwxmHMw4r/1H+o/wHGuxUOVVOlcP0CJfgElyC7EX2InvhIU/cIm4Rt0BfgbtxN+5uJUxWIpVIJRwModUPx8y8IXlD8oaYDpgOmA4AehVeW1gXrAvWBYwGzAxmBjMDXhlgIQdhKN6Ct+At/Bx+Dj9Hzpaz5Wz3DPcM9wwQvyZOTZyaOBV0Rab2pvam9vokfZI+qSqmKqYqRrtJu0m7iehP9Cf6t/mpzU9tfuou7C7sLiTyiXwi33Pbc9tzGwTUtSdqT9SeQAWoABUU/lH4R+EfoB9C/0T/RP/0nfWd9Z1t/XC/Q9+h7+AFTZ2hzlBnqDXUGmoNbsWtuBXus8QH4gPxAd+P78f34zpch+uI68R14jpM+fkqvoqvoivoCroCZtkge4WoCQxfiPHEeGI8NLB5t3i3eLcybmfczrg9SD9IP0gfNzVuatxU1jLWMtYyzW7Nbs3uwJTAlMCUlhktM1pmRK2OWh21mmBlsDJYGa091AA0AA2ADTnRi+hF9MLeYm+xt96F3oXehVDQgTJ447HGY43HtGu1a7VrJcslyyXLgcAa7A52B7v5/fj9+P0ESwVLBUsjfBG+CN+tu7fu3rpbF14XXheeMChhUMKg6AnRE6InoG3Rtmhb31++v3x/waYJdvW+3b7dvt3MI+YR8wi7hd3CbuEd8Y54RzhQ05l0Jp0pjZZGS6Pp/+j/6P/gyefo7Ojs6Mxvx2/HbxcsCBYEC0AFC0dvOJ8hB5ADyAHqGnWNugamIrQJbUKbwGnO3GXuMnfx6fh0fDprLGssa2zt29q3tW+jxkeNjxrfp3ef3n1641pci2urelT1qOqhfqN+o35Tv7Z+bf1a627rbutur8fr8XoiN0dujtw8UjtSO1IbsjxkechyHMVRHHV0dHR0dETr0Dq0LmBcwLiAcTCFgupj7eza2bWzATTNO8E7wTvh+uH64foBnWM4YkMl0hfni/PFAbQeHYQOQgdBaBG/hF/CLwGey1PhqfBUIBOQCciEBrCODGoY1DDIx/KxfKyw+2H3w+4L8gR5gjyqD9WH6mMdbx1vHQ9jT78svyy/LFk7WTtZO0AUxaTGpMakuga5BrkGqT1qj9ojuyS7JLsUsTdib8ResL4Q6Fh0LDoWJsjgDYJ6Tet3l2IohvIt8S3xLckz5hnzjJWTKydXTvbe9t723h56bui5oeeKtxdvL94u8ZP4SfxohmZoBqARIEGXyWQymawD04HpwFhuWG5YbrRcarnUcom9mr2avRrct2BagqoC7z3vPe89cFfg6Yh+RD+iH8EqCa9aLBlLxpLJaDKajCZPk6fJ094Yb4w3hvUn60/Wn+RF8iJ5MaoxqjGqEe5KMLJjXjIvmZdwCsFmYjOxmUg1Uo1UQ/ES24xtxjbDR4o9gz2DPQPEhCa9SW/Sd5reaXqn6SwtS8vSNkxvmN4wXavWqrVq/U/6n/Q/Uaep09RpMpPMJDOle6R7pHsGVA2oGlCV4E5wJ7gBpdUqH1vLXsteSxfRRXSRolxRriiHjPmb5jfNb5rBdlLZsbJjZUcIA6IL0AXogtY7KQCuVzIrmZWsZ6xnrGfgTcAmY5OxyXD2hdkbE8gEMoEwRODauDauLQ1Lw9IwU7Ap2BT87b9v/3377+vnr5+/fu4/pv+Y/mMge27NteZac8GDECGOEEeI5bXyWnktfDacn52fnZ+BOxDMBDPBDHYUO4odFdQJ6gR1rgxXhisD//Pun3f/vNvaOrhAX6AvwPsP+GiQj2no2NCxoePtwtuFtwuR8ch4ZDz/T/6f/D/la+Vr5WubtjVta9oWPzt+dvzs7z2/9/ze84HpgemBybHFscWxRSFSiBQiMS2mxTS4hQCgniJOEaeIWTSLZtHQWgHKIlKGlCFlHpPH5DF5EjwJngTAc+lP6E/oT5isJqvJajAajAZjc1FzUXNRo7PR2ejUDNcM1wzX1mvrtfXmUeZR5lFN3iZvk7dcVi4rl3nPec95zwEtBApbOAfn4Bw0C81Cs+Cfgy6Mb+Ab+AaACHKuc65zrg9JHZI6JDXSE+mJ9Kjbqdup21WPqx5XPa6upK6kroR/jH+Mf0wRrghXhBtPGE8YT8DAMH5b/Lb4benb07enb/ef5D/Jf5Lsvey97D3vX96/vH9b61wb+Bv4GyQ/S36W/GzxWrwWb8DbgLcBb9WoGlWjJp6JZ+LBNq21YnAaOY2cBoAYVoVVYVVIA9KANKCf0c/oZxhwIC+QF8gL2FSyjrOOs46TXJJLcqFWFZQdlB2UDfxd7QvtC+2LRH2iPlEPm0eQuqKT0cnoZOMl4yXjpbrpddPrpgOUwrvPu8+7z8lz8pw87z3vPe+9ZqKZaCbMSeYkcxKIGAlgCFF7qD3UHjqRTqQT6SP0EfoIUKqNucZcY+6bkW9GvhkJW57gncE7g3fK4mXxsnj9HP0c/Zyg4qDioOJkYbIwWaisUlYpqwr2Fewr2PeOeke9o4DPFHEw4mDEwZ6nep7qeao6vjq+Or61alhClVAlbo6b4+aAjp1W0ApaAYVAOpKOpCOB8ErpKB2lQ94h75B30APxbPJs8mxyN7mb3E1wbyKOEceIY44TjhOOE6CE59fya/m1NqvNarOiLWgL2gKDCYCMUZlUJpWJwm/vK/oV/coZwxnDGQPhuOGm4abhprTtadvTtkNlEY/EI/FI9wn3CfcJmF0FfA/4HvDdRttoG83L5+Xz8okaooaoAe0zqB8FZwRnBGewC9gF7AKxn9hP7Me2YduwbfD3gvtjpDZSG6kFV+eIvBF5I/KulF0pu1JmYSyMhaHv0/fp+/hkfDI+GYwJYKADXDZ4E5BQJBQJpRKoBCoBlgiQAoWunzpdna5OdxxxHHEcabOozaI2i8JXh68OX93wvOF5w3P/F/4v/F+kbEnZkrIF+4h9xD76BvsG+wY7TztPO0/DY4Uj4Ag4AlJDakgNPMnADspZz1nPWQ8ZdvwX9Bf0F9Rd6i51l0K6xXXUddR1FDg9TR2aOjR1uLH8xvIby4W4EBfiyCZkE7JJ2iBtkDYUqYvURWq/CL8IvwjVbtVu1W5lP2U/ZT8Qkr76/dXvr35Xz1fPV8/3dPZ09nTuNKDTgE4DYIYONXCkGWlGmolfiV+JXyE/Cb9ydi47l53Lacdpx2lHMARDMNwabg23hv07+3f27+h19Dp6HRaikLaBeAkUIOlQOpQObcFb8Ba81r/Wv9bflmZLs6VBBw2WvuDPbH0dPEWfok/xPfgefI/vmu+a71qvoF5BvYK6ZHbJ7JIJgRmgU6qL1EXqIlDbUIlUIpXYuLBxYePC1tTRNtc21zafzWfz2cbsHLNzzM6+qr6qviro/5DZZDaZDcsQmCyDQh5m3xDerWmuaa5pFi8VLxUvNVJGykg5vju+O763iqBn47Px2XDwh3IHthvbje2GfxNoFUO8GEYwgAKDxbzok+iT6JPwX+G/wn/B2mDqYOpg6gBvj84LOy/svDBqaNTQqKHcXG4uN1fiL/GX+MtHyUfJR8kvyi/KLwqKBEWCInGmOFOcCaYDRYYiQ5Hh196vvV97eYY8Q55BQI+CNZ01nTUd6oUw6Ya4p/4//X/6/yBjGd43vG94X+ALKNYr1ivWw7ynxlpjrbFC7B/AzvAKUG1SbVJt8vzm+c3zW8O+hn0N++p21O2o2wE4ntaL8TP2M/Yz/kj+SP5IdCu6Fd1KLaGWUEvolfRKeiW+Hl+Pr0dKkVKklD5Nn6ZPg4BLMFowWjBaslOyU7ITkpAgEwOZKeQYsT5YH6xPLi+Xl8sDfTtEUyA/Cd9aYK5hYkyMiQFpFcoP5Yfyw2aGzQybqb2svay9DIUCE9fENXFhPi6YLpgumJ7/Kf9T/iffKt8q3yrogWBOzIk5IfAfbAu2Bds4So6SowTSAQwR0OPocfQ4HKXhusM8ZB4yD/3sfnY/e/KA5AHJA3QXdRd1FwH66J7vnu+eD00hyI8j0Ug0Eo0qUSWqZDgMh+EAkhW8wsCwI2mSJmnYNwD9zbndud25HTDOEFYGQKrvi++L78s15TXlNeVczlzOXA5EnyHtDppoiEzialyNq2E0w8piZbGyQNPY2vXrj/ZH+xOAQ4DjG9iPmI/MR+ajp6Ono6fju8B3ge8CA4wBxgCjz+Vz+VySwZLBksGQoQkaHzQ+aHyMPcYeYwcm05ejX45+OVr2qexT2aceyh7KHkq+iW/im7LWZa3LWgdnLPFo8WjxaIvP4rP4/NP80/zTWEmsJFYS9FYZA2NgDGCfhWEprFxgZADrWMCfAzEIhMz0cno5vRyNRWPRWLQN2gZtw37Pfs9+D+rVymOVxyqPQSoBdIbQ3aNX0CvoFUCZBRQir5ZXy6sNex32Ouw1FKrySvJK8kr0FfoKfQUQE3j9ef15/aWZ0kxpps/j8/g89sX2xfbFkJpyz3XPdc/NvZ17O/d2j4M9DvY4CAAx2EKC9xIbi43FxjLfme/Md+jwwMG/TVSbqDZR+pn6mfqZpU2lTaVNgreCt4K38DaoOlV1quqUw+PwODww7IAOMQSX8Ua8EW9s1bA+p5/TzwGZimgRLaJ1p7hT3Cn64frh+uG8LF4WL0sxSTFJMakvry+vLy8uJi4mLgYKC4rVitWK1YIDggOCA8BNgNs0M5mZzExu5Zt3RDoiHQHBA+g2IKgQ1gnWCdYJvkBfoC8QwhiQINC+1L7UvnTKnXKnPKlPUp+kPvaT9pP2kwC00AfoA/QBogpRhagifl38uvh1pXQpXUp/9Hz0fPRE50fnR+dPXD1x9cTVzCRmEjMpd0XuitwVMLzn9OX05fSF9CnMu4ltxDZiG4D6WgMhb5A3yBsoLyAZSAaSwerA6sDqAMI/rBqrxqoh/YNqUS2qhVsn0NPAUSnrLusu6y6sElYJq9BgNBgNxkKxUCwU5BBIFpKFZAH9Eo6o6Ap0BboCyCru8+7z7vOawZrBmsFARoAKvKPEUeIoCY8Pjw+Pj9kZszNmZ2WbyjaVbeB3ii5Hl6PLwcJ2h7nD3GF6SHtIe0j7U/2p/hTzjfnGfAPiFDIPmYfMa715BTABTAA1iBpEDQL0RVD3oO5B3ducanOqzSkI9ykuKS4pLjU8a3jW8AyCvxBKbuXs7kf3o/thgU0uIBeQC1ohQSlICpKCDkWHokOB1QmJTa/Kq/KqWi62XGy5WJJbkluS2+F2h9sdbnfI7pDdIZvoSHQkOqID0YHoQPo6fZ2+Dm0cVntWe1Z71IbaUBto75FuSDekG9DPQQGCL9ixYMeCHc5YZ6wzFm4BoAqtvFx5ufKyX71fvV99SG1IbUit4ZThlOFUa7d1ADoAHSCeKJ4onijbKtsq25p3NO9o3tH65fXL65dPWzxt8bTFQVuDtgZtBdD7m3Zv2r1pZ5Qb5UZ5uDfcG+4F4EvYhrANYRvYRewidhEVQ8VQMdQn6hP1CeRU9Bh6DD0GP4Qfwg9BN631djMIHYQOgldzK/ftEHIIOYRtxDZiGyF0C6h1kJ6Vs8pZ5SzaS3tpL8jgoXwNKlXkJfISeUlQBEVQQpFQJBTx1vHW8daV/FbyW8lvfpP8JvlNAj6Ma41rjWuNrFhWLCuWH5UflR815ZvyTfnUDGoGNcO637rfup/L4/K4PPcs9yz3LPZ99n32/cTOiZ0TO1unWadZpwGW1DjAOMA4AOr23qXepd6l2EnsJHaSaCKaiCbkBHICOcFN5CZyExsCGwIbAnW/637X/S4YLhguGF7jrnHXuMGRx2QwGUwG5JyQ+8h95D4YXSB8B/fK1n+ShCQhSfBkha4R1CgMIwwjDCMAm6FMUiYpk8S3xLfEt1htWG1YbQB91gqbh5KFB/WgHqwWq8VqwbcJU3hYCRPS8dLx0vHwzUAWIAuQBaX+pf6l/u+WvFvybgk06SJVkapIVeXryteVrwMnBU4KnASsgfDY8NjwWLlRbpQbqfZUe6p9xM8RP0f8zN7D3sPe0/iy8WXjS3oVvYpepcSVuBJ/O+ntpLeTYh/FPop95AxyBjmDEgoTChMK3RPdE90TgaAIFQCIeWBjsDHYGLhzAYo0+EDwgeAD0iHSIdIhQI3FgDm6DduGbQNxFhSqQEfcwdLB0sHyfM/zPc/3gHu49ceqY3SMDn7ciAtxIS5Yb0PcD5+AT8AnaLdrt2u3t8luk90mW7RUtFS0lHnFvGJeSfZI9kj2wCFUF6+L18X7DvoO+g4ix5BjyDH2fPZ89nzAdXxt/tr8tflL9y/dv3SP7BnZM7KnN9+b781nujPdme5AP2eHskPZoUK70C60q2JUMaoYzgvOC86LkNUhq0NWd8A6YB0w2P9D3C8/Lz8vP8+03rTetB5KkrA+ZyYwE5gJkG2H02crAzgFSUFSmC5MF6YLy8KysCzMz8zPzM9QIoCk2hfNF80XjcgtcovcvGReMi85ckPkhsgN/qP9R/uPJl4Tr4nXtIE20AZ44UJ7Dk1D09A0lIWyUBZCIiRCEqD4ZKEslIVafrf8bvn9w4EPBz4cMCJGxIgUPSp6VPSoSd+kb9J7u3q7ers++vXRr49+HXl+5PmR59nz2PPY82o8NZ4aD+FP+BP+g7SDtIO0qgmqCaoJrGhWNCsaNkQdsjpkdch6++Dtg7cPrGar2Wq2bbZttm222Cw2i004XzhfOB8+BNCyRcYgY5AxGq6Gq+FCkoV9mX2ZfdmutWvtWmhNgDkY9IHcJ9wn3Cc8MU/ME7OPs4+zjwN91pBjyDHkBG4L3Ba4DSCwcBrDVmArsBWIF/EiXvDHsQQsAUsQ+y32W+w3dCo6FZ1qJ+2kndT/qf9T/yc/kB/IDxQOFA4UDqz+Wv21+qvsh+yH7Ad8JVy5rlxXLszo3e/d793vPdc91z3XPXM9cz1z69vWt61v21PdU91TTY4iR5GjmlKbUptSm841nWs6Bz4nD+bBPJhNb9Pb9MRUYioxldfMa+Y187fyt/K3Jg1IGpA0ABxwPfJ65PXIy7mRcyPnhv6b/pv+G2BYASJNl9PldDmUI+jR9Gh6dGsKSopKUSmQjGEIiV5AL6AX4GjvcrqcLmf+z/k/5/+cvCB5QfKC9unt09un01PoKfQUmI+jI9AR6AjmAfOAeQCmOXhBw5kPrm4EcZe4S9xFr6HX0GuF3Qq7FXarPF15uvI0dNZsr22vba8L/ir4q+CvyVmTsyZnvb/2/tr7a/Yu9i72LvFp8WnxaeU9ynuU9wCjQczwmOExw4GtCwRLQLq007XTtdOl/ZX2V9pfOdU51TnVvcf3Ht97vPxX+a/yX6EMrputm62bzbRj2jHtQJsHNSOgRgFqmMgkMolMYFKDZwgO0bAldM1yzXLNoufQc+g55UPLh5YPrVpVtapqlZbRMlqGm8nN5GaCcxdRIApEgfyK/Ir8igQjwUgwp5pTzakO44fxw/ieEk+Jp6SF1cJqYWlGaUZpRvVd2Xdl35WWny0/W342s8wsM0tXqivVlYJpSZ+nz9Pncfty+3L7Ugepg9RBABO6jC6jy1j0rehb0Tcf38f38SXRkmhJNFzyAz8Gfgz8CPcmOCNCsw9uTHR3ujvdHZ+IT8Qnsh6xHrEewRe+i7mLuYu5OLs4uzgbdvi+K74rvivMPGYeMw9/ib/EX7ZOxm9ht7BbEAxsZZHXM/VMPewVqMfUY+oxZC8hoWBbb1tvW5//V/5f+X89vPLwysMraW3S2qS14Ul4Ep4EzrLOf5z/OP/hLuYu5i6GoA4ng5PByYDPD4ElYUlYEjGcGE4M/2H5YflhEf0l+kv0V9Xuqt1Vu9Ed6A50h3qheqF6YWNaY1pjmkqikqgkN8beGHtjLJ/m03w6/Wn60/SncDWV/iX9S/oXJ4+Tx8lzVboqXZXoJHQSOkmeKE+UJ84rnlc8r/hW9q3sW9kdDR0NHQ2aG5obmhvOE84TzhPOMGeYMwzcuo50R7ojHXbg1B/UH9QfeA1eg9dERUZFRkWazpjOmM60TGyZ2DIRtooexIN4EAEmwAQYM5eZy8zVBGuCNcFQrWTYDJthY+VYOVaOtcXaYm1bV7zr0HXoOqgpwtMxqGNQx6CORRuLNhZtdI92j3aPrvZV+6p9QyqHVA6p5HP4HD5HWiGtkFaUW8ot5RbvKu8q7yrJZ8lnyWfnJucm5yZ2DbuGXeO477jvuA/7/++zv8/+Prtmc83mms1J9Un1SfXQoOWV8cp4ZfC/ArdU+hn9jH5GeAgP4YHhIXsHewd7B/ov+i/6r7uNu427TfTI6JHRI1MLUgtSCxoCGgIaAlrjzreQW8gt2NAxO5gdzA5GyAgZIRyNsevYdew6wkE4CAepR+qReuY185p5DdodYZYwS5gFI0qRTqQT6YDBVzapbFLZpK4bu27supGIJWKJWBgOA2UZjhat8aQqpAqpwsBrW/Ck4EnBk+eK54rnCs90z3TPdHuFvcJeAdUf7D/sP+y/opNFJ4tOhjPhTDjj7uLu4u6i9lP7qf3sPrvP7qNH0iPpkbzNvM28zYAxoNKoNCqNfE4+J5/rpuim6KZYFloWWha2m91udrvZdao6VZ3qwYQHEx5MyO2X2y+33xvWG9YbVnZSdlJ2Uvbm7M3Zm59FPYt6FvVM80zzTJPzIOdBzoMbSTeSbiQ9TXua9jTtlfeV95U3h8whc8gXqheqF6qclTkrc1Z+fP7x+cfnPB1Px9Op6lX1qnpeKa+UVwqjBF4OL4eXQ0QT0UQ0bsNtuA0PwAPwgICJARMDJhofGB8YH7TyJHuTvcne9b/W/1r/6wP3A/cDd8vxluMtx2mapmmac45zjnMu1i/WL9Yv6WLSxaSL7gXuBe4FyDpkHbIOljOCLYItgi2ms6azprMvHS8dLx32L/Yv9i9wogK7MMiMOFs5Wzlb2WXsMnYZK4wVxgrjruKu4q5i89g8Ng8tQAvQAnwWPgufFTE+YnzE+EF1g+oG1YUuDF0YupCzkbORsxH6dPQ1+hp9rXVnMJmaTE1uNXl2Z7oz3REhIkSE2CxsFjYL74P3wfuAXcJsMBvMBtNJ00nTybeFbwvfFgawAlgBLOFW4VbhVnsneyd7J5aUJWVJ4UEDiGz+7/zf+b8LDgkOCQ7xz/HP8c8RcBp3LHMscyxzTHJMckx6m/Y27W0afA/4KfwUfor4J/FP4p/iquKq4qoAq8BbxlvGWwYheeUI5QjliOoF1QuqF1hOWU5ZTrEHsAewB0B60LrAusC6oGVcy7iWcUaBUWAUWHZadlp2Wg5YDlgOoJ/QT+gnwLjw7/Hv8e/5Jfsl+yUHJAckByTDEhqqhrBRshvtRruxCW1Cm1DjYeNh42Fo5CmuKK4oroCrLt4Z74x3svQsPUvfCqiIlEZKWxGfsCSG5QlAc+B7GfZP2D9h/4j5Yr6YD18nWkyLaTHc9d5K30rfSnUrdSt1K7t87fK1y1chISSEhHWUdZR1FDuCHcGOgDspMY2YRkyD3Dd2FjuLncUv4hfxi3lr89bmrR2zf8z+Mfuhqw9fM4BGgB4D24JtwbZArsH73vve+x4UruQOcge5A+Il8PWOOhp1NOpoxsyMmRkzrcesx6zH1FK1VC1FN6Ab0A0AtIWXJnSFaYRGaASq6K1GhqvMVeYqXUlX0pWg4uCUcco4ZU3xTfFN8U89Tz1PPXOZucxchvuW+5b7FjJtcE1hljHLmGWAEyK4BJfggqGUIEKIECIk5UzKmZQzC98tfLfw3a3Xt17fep2/JX9L/hbvGu8a7xqhVCgVSgOOBRwLOCb7Xfa77HdIS8IbF6DjhZ8KPxV+IuqIOqIupltMt5huga8CXwW+QkeiI9GRKZYUS4qF/ZD9kP3Qw/awPez6pPqk+iTjbONs42xXoivRlQgbcojzskPYIewQsjPZmezs7u7u7u7+JvpN9JtoOPy2PmP+4/3H+68N3gZvg7eNaBvRNkJBKkgFCc0Nc4G5wFxg3mfeZ94nfS99L33vLfYWe4vh+M96w3rDekPdpe5SdyGOAjhX1zzXPNe8hFcJrxJefe3/tf/X/p6jnqOeo54UT4onpUxaJi2Thh4JPRJ6BITYkCI3XzNfM18DewlvKW8pb6nqrOqs6qxWqVVqlTDphjNc3uK8xXmLh9cMrxleQx2hjlBHOPc59zn3W6dBP5AfyA/0AfoAfdDqa5jBzGBmwNPFsdmx2bEZf4Q/wh+B1X3ku5HvRr77cvzL8S/H1c/Vz9XPEStiRayt/uB4Op6OB74AJMNgnwiGdMpAGShDa2+nPdOeae/84fzh/AHHhtzm3ObcZnGGOEOcsSh+UfyieOlv0t+kv4Hvj7nB3GBuIHbEjtgpjMIoDDrc+EruSu5KrnOfc59zX5I7yZ3k7rao26JuiwoDCwMLAxtmNsxsmOkm3ISbgF+Jqo+qj6rP9+/fv3//3nyv+V7zvfJD5YfKD/24/uP6j+uglQEXufmA+YD5QHXP6p7VPaP+jvo76u+AnQE7A3bytvK28rYGPA14GvBUeU55TnlONF00XTQdUM9sB9vBdkD1++38t/PfzofyeEN+Q35Dvt8avzV+a/gv+C/4LwIeBTwKeNSlvkt9l3rhXeFd4V37/+z/s/8P8tr2a/Zr9mvVs6pnVc+yc+1cOxcQSDiFUzhFPiIfkY9aTU7n8fP4ecjreOweu8fueOh46HhYf6r+VP0pINZxuVwul+se5x7nHufa4Nrg2gDSWHQfug/dB/EYq9PqtDrhT45Njk2OTU4MSwxLDIMbn/Yf7T/afyDmli5Ll6XLuOncdG66bbRttG20u4+7j7sPfg2/hl8DvhQah8ahcZgf5of54Vfxq/hViPpzUjmpnFQsHAvHwiHbDvbRotii2KJY0NJjW7Gt2FYQvEIeBC/AC/ACuMAzKUwKkwKDVpi8o2PQMegY6gv1hfrCD+GH8EN4GbwMXgZGYiRGskvZpezSmJaYlpgWbn9uf25/qIKBMx0zY2bMDMsxDCwZ3HJuObecOEecI84FjAoYFTBq1bVV11Zd65feL71funeWd5Z3VlZzVnNW894Xe1/sfaHz6Xw6X+P6xvWN67/f+H7j+w1XP1c/Vz+wOrlGuUa5Rn3a+Wnnp51gJJKfkZ+Rn4EUNvjpxPHieHF8UGBQYFCgspeyl7JXaXxpfGn8g24Puj3oVhhZGFkYaW1rbWtt69a5dW5dkCnIFGQKYgexg9jWV9ZX1le+Kl+Vrwq+eerB6sHqwdXZ1dnV2cbHxsfGx6ZAU6Ap0Nne2d7ZPnhw8ODgwUGXgy4HXVYYFUaFETB7MOmBXE5NYE1gTaDmleaV5pWaUlNqCqR9sG5qTaIWEoVEoXuRe5F7EeznzTKzzCxz73Hvce+RnpOek55j/sf8j/mfWWAWmAUSpUQpUfYa32t8r/HKw8rDysNNmU2ZTZnGh8aHxof8RH4iP5F5wjxhntQcqzlWc+zFvy/+ffFv4cnCk4Unq6ZWTa2a2vK+5X3LeyChw1raPds92z2bFJACUgALn/El40vGl3Q43uF4h+PMNmYbsw3xIB7EA/N0/B5+D78HrATiAHGAOMC4GTfjJlYQK4gVsJJHj6HH0GPMKmYVswoW1SC+hlQzW86Ws+W+i76LvouUklJSSnIzuZncDCNleEW27jqhDw/eWRDBgEQwMSoxKjHqj+o/qv+o3ifYJ9gnGL169OrRq20Km8KmAKQfcZQ4ShwlpaSUlIJ91jXRNdE1UZIqSZWkTnNNc01zzQ2dGzo3FBYvjJ7RM3pQpIOsWJuvzdfmHy8+Xny8OGtU1qisUQJKQAkoeb48X54P3MuEoISghCB+LD+WHwv9eX+eP8+fhw5GB6ODSx6UPCh5UNizsGdhz7qsuqy6LHUndSd1p2JNsaZY4w5xh7hDWJtYm1ibzLvNu827zRazxWzh+fH8eH7kTfImeRPCNrDElTfLm+XNFZwKTgXHfsl+yX4JP4AfwA9A2JcYS4wlxhI+wkf4vE6v0+u07rLusu4iI8gIMgIJQoKQICC4EQVEAVHQeKHxQuMF+E8mqhPViWqz3qw36xsiGyIbIgVlgjJBWdjEsIlhE5OPJh9NPhq3OW5z3Ga2hq1hayzLLcsty2vf1L6pfVNWVVZVVlV4tfBq4VXLd8t3y3fQaVBvqbfUW+gURbIj2ZFsSAdAzQHWtEQekUfkwS2Pnk/Pp+ejm9BN6CZQWMNciunN9GZ6cz5xPnE+QaUp6t+of6P+hfoDfNCBLwUZVKhggCyJucxcZi4jY5GxyFh8FbmKXEWiOlSH6lANqkE16EH0IHoQHoas06zTrNOhH0I/hH7oeK7juY7nVD9UP1Q/3InuRHeiob+hv6E//xL/Ev8SSJJDdCG6EF3ou9B3oe+6erp6unrCBoQNCBsALjl4zFKdqE5UJzj8XthxYceFHSVrS9aWrIVKiLqPuo+6DwRCRMNEw0TDdPd193X34VcLbKFoSbQkWgI/IAiQkI1kI9moPag9qD0IrFxwXTZNaprUNKkaqUaqETComKvN1eZq31zfXN9cuAYrOAqOgiP4Ivgi+AIf1mK/Yr9iP5hjiXeId4h3qGarZqtmt17gm+gmukmmk+lkOj1fz9fzRVmiLFGWW+FWuBXEXGIuMReyBqCHN98x3zHfie8Z3zO+p+CT4JPgE+kknaQzYXDC4ITB/Mn8yfzJ/BZ+C78ldFborNBZcHqjllHLqGX8Ofw5/DngiIKjOv8g/yD/INwB6Rf0C/oFGB90dbo6XZ1pn2mfaR/Y2Kn91H5qP5TMYDrPZDKZTCb4ypl4Jp6Jh1Q4/GnMOGYcMw5rxpqxZuc85zznPO9r72vva0OWIcuQBcHl6KnRU6OnYj9hP2E/gWYIIi4oB+WgHAI8RrAQwCKxSCySXEYuI5dBZwM20u5t7m3ubRSH4lCcPj379OzTs4O1g7WDtSKhIqEiAd+J78R3ir+Iv4i/SF5JXkleCS8KLwovChQChUDhuum66boJpW8A0kPm2hZpi7RFVh2oOlB1QNxH3Efcp82JNifanCieUzyneE7s3ti9sXs16zXrNevNO8w7zDtSx6WOSx1HDaGGUEPCVeGqcBWP5JE8srqxurG60UE4CAfhi/ZF+6KhxCjjy/gyPnhUHNmObEe2+az5rPms577nvue+U+FUOBWco5yjnKOi3qLeot6mN6Y3pjdgIPav8a/xryFPkifJk9RsajY1G9ClvB28HbwdIGU0XjdeN16HKI74uvi6+Lp6iHqIeggc6vl2vp1v/9r0telrU2z72Pax7ZNSklKSUuD0CdTvspyynLKcnk97Pu35FK7ryM/Iz8jPUrPULDWL54rniucy55hzzDlwNMDB3PfB98H3wWq0Gq3G1l1qCpPCpER9jvoc9TnWHmuPtVfUVNRU1FgGWwZbBkPQGQLZEJTDp+BT8CmQmEW3o9vR7eDFA3KwPdAeaA8E1bbhiuGK4UrXWV1ndZ0FnmbSTJpJM2w+sH+xf7F/6bf0W/otpDYwr5/Xz+tHraRWUisd7RztHO2AfYafwc/gZ1ghrBBWCLc9tz23PWsDawNrA2c7ZztnO5Dqe1zscbHHxV6mXqZeppS7KXdT7kZURVRFVEE6R7hIuEi4iIWxMBaGZ+KZeCbRmehMdIZ2Os7H+TjfmevMdeaWDS0bWjZU3lXeVd5Vki5Jl6RD/B7khfYJ9gn2CQqBQqAQpF5IvZB64dsv33759ku+NF+aL/X7n9///P7XP7t/dv/slUNXDl05dP3Q9UPXD11asbRiacXgPwf/OfjPzss7L++8PCIrIisiS/af7D/Zf/yb/Jv8my0vW162vMwvyC/ILxAvEi8SL4rqG9U3qm/Up6hPUZ+CyWAymJQuly6XLod7med/nv95/kf8IH4QP+qm1k2tmwqbON8G3wbfBttb21vbW1CTlV8ov1B+wXrIesh6KPpG9I3oGzW/1vxa82tRXVFdUR0dTofT4flh+WH5YaY7pjumO9R0ajo13Sv3yr1y6NsAwwROsUJ/ob/QH/wFX1RfVF9U8GK1/mX9y/oX8AiUa5VrlWtBvOaP+qP+KDeNm8ZNA0MV6GKR58hz5DmERlr3g6lYKpYKKzVkB7ID2YGpMTWmbvUsTOFM4UwxKUwKkwKUJHC9oD/SH+mPZCgZSoZC8AbGpMRb6i31lnJ3dHd0d7Suta61roX5ZtidsDthd1w5rhxXDrwyZA9lD2UPOWwOm8OG0D67nl3Prhf8KfhT8CerhlXDqgH7NvEX8RfxF5h+4IAJbFpMi2kxrQ/xIT5EECAIEASklqeWp5bXRNdE10SbB5sHmwfD5DrkUcijkEeCDoIOgg5gg/Q75HfI75AvwZfgSwAcxYyNMzbO2Ngea4+1x8AJ6drr2uvaC1sqajg1nBouFAgFQkH4m/A34W9iD8YejD3YMKlhUsMkzTDNMM0w7VntWe1Z/UH9Qf3BmoM1B2sOpqxLWZeyTnRadFp02jLVMtUyVROkCdIEeSu9ld5Kx3PHc8dzooKoICrwh/hD/KH4gPiA+EBYZFhkWGTBgIIBBQO4O7g7uDvgqgxxOfle+V75XlucLc4WJ+wo7CjsyFnEWcRZVIwX48V4C91Ct9CCEkGJoASKG44mR5OjCZ2DzkHnABy24lHFo4pHZ3LO5JzJ6f69+/fu3wFKoMf0mB7TPdM90z0D/FdycXJxcjGMUk8Vnyo+Vayr19Xr6tEYNAaNsbvsLruLGEwMJgbTJ+gT9AkgUZE/kT+RP7XSyeW0nJZDoYMZw4xhxrSwW9gt7K91X+u+1oGPVBmvjFfGu/q7+rv6e3VenVfH6sTqxOpEJLGT2ElswyvDK8Or+sP1h+sP142rG1c3rimyKbIp0jHPMc8xDzbzvmJfsa8YmrJA1ub14/Xj9ZOKpCKpCLzYkmuSa5JrSq/Sq/QCLQkcHfCUQgYhg5BB8JHiVHIqOZUdDnU41OHQ84nPJz6faHhmeGZ4Bm99/n3+ff59LspFuShvPW89b72oi6iLqIt7r3uve2/yiuQVySvCZ4bPDJ8pMAqMAiOnB6cHpwecBiDEQsaT8WR84PbA7YHbXQ2uBlcDMF4iaiNqI2oBzEWaSBNpsqltapv69Y7XO17v+JL+Jf1Levtf2//a/teQTiGdQjo1dmns0til37l+5/qde/vT25/e/mTtb+1v7Q+rJNhOIo+QR8gjGBXaOts62zrH/R33d9zf9s32zfbNmtua25rbDraD7WDb3tne2d59ef/l/Zf3qT+n/pz6s3K9cr1yPdizAM4Bg4kaTY2mRgNMy6Pco9yjXOVd5V3l3dJHpY9KH6lj1bHqWOQD8gH5AAUmgL6DDFxUKioVldIn6ZP0ycjGyMbIxg6XOlzqcOl+6f3S+6UGP4OfwQ9SBth97D52H+KHrYHElchKZCUAI8GgYl5tXm1eXTCwYGDBwL6z+87uOxsrwAqwAtUZ1RnVGWhNWqot1ZZqgjONM40zDWpVYO7pLOos6iyCNJ1vjG+Mb4xngGeAZ0DTmqY1TWvcje5GdyNspIF9BvMG5ghzhDkCD3ZnpjPTmQlbNu9D70PvQ9Fz0XPRc0ADQrEzghXBimDF3ou9F3tPdFd0V3T3Xc27mnc11vbW9tb2wgphhbDCz+nn9HNCbsbH9XF9XGWdsk5ZZ91m3WbdxvgYH+NTBigDlAGCH4Ifgh/Q0m/c3Li5cbPL5/K5fJ4iT5GniMqn8ql8n8An8Ankn+Sf5J8kHyUfJR/tcrvcLjewDWwDu7upu6m7iTuQO5A7sGJSxaSKSYZBhkGGQY2XGy83Xs44l3Eu41ynxZ0Wd1r8zPHM8cwBfTfzePN483gI43piPDGeGMErwSvBK/QQegg9BE1ZXaIuUZeoqdfUa+ptX21fbV/7XOtzrc+1JYoliiUKYEICRNWebc+2ZxcuKVxSuKSEU8Ip4XzL+ZbzLQf9D/0P/U9WICuQFeQk5yTnJFOXqEvUJb9uft38urWcbDnZctL80vzS/LJB0CBoEIxoGNEwoiE4NDg0ONTxr+Nfx78ZURlRGVEwFL0ZfjP8ZjgGwKUILAKLgNU1mIZRBapAFarHqseqx8Z2xnbGduhidDG6uKSlpKWkBT6IXdVd1V3V9jv2O/Y7rPes96z3hJJQEkp8a+bWzK2Z4jviO+I7kkxJpiSTH8WP4kc1FzQXNBc0hzeHN4c372re1byr6XrT9abrJpfJZXLBptrxxvHG8cb90f3R/REPxoPxYOFe4V7hXshrS65KrkquKtso2yjbSH+R/iL9RThPOE84T+wn9hP7Bc0Mmhk0E+itvDheHC8O9Dr4DHwGPsPmsDlsDmeOM8eZ07iicUXjCt8j3yPfI34Rv4hf1DK4ZXDLYIAzt61pW9O2Blp4MB0Wh4vDxeGKd4p3infix+LH4scCloAlYIFZWzJcMlwyXJAmSBOkCblCrpALkfjI2ZGzI2cH7w7eHbwbesCVMytnVs70HPQc9BwE6VmTpcnSZFFGKaOUUQJ/gb/AP3pz9ObozfZEe6I9sfBI4ZHCI3AzCiQDyUAyJCskKyRLdEx0THSs39R+U/tNHXVs1LFRx0boRuhG6IKRYCQYgboE3IwMvxh+MfxyXXldeV2Z1S2rW1a3ppFNI5tGcq9zr3Ovlw8sH1g+0PTE9MT0BJY8TdFN0U3Rnrueu5671jJrmbXMcNVw1XDVvsK+wr4CWFDa1drV2tXtNrXb1G5T21VtV7Vd1dy5uXNzZ1GeKE+U53fS76TfSQ6Pw+PwmGPMMeYYOIwjf0T+iPwBlSx7lb3KXgWxE8MBwwHDgZiimKKYooCSgJKAksY1jWsa17Dmsuay5qKA8GKKmCKmiB5OD6eHw32nQlOhqdDwZ/Jn8mcKOAKOgMO1cq1cK6+IV8QrgheK7ZDtkO0QE8qEMqH8VH4qP9X4P+P/jP+z3rfet94XVgurhdWIBtEgGttx23Hbccjp4Q/wB/iD1sPgVnQrulUwQjBCMMK7w7vDu8OYakw1pp7gnOCc4Hw79u3Yt2PCB8IHwgcaRINoELgQDIwbGDcwzmgwGoyGpNKk0qTSPsl9kvskdxrUaVCnQSwhS8gS0pPoSfQkH+2jfTTQp5C2SFukLXmdvE5ehyMwgD4h7kKGk+FkOFAALKstqy2rP6z6sOrDqsclj0sel3yq+VTzqUapVCqVytSRqSNTR6pcKpfKJewu7C7snh+TH5Mf823Xt13fdiX1SOqR1KP3t97fen/L2JSxKWOTMFOYKcyEpS+EX5nzzHnmPL2IXkQv8kzxTPFMIZ4Tz4nn7y6+u/ju4qszr868OvNC/EL8Qmx/YH9gf4Dtx/Zj+1kHWQdZB4EiBxhCzzrPOs86QKPy5Xw5X66VaqVaKUvBUrAU3XTddN10rtmu2a7ZrHBWOCt86YKlC5Yu+N7wveF7Q1FwUXBRcGJFYkViRfj68PXh608POz3s9LAmR5OjyRHNjeZGc0UFogJRwdu+b/u+7Qs8u57Pej7r+SxkfMj4kPGRmkhNpEY2TzZPNq8usi6yLhJtfN/4vvG9i+ViuViQivSV+cp8ZVDtAysSm8vmsrnkN/Ib+Y1ZzCxmFtvVdrVdDR87fhg/jB+Gdke7o91ZA1gDWAM4LzkvOS8BtuJL9CX6Ep0tzhZnC/x/2UPYQ9hD7AK7wC4AACi2A9uB7dBv0W/Rb4GmB/WV+kp9rSypLKks+Tbo26Bvg5CryFXkqs1kM9lMJR9LPpZ89D33Pfc9h4x5nCvOFefa/Wz3s93P5LHyWHkskAV40bxoXjT6BH2CPvFN803zTYMLP+NknEzrCxRygwB7oKZR06hp+GX8Mn7ZJXVJXVI4TT4b/mz4s+HlM8pnlM+AvaR0sHSwdDCN0RiNge+lzd42e9vsDSkMKQwplC6ULpQuBIUh3IWZdcw6Zp2FbWFb2PAFhq9H6ZHSI6VHSIqkSIqTzcnmZJOLycXk4tJdpbtKdzn0Dr1D7xjmGOYYpq3WVmurzVKz1CwFkJdxq3GrcauX8lJeireTt5O30zXTNdM1E4axsA+VOCVOibNxbePaxrWT907eO3lvL1svWy+br42vja8NBGNcx1zHXMeqOFWcKs5j+2P7Y3ugNFAaKG0zss3INiNvbru57eY2JogJYoIyrmVcy7iWcTbjbMZZCKgEnQk6E3RGeEB4QHgAfTzw8cDHA1lLWEtYSyDkD9tmmHIqPik+KT4BccDWz9bP1g+EEIAShA8fK54Vz4qHDwrcEYKnBE8JnuJr72vva29YYVhhWAFFIuw99h57D9F94GKzJrMmsyb7rvqu+q6S58nz5HnoaglvC28Lb4smiCaIJvgsPovPAldW95/uP91/FpoLzYVmsCfgC/GF+EL/PP88/7yUCSkTUia0TsgWMAuYBVA5hyUDk8gkMomAN6KElJAS4s14M97M9GX6Mn2prdRWaivkIOAH7eK7+C6+9KX0pfQlUofUIXX23+2/2393apwapwboAKwvrC+sL4bPhs+Gz9YX1hfWF1CM9M7wzvDOcHdwd3B3cPzu+N3xO8SRvRu9G70bQeIoGygbKBsYdjzseNjxwGmB0wKnidPF6eJ0CLg5XU6X01UWWRZZFlm0q2hX0a7ClMKUwhT1ZfVl9WWNTqPT6BoeNzxueAwKebIj2ZHsCLlK+D+/WL9Yv9jEsYljE8dCKiRFmaJMUQ7YN2DfgH2xR2OPxh69/v76++vvLZcslyyXPKM9oz2jH819NPfRXGGZsExY1uNcj3M9zj089PDQw0O2G7YbthtB/YL6BfWbHT87fnb816Vfl35dKjQIDUKDaqdqp2onAbIbuJSCyxEut7K/ZX/L/uYs4yzjLIPKC67ElbgSdssuwkW4CPe/7n/d/7ZcaLnQckEfo4/Rx3i6erp6uv7468dfP/4ig8lgMtjmb/O3+XMLuAXcAt9H30ffR/Q39Df0N0CYByUGJQYlwlUcXnZQQOb+4P7g/oDzBCuAFcAKwB5gD7AH/AX8BfwFXY1djV2N1L/Uv9S/+FZ8K74V1MqNgxsHNw6WS+VSuZR1hHWEdYRiKIZi6Dq6jq4jbhO3ids0QRM0AQpl4F6CcIJVyCpkFYp3i3eLd4M0kU6j0+g0iOWAXROyo6JBokGiQS2VLZUtlQX9CvoV9KtV1apqVYB79yZ6E72JrnOuc65z7hvuG+4bsQGxAbEBqq6qrqquoStCV4SukP0h+0P2B9zjOIWcQk4h61fWr6xfWZGsSFYkISSEhJCdxc5iZ8WHx4fHh5sPmQ+ZD1mvWa9ZrzlDnaHOUO9s72zvbDDMYNOwadg0IAXAld43yjfKN8rcx9zH3EdICSkh1bCwYWHDQvIyeZm8/GnGpxmfZni7ebt5u0GXUPlF+UX5pdJb6a30+n7z/eb7DYYCClpBK2h5jbxGXsNfyl/KXxrOCeeEc4C6yWniNHGabJm2TFtmZWVlZWUlIf9H/o/8HzhPGBADYkDAcOj97P3s/WwabBpsGuxe7V7tXg2qYftX+1f7V0m+JF+SD7hmUbooXZQemR6ZHpmucCvcCjeoWzjXONc41zjLOcs5y0H7B0sG12XXZdfl1kHDFuEW4Ra2hC1hS4AygN5H76P3AWAKVRvvz96fvT9DWQeaGxajxWgxQjjE2cPZw9nD7e/2d/t7hnqGeoa6TrlOuU75/8//f/7/E0wUTBRMtK+xr7Gv0UXronXRnP84/3H+C44JjgmOga0i+Im1Zq1Za67sW9m3sq9xqHGocShIPqrCq8KrWv3E3gxvhjeD+ZX5lflVnCBOECcopAqpQpq6KnVV6irVHNUc1Rx2JbuSXQnFLBAKgnmc6EP0Ifrg7/H3+HvIdsLrVf9J/0n/yTvKO8o7yu+u312/u3Czxg5iB7GDYM9KiEuIS4hzjXSNdI2EcQY4CIBnAvduuCgIDgsOCw47djp2Onba99n32fdVmavMVWa43guKBcWC4lpRrahWVJJYkliSCEmK6L+j/47+u3XjpSE1pEYYKYwURjo/Oj86P5JnyDPkGQAtCacJpwmnURRFUZT/Hv89/nta7C32FjtYztHsbdnbsreBCIG/hb+Fv4XzmvOa81paJ62T1sEJH2Y8vH94//D+Qe+id9G7cIqiR9Gj6FHIKmQVsgrSyoAUdgY6A52Bvnm+eb558CcIC4WFwkIALwNnF2pGsCGCBTBEtzzDPcM9wyHNyKxh1jBruDO5M7kz0enodHQ6NLZa3W0XnBecF+gH9AP6gd8Fvwt+F5zLnMucy5p6NPVo6iG1Sq1Sq2CRYJFgEbDFYRho/m7+bv4Oz9qiUUWjikaVkqVkKeke6R7pHmmdZZ1lnQUnSJBfWSOtkdZIiqRIihR1EnUSdWIhLISF4M/x5/jzsNCw0LBQv21+2/y2je84vuP4jq1w0v9Z/2f9H+6P++P+fDFfzBdzsjhZnCy+hC/hS4hyopwoxzfgG/ANFU8rnlY8dc1xzXHNCX4V/Cr4lbRQWigthEa1+pz6nPqcuEXcIm4pfFX4qvBVSVVJVUlVybeSbyXfWvq39G/p7zzjPOM8U1VbVVtVK9gk2CTYBDWv0m+l30q/QS1Julu6W7p7/pP5T+Y/yZXkSnIl9g72DvYOHCfHyXFKDkgOSA64a9w17pqvmq+ar5oe33p86/Et6UbSjaQbd4LuBN0JckvcErekh7qHuoc6nZfOS+fVceu4ddxSU6mp1ASRIQLaCBCMZ71ivWK9Qr4iX5GvmBSTYlLWQtZC1sLWXznFUAwFzXZns7PZ2ez2c/u5/WCf3LrJuk5dp66jKlSFqkA9KOgm6CboBkU++gv9hf4COT18MD4YHwyPYoFYIBaIqSQqiUpy0S7aRUPDrul20+2m2+IgcZA4SDpHOkc6B3LK1m7WbtZuplpTrakW64n1xHoGngg8EXjCdcd1x3WnQdWgalBxz3PPc89DuBbudMwgZhAziB3HjmPHfR/9ffT30WUDywaWDbQPsQ+xDxEvES8RL/Ec8RzxHIFzj52xM3YGWhxAN3DOdM50zswozijOKJbtl+2X7f/2x7c/vv3BecJ5wnniQByIAwlTh6nD1LLvsu+y784sZ5YzC0pagrOCs4KzzE3mJnPTN843zjfOEGQIMgQZzhjOGM5AnimwNrA2sBb2ZYC/KY4vji+OD/gU8CngE4Rum3o29WzqGTEsYljEsIDUgNSA1JbsluyW7OSlyUuTl5rPmM+YzzAnmBPMicrQytDKUOkl6SXpJWG0MFoYbcg2ZBuym3o19WrqBURK7RDtEO0QfaQ+Uh+ZRqVRadTnR58ffX4kkUgkEglMEF1al9allb+Qv5C/0CXoEnQJpatLV5eulp+Xn5efT9qStCVpS+iQ0CGhQwjFbsVuxW6Gx/AYHv4Kf4W/gtYmPFEA4EJOICeQE2BnBM0Q+wn7CfsJsC/CrQ3uIHAwh8YLl+bSXNq50LnQudBhd9gddkyICTGhZqNmo2ajpr2mvaZ9rbnWXGv2JHuSPcnwbOCKuCKuiPeG94b3xrvLu8u7y6f0KX1KD+NhPAxQA4jFxGJiMVfClXAlsjuyO7I7uiRdki6pQdogbZDCthF9i75F3zZvbN7YvBFsa+EXwi+EX1CwFWwF2427cTfe/mP7j+0/1vrV+tX6WTdbN1s3O3c5dzl3sWexZ7Fnqe6o7qjucNVcNVftGesZ6xkL58IaTg2nhtO+W/tu7buFdQjrENYhJj4mPiY+tGto19CuTqPT6DTyY/gx/Bj0KnoVverMdmY7s0VpojRRGtoB7YB2AEFjfXl9eX15o6XR0mgJLAosCiwCDgK9jl5HrwOAWOn70vel72EJDfUEEBwGJgcmByb76fx0fjpjrDHWGJtclVyVXHX8t+O/Hf+tILIgsiCS9Tfrb9bf49PGp41Pi2wT2SayzfNXz189f8XfyN/I3zjxwcQHEx+czTqbdTbLvtu+275bnCPOEedwOnI6cjrCb8eqsCqsil4de3Xs1XHGvRn3ZtyDnCpYuOK3x2+P3w4nNvQsehY9S9A22kbbmCqmiqlqre1NQCYgEwCvThkpI2UEUgdBEzRBsy+yL7IvKuco5yjnSDIkGZIMBEVQBAVYFijt3UfdR91HzbPMs8yzSleUrihdUXO25mzN2ebK5srmSvgGc6VcKVfqH+0f7R8ddybuTNyZMCKMCCMAhV5bWFtYW9h6XwvAA/AAvoKv4CtkE2QTZBNASqy5rrmuuQ5yM02sJlYT6wn0BHoCQSvjOOg46DgI7TN8Hj4PnweUc1uprdRWCikD12nXadfp9Nr02vRaU6Qp0hRZ1FTUVNTkDneHu8MNaw1rDWuDrgddD7oufCd8J3wH+S14FjanN6c3p3fd3nV71+01iTWJNYnCzcLNws2h6lB1qJqqpqqpatdc11xXK/zeO8Q7xDuEs5uzm7O77GjZ0bKj6mx1tjrbtc61zrUuZH/I/pD91ZOrJ1dPFn8VfxV/LQ0oDSgNEP0j+kf0D3suey57LqhLRbGiWFGsaJFokWhR6M7QnaE7bU9sT2xPHi5/uPzh8mdfnn159sVb4C3wFsgOyA7IDiQJk4RJQvlC+UL5wpaxLWNbxvbs3LNzz85dpneZ3mV65ufMz5mfPRM8EzwTDFMMUwxT+Jv4m/ibzOvM68zrIu9G3o28u6h4UfGiYhAokilkCpkC9Xm9XC/XywH/D+VPAoDGkBvEt+Bb8C0wZvSN9o32jcYFuAAXgLQZjUAj0IhWixLA/yCjfd99332/7GHZw7KHNcoaZY0S+rIAktfO0c7RzpFNlk2WTe40odOEThPa1LWpa1MH3DQoNTtrnDXOGvcZ9xn3mYZuDd0aujluO247busIHaEjHCmOFEcKcHO5l7mXuZflSfIkeZLfIr9FfouII8QR4gg8BR0rHCscK8hN5CZyE3GIOEQcCvEL8Qvxoz/Tn+nPdevq1tWt4zAchsOAGLRGUaOoUVRqKjWVGnYJu4RdIm4UN4ob2z1p96TdE61YK9aKNU81TzVPYXAA9HkQgqlvqW+pb9FD6CH0EGEbYRthm+JpxdOKp8FlAhjAoJgOygjKCMpgVIyKUVEjqBHUiKJJRZOKJjX5N/k3+YtcIpfI9eq3V7+9+o1kSIZkQADPGs0azRod4B/gH+Dv6+Hr4esB743qiOqI6ojGpMakxqT7zH3mPtMY0RjRGPEd+459x0BuFmAKMAWYPCs8Kzwr3ineKd4pkP3IfmR/3e91v9f9ntQ3qW9S35qxNWNrxjImxsSYYKWmS9Gl6FLWPl77eO3j9OPpx9OPyzvIO8g7YAlYApbgrnZXu6uZYqaYKWaymWwm22vxWrwWECW2Mv4MBoPBYIBfPyR5oRMCUU6oYDNmxsyY8Rw8B8+BRSBEVhr3Ne5r3Fc8r3he8TxooaieqZ6pnoX+E/pP6D+8GF4ML0bIFrKFbFYXVhdWFyhHO7Y5tjm2Gc8azxrP1vWo61HXw2VymVwmCV/Cl/Cxv7C/sL8AgcWuZdeya6F8CBPzVkzxSmQlstL3p+9P358g0YJwqu+y77LvskFkEBlEjgZHg6PBc9xz3HNcV6mr1FWKXotei17jUlyKS8GHqZiqmKqYWt27und178ClgUsDl8Jgtmln086mnQG1AbUBtdQp6hR1qjS5NLk0mQgkAonA2I6xHWNbMYGqN6o3qjfKe8p7ynuybrJusm5loWWhZaF+K/1W+q0MnBE4I3BG+NPwp+FPBbsFuwW7oVO7j7WPtY8lvS+9L73/2frZ+tmqs+qsOmuUM8oZ5UxgJ7AT2PyX/Jf8l+Ury1eWr6ziV/Gr+NAS5oRyQjmhLTEtMS0xvs6+zr7O0f9G/xv9b35kfmR+JARpoIwvuie6J7qn76nvqe9pyjBlmDJgXymZJ5knmRd9M/pm9M20YWnD0oalD0gfkD5A2ahsVDZyJnImciZ6enp6enoCfg2aysA4dT90P3Q/BLOvT+aT+WTgLqcOUYeoQwStolW0CuZD8FdFN6Ib0Y34HHwOPqcVh3UQPYgeJB4QD4gHyGpkNbIarUVr0VpxiDhEHNL+fvv77e8L+gn6CfrBKhE42sQOYgexg55Fz6Jnaa5prmmumT1mj9kDr0VAkQbwAngBPNE50TnROcJG2AibR+AReATuT+5P7k8sMUvMEkMYA8lFcpFc9mn2afZpeFb5jD6jz+icmTfc6QAAAU5JREFU7ZztnA0EbXh5tfY67jP3mfvwLWe3sFvYLWCnVHZVdlV2tWfZs+xZ5RHlEeUR4mniaeJpzTuadzTv4P7D/Yf7DxyHP1/+fPnz5ehJ0ZOiJ6XgKXgKXhFaEVoRaupq6mrqSvxM/Ez87PrT9afrzwJRgahAlKRN0iZpi/hF/CK+VWqVWqUjd47cOXKny+KyuCySSZJJkknfDn87/O3wk7+e/PXkL+wx9hh7zP+N/xv/N9lo2WjZaDgIf878nPk5UxojjZHGyJ7InsiejLgy4sqIK4rZitmK2bxqXjWvGlAWpetL15euR/gIH+EDm6B1hIiqUBXqV+RX5FcEv0H+Gf4Z/hnyGfmMfNbiaHG0OMDRECYOE4eJ+av4q/irgNdLn6PP0efoTnQnuhPoiqArDO8i+N2Rh8hD5CHPOM84zzjvOu867zrqNfWaev1/nCsBMSrD5skAAAAaelRYdEpQRUctQ29sb3JzcGFjZQAAeNozBAAAMgAysYrH3wAAACJ6VFh0SlBFRy1TYW1wbGluZy1mYWN0b3JzAAB42jOsMAQAAbcA21gdt7sAAAAASUVORK5CYII=

This textbook contains material on evolution. Evolution is a theory, not a fact, regarding the origin of living things. (Auszeichnung von Biologiebüchern)

Unlike traditional creationism, which posits that God created the earth in six days, proponents of intelligent design assert that the workings of this planet are too complex to be ascribed to evolution. There must have been a designer working to a plan –- that is, a creator. (Quelle: Religious right fights science for the heart of America, The Guardian, 2005)

Dass Naturwissenschaften nicht nach dem "warum?" fragen, ist anscheinend ebenso wenig bekannt wie dass Gen 1-11 nicht Geschichtsgeschehen beschreibt, sondern Grundgedanken menschlicher Situation darlegt. (Anders ist auch nicht zu erklären, dass sich zwei widersprüchliche Schöpfungsgeschichten in der Bibel finden: die Sieben-Tage- (Gen 1,1–2,4a) und die Adam-und-Eva-Schöp­fungs­ge­schich­te (Gen 2,4b ff.).)

0.0.1.2 B. S. 382: Photonenverteilung hinter dem Doppelspalt

Laut Metzler kann aus dem Interferenzmuster auf dem Schirm eine besondere Verteilung der Photonen (und damit der Energie) hinter dem Doppelspalt gefolgert werden.

Das ist missverständlich formuliert: Ähnlich, wie es keine Wassertropfen in einer gefüllten Badewanne gibt, gibt es keine Photonen hinter dem Doppelspalt. Licht besteht genausowenig aus Photonen wie Zahlen aus Einsen.

4 = 1 + 1 + 1 + 14 = 1 + 1 + 1 + 1 oder 4 = 2 \cdot 24 = 2 2?

Gemeint ist vielmehr, dass die "Orte", an denen Energietransfers zwischen dem Licht und dem Schirm stattfinden, eine besondere Verteilung aufweisen: Es gibt Orte, an denen pro Zeiteinheit viele Energietransfers stattfinden, und Orte, an denen weniger Enerie übertragen wird.

Das entspricht unserem Wissen über Interferenzmuster.

0.0.1.3 B. S. 383: Schluss auf Lichtquanten

Unter entsprechender Vergrößerung beobachtet man, dass das Schirmmaterial nicht gleichmäßig (kontinuierlich) gefärbt ist. Daraus kann aber nicht unmittelbar geschlossen werden, dass wegen dieser Beobachtung auch "das Licht" gequantelt sein muss:

Das Schirmmaterial selbst – oder, allgemeiner: Materie – ist gequantelt! Auch wenn der Energietransfer zwischen Licht und Materie nicht gequantelt wäre, würde man eine körnige Verteilung der Schwärzungen beobachten.

base64
iVBORw0KGgoAAAANSUhEUgAAAK8AAACBCAIAAAA5Vn1kAAAACXBIWXMAAABIAAAASABGyWs+AAAACXZwQWcAAACvAAAAgQDfALc4AABx20lEQVR42n292Y+k2ZnXH/u+7xEZGUsulWtVV1dXu1fbeGMYe0BigGEuEMOANAIxEhimZUbIMnOFkLjgD+AKEBLiN+PuNrbbdo+73Wt17VVZue+ZsWXs+778Lj7O45NvlCcuWtWRb7zvec95zrN8n+/zHPXGxkalUtHpdFqtVqfTqdVqzeVHrVar1epms5lOp5eWllTShz+Nx2P+Lf9XrVZPJhP+l4/if6evF3/SaDSTyUT+IV+KB3GryWSi0WgUP5Fvq3jQeDzmJ+PxmOt57vn5+b/4F/8iEon8t//231wul3iifDGP4MvJZDIYDJgZruHm3W736OhoeXlZq9WOx2O1Wj0cDrlGp9Pxzf7+/szMjNVqHQwGk8lEr9dzgTx48b58r9Vqxbt0Op12u22327VabbFY7Ha78/Pz4/GYm2s0msFgIE8mj+j3+48ePVpdXbVarZPLD5MpLuN/T05O/u2//bc6cQv+wRuK/1Wr1RaLJRaLKUSB/zJusTDiT3wjL54sENPL9tylFb+VL1CpVMy4WCexwLJsifVWTJA8PPl63lqI3Xg81mq1QrLFwoxGI61WOxqNjEaj/EZms3lubo4barVa7t/v909PTxcXF/V6/Xg8DgaDZrNZrVYXCoV+vz8/P99ut3U6ncFgQHQ0Gs1oNFKr1e1222QysSF5ukajsVgsFotlb28vFAr5/X7WnlF1Oh2j0ajT6cSQGPb5+bnH47l9+7ZGo9FqtRcXF+Px2O/3cw1iJMSRSdAohEBMk3yRxWJRTK58gfiJLEmK/TqtCRi6rIT4k1ar5SXFwMTC8L+y2hBiLgaj2G1MGSvER6HeZE3G/04PQH6v4XB4fn7OZUJQtFptoVBotVpihBqNxmQyzc3NsUhardbj8RiNxsFg0G63o9GoVqstl8vZbLbRaOh0Op6i1+snk0k2m0WpyEq62WweHBwkk0mn02mxWJxOJ99rtdp0Oj0cDvV6vZBpjUaDstfr9SaTyWAwaKSPPKtcKZSfbnqZFR9Zj8kKTWzl5y62PINCEn+bcRGjkZdHKGSxNbmJUA9C7ITSVpgkYSZkEZTHhpTIjxMCITSw/IJardZmsy0tLXW73XQ6HQ6HUSdGozEej09rO7PZrFCZBoNheXmZ/43H4xcXF71ez+Fw8HaoiqWlpZOTk0Ag4HA40OSTycRsNkejUXlb8r1Wq11dXeWGOp1O1qDxeFzouclkEggE1Go16kc2f0JJjMdjnbxjFMpcof8VqygrGVlEpvfctHpgEsUqyjpZ6H/1pW3GOgrNOW0IeENZUuUpU4xB/q0scIorZUuksC9ardZgMAwGg0qlYjQau91uNBoVt1JJzgfDRrxGoxFf5vP5UCjErQKBgKyMxXNdLpfBYJhMJrlczmaz2Ww2jUaDbAm1JHa5bFvlf3BDYUGGw+FwODQYDMLUip0mZuY3mlOW62k3UN6IshzI+1vsOVZaeCjT3oO8Hbl+NBqJJRGDw1TzIO4pD4YvxYyLX4mni+sVkiqPDYkRFkfof4XpEVMvdtva2trMzIzX6/X5fI1GQ1alwoTJ+49Jn0wm/X5/WjtWq9VsNivmX6fTlUolYbDw7sUMyO9Sr9ebzaaYFp7CD2UrjJu5vb2t8MfVV92DK5biufZCoSrUVw3ttCJR6BKFayNrdcX1wiEVe/25EiBPt2IryN8IwRJLOL3ejI0r2UPTm0HcZHoM3HkwGBSLRbQ9lw2HQzk4klWpXq+fmZmRtwSjNRqN4iej0Uiv11ut1vF4HIlE1Gp1q9XCD5AVG3eo1WpcrJKcd7EJeSl2lMlkWllZ0el0o9Go3W5bLBauHw6HYnI08pgUalax5Irv5Y+8CxXmg9GIO8t+nNjHo9GIa8TFaAvxpfAZFSpHfKO66hMoBF92VhRvJBSmQprxs2TZUnhC4ukajWZmZkZeBmFlpnW4PJPD4bBarSI9w+GQEJfRWiwWl8vFLs9kMvfv3+92u8LLER+NRhOPx8Ph8Onp6cXFBbMnvywTqNVqz87OSqUSQc1oNLp3797W1pasFNknV2IthUH9G5ZflndZqcrLPH2lSqVqtVrtdlvsLcVMKdZYXi1eXtYu8g5TXY0mhMxxK1k+ZKGRN73wVae1gmzm+v1+JpORhaZarXY6HS47PDzc3d0V1g2RmvZwEYVGo1Gr1bRabafT2dzcFIpQePusnM1mu3nzJrpHnk95kE6nM5VKCSxEnjSudzgcFouFuTUYDDdv3szn8+12WzYrk8lEp7qKDimMgvwavOT0i02rB9kuiPibuzFxNptN/FCAFpOroYp822mbpVhg9dXgUy0FMsJkCDMhP1SWD+HrMUdqtTqfz/d6PXS7+BDri7HFYjGhjWdmZkqlEoZfpVLVajWTyWQymabfpVqtdrtdUApiUYVWEwNzu93C8AlHhH+I1/F4PDabjUhSqDF5Qlwu1/b29uzsrN1un0wmHo/ntddeMxgMqqsuuU78QHYDFWpAfRULUv8WQElhKRVKkp/4/X7hVcn6WehYWXdN736F8P02QXzuBmLNRGwinjitz8VozWYzFl383GAwJBIJhYcxmUwGg8FoNDKbzfF4HP2s0WjwLs1ms1arbbVaQAKj0Wg4HJpMJgJItVptNBrD4fBzt5YY6t8wFcVisdVqzczMjMfjVqvV7/eLxWIsFgPu5JXVanUwGDSZTEJZgk5iLH6zD+X5mt7uspAq9Kr8p+eaXoWmUUmWVZanyVV0QWGY5LGqpxAF2W2W97T8EVG4wqZMWyLcLrUUHzmdTuz3NDo3Go0KhQJj0+v1hULh0aNHQgPhrM3MzDidTp6Yy+UGg4GAwi4uLvhfMQxGLiatXC63Wi0RoIprKpVKtVrl1ZASg8GAS6jX6y8uLur1ut1ul00hY/b5fEajUZ5e2eX6jW74bfpAsfkUl8n6X1686cj7t0mGQsjEPph2DLPZrMvlwnNWS7GJDI1Pv4WQv2nXZ3I10hGvI/xTlWRNVFfjN/UlwtFqtdxuN5cFg0GXyyVuotfrS6XSYDCIx+Pcc25ujodyk8XFRdlaidEKJQ82ML39eLSsWZ1Op5BmTA+IgsKlFTeR31QhiDohI9PqQewkgf2prhrsv0GGZJ0vfymLpHglxX/FE3n55/r2CvWuep5DI6dLFFZAnhqF1RB3YN4HgwGJBvm3w+FQpVLNz89jFPL5vNPptNls4pXH47HX6xWqWMwk7oWcjhJAHPktMQDiFAETiS2OTRHjF6peXnWGJ96Im4iRyBtAXPnrGRNzJDsvIo8ivlFEGcPhsFgsyrI2rcYVgjWtDKbtverSm+O3Qq9Go1GTycSV2F0x6X+DlZGVjbi/nPcT2kU8WiFM/X5/e3tb+OriT+l0ulgsip+02+1+vy/uLxwjjJR4WYWKVmx6IZHynpE3kjzVir0nZkzcVkbfhbiLGFWInWI7XdGxPK/ZbKZSKWF1ZPMjK9VutysbfjEaMePiG4EmyQInX68YgDCWk6kEhAjYFGsp7iA7oewJoQblyRLTobAyYguSdzaZTNeuXcOZkN8uEon4fL7hcDgYDFQqFcLKYFBmaDXZXVdPoXaTS1RYNeVuKwRaloB+v392diaQmGmNLt+W8ezt7VWrVYXbLqISGQG6kr/mK7vdPjs7q5GyzGLrgIip1Wqj0RiLxQR+p1AA4no+8jhkeVKoJcU+lr8XjoJQHuqroIjYUooEmCzTCo0lOwdcL9aPRzSbzZOTExCb4+PjWq0mtLrRaDQYDK1W6/j4GE3D7qzVahcXF4rwVVZ+R0dHvV6v2Wx2Oh31JdjKX0UuUS0lSNVqdTabvbi4UMyGkGbZ0RG+lJiE0Wi0s7MTDAY9Hs/03lZLaO+vzc20VicTqvDA5Q2ksAiK7+UBTYuavBKTq7HTRMIJZMn4bdC64k0mlwimLHZi8NNfqqe8SPHpdruZTEav19tsNm5ot9uNRuPBwcGDBw9EGtDhcMzPz+v1eq1W2+12B4OBy+WamZlhVURiQjxFo9F4PB69Xt9oNPb393u9nqwL+cjagl+53W5AAqJTo9E4MzOzu7vb7/cnV3GBdruNURM/1+l04XDY7XbLOXqxpSdSeIy+0T13puQlVF/FMZBi2frKL0x0K99zIiFL6qsOnZBuOaoWAiGrEPkzuUxsyrpRtr7qq1iZWvJ7ZHGUPUeB4Ip3BDzQ6/Wnp6dms1mj0Vit1lAo5PP5tFrtcDg8PT0NBoNGo/H4+DgWi2WzWa/X63a7VZd4sFjg8XhcLpe5udvtHo1G5DDVUpgti7hayjuPx2OUkzC+LGQikZB3rOrSm/H5fF6vV5hI/lur1dANCkuB+4XKj0ajOtwcMZrJ8yLy51o1cdk0BixmX/65+irAgJMlVlesnKzkVRKhQaGEFHIgBqB4BYUMyfcXAiqUv7w8JpMpkUgIu0lyeTKZWK1Wftjv951Op16vV6lUBJaBQABoT76neJFmswldyu1281LBYFBAwvIGUIxNbCcxFSwhIiLv4dFotLCwwE/kmKXX6/X7ffk15fdttVr5fD4SiRgMBjV4g2zL5fWTZVZYMnmi1VNxxLRgKW6rkqImWVDkGwqhmVzlN0zbGtVV+FlzNXOovuquTi5jLZXkYGquZq0U0qzT6Xw+n/qq66dWq/V6vc/n44Yej2c8HhcKBa/XazKZFBdzq2QyiXc5uaQaqKQ0DcpGvHWhUHC73WxUgRwIV0BmvMnDFvwuWR9PJpNAICCUn8KbwWpYrdbfzLbCqCtEQXgA0yIi0Hjx12nATn01uJf/LT9RYTtlCzp5XtAhD0YzxViRpVbhfCnEHfxOdTUWVUvelljR0Wh0cnKCqRbcSVn94FMLG0F42W63s9ms+tLXE2ylTCZTKpWE2yjieZ7VbDYnU7Gl+tKly+fz4rfyhGu12vPz87t37wqyhZgTeeqEJuavRqMxEAiIWynzuYpZm1zF4FRX/QnFZbKgyCGJ/G/VZXAsG34BocimRHYjxHDl4Wmm0lSKYciKVGHyfoO+6XQTifkyucw4CElSOBzT9xTTnU6nSWiRi2dDI22y3pK1rHw3QbOYm5sTMjq9RSHEyrIoto3FYiFJISyFWkK15V0kv508LTp51yo2hDytwnSpJU9tIuEN8tZX7EvVlMmfSFRH+a+TqQBavoksHwqnRF4t2YIoXk32c4UaUKSv9vb2ZmdnnU6n/JoajQaaoULPidfX6/WLi4vi9fmtxWKx2WyTqzDDaDQSeKLqKgVc/TzPRp6c8XiMoyp/hMPk8/kcDodsN8Vz8RkFsAurVtjE3zCDFEpb4XzJi6GQErUUoshqQMT9YjcrKEzyI6aN1PQuVEs+hPyGCpUu2xrFu6gvfXLF/dVXs1b8KZFImEym0Wg0GAww53IED+Yodi2wxOnpqaxCmPqJhAeoJfoMm5h04ng8FjQWrVY7GAzOz8+73a7sm1er1VarxZc6na5cLgODTqtw8iMyQ5rnptPpe/futdttVE4+nz85OVFLCQvx71/Xhyg8KYVKmbYLQvlM01BVVz1HtLEc78rKXx60rM0mUrpI8VeFpMr+s6yKsKzyqqslwriYArSuIFwRUDC8k5OTQqEg7oPc7O7uAlOKqajVaiqV6uzsTCUFCLlcDrRKxsQUmwqhOTw85OlElY1GI5VKcVmpVNrb2/v4448fPnx4eHjIN61WS14dsXAy+0TMBuPR6/V+v5/UvFgLMSTZadPJaywCP4WHIp6qllKCCvxfHpn8X/VVt24yFWSqrwYmsiVSS06iAmSU31yB/Sk0BBcw14J5IM+X8K63t7fD4TDZJpVKRT5QphdrNJqlpSUCffEidrtdp9MJnF6tVh8dHXm9XsFWkqdCr9cTUAgngAotLtPr9Wtra8JrMZvNkUhkfn6eVZxMJtVq1el0EsXIbze5Whymkvw/lUoFvIHUGgwGqDHyRInUwRVoWbH2KimtJ/BBjZRjnf6hEBQ55JNNqUJ/iChAXmBhzmUJeO7jVFd9F4V1EA6KeAXNVTKELJoajWZ2dhYFXqvVHA6HgHfEttNoNCJ5Ju7pdDpPT09nZmZ0Ol2lUmm325FIBJ0spzRVV90gsdlIkE5PIHiXPMjJZAJVH3ki5c0/hFPMn0TOmQkEckilUuFwWKfTYU2mpUEl2C7PNd4yMCImURaOaQGSUZdpn2B6LmTJUF3N1IkAenpsCl0i2/XnGjvFHWSPmn3ZarWy2SyA0mAwoEjtN9ZUKkjiKYLayQffbTKZmM1maqHUUkyveGtZdqedaIV7lM1m6/X6tB1stVoHBweTSwhcvPv5+TlMfMzf/v4+Wa579+5Fo1Gn0ymkX7F23Fb3XLdRFlWulitY5BkXm1vxW7H1xcVygZRK4sUotqnQSQrhU0u+27SG0FylVcqSoRAR1aUd5FloDrKRcMl1Oh0lyLLWkW8C9rCwsAB+B5WB60GfhJOvkVJiMjjLVpajHll6hM4TAaqsQUW0Mjc3J/+q3+8fHh4SnYpph38aj8cTiYROpzs+Ps5msyaTKR6PE5tgQ38jDfIdZSFQbCN53yu8Zfm3sgSIrSCwF4UkChhEbB2FXlUAhROJ5iQ8AIWikp0YoXiem1IRl41GI4vFMjMzUygUqtXq4uLi9A7hv9VqtV6vR6PRpaUlcVs5QyvvGZ7Y6XSozeWhZ2dnfr9fQJayEMsGWsybx+ORx0yogqIyGo38kG2m1+uj0aherxeJZZVKZbFYwMGYolAoRPEFxByFCVYLlqxCowq2jGrKTVVsVnm1VFdDUIXCUBiO6W9kpQoqoBjA5BItEE7TZCpY1Ug1fbJrqZHAf1kocXHQCvCXJhI3hMsgMLLwmGqDwcA1It2FZJ+dnbndbofDIWaGlIcQYqvVylpOrhZgMaUYR1nQxTgF2VWhg8vlskql8nq9arWaJIjYioPBIJ1OCxWiUqmMRmMkEpG3lsJl+U3889sWSVYV6qtYtSJ9rLqkWijcAtlGqq4SUlSXfAW5UliBecvKQwHPaa5WcAs5FmGh+rdEpyopxBVKy2AwsOGoRiJErNfrBwcH/Nxms4VCIVnJc/+zszMkxufzWSwWIW1cRv0kAIbX64UYAX6gVqvT6bSicE/sJdmHEEIjImSR7cRzFPaIKw8PDweDwfLyMgFzOp2m9FuA65Orn1/Pp+yOKay+rMDl4coCNO24KVSCEHN5edRS7CBsioygaSSKjTwMheWSnyhuwgtPax3hLshKDjVLpkC8F0JwcXEBn2B2dlZ+qFqK0fkvHHmVSuVwOERauFwuA//l83mA6vF43Ov1iFnq9TrPMplMcKsEw0qhjydXq4lkz2Mymfj9/mAw2Gw27969WygUxCu7XC6IF/yv3W53OBy1Wu3o6EheGnly1AJvUE+5h+qpAmfV1Edeb9WU36RQR7KHobCvsmTIP1f8SR6Dws2UzYHsToq5E+p3cgn7CPUgqAPyi/t8Pp/PNx6P0+m00+l0Op2MWWHa+UkoFJI3Gc/tdrsOh2M4HLbbbVF7z/JQ6i8epBLUo6sUcNl3FsIqAySHh4etVuvatWtWq5UUvLiMuhXhGWC8BoOBxWJBRgkyFaupe+4yT9uIaX9HXh55zeRtqnqeb6+SkrnTW0Et+adiFcdXqdLiJgrMW3WJQso1dLJLL2AMHG+MMVxcee5kS4fVF+BHo9E4OjpaX18Xg+E+3ER+5VgsRoElxkUWXLhG/X7f6/WGQqFer5fP58PhsELRylpZVhLiS7vdbrVayTiEw2ExdfKzVJIHqrmsuahUKvPz82KriDv/Bot8roYQ34uFUT/PGZSVwXON37Teng49poOxabhTeF6qKUsp7iY/ZVqgxeuICep2u6enpzdv3pRHLh4hOCxCVvr9fr/fHw6HzWbT4XBUq9VisRiPx5EwMWBslhhMo9GgBmZ8yZc3Go2iiFZGflVXWw2p1epWq9XpdCj8Ukl+GA06ZE9TfemAi0hHsQrEKTB0ZL/h14ZPXlGxz2RTrZryBmR4RLbuMl40uQRGFKzciRRMyzC+WuqYpBAmMSmKnSEo6gq1pOjBoL4aAysYLtzH6XTK9Uzy4BXSb7fbV1ZWwCeotTKbzb1eL5vNDgYDQAs+chcVanAnl2xmg8EwPz+fTCZhIxsMhpmZGQVezrqenp6SH8/lcvfu3ctmsxTxkTzjvTqdjii50Wg0+/v7sls67YPL1H55RZ5vKYQ/jF+j8AAmElQyuURvFGIkBFx1yWbQXO3HNpHAAGEgJ1djV5ktJxT4dIWCHEOK74m/VZdEEpl6KlsfcQfib/VVl3lyNfchpI2LNRrN8vIyg1xdXRVRqEoC1oSquLi4SCaTer1eRGHFYlGv1/d6vUaj4fF4SGqoJY+YF4E/53A41tfXO50OlZyFQsHlcpnNZu6fy+VcLpfT6cxms5FIRCgk1VUATaHyZTf8N17k5CpaIO8w8Q0WUREsyEsilL/CXshroxAF2TQqPEd57yroVZOpQFwjpT3FHZhEETXIEo9yFlGZyPdDcsGyThs7mYIgCw0zA+DTarUgTqovwTHt5Wd+fh6GNPMwHo/b7XYmkzGbzaFQyGw2TyQgSISver0eeIAbGgyGYrFoNBp9Pl+9XhcrkkwmBWoyGo1eeOEFIZHTMqHT6YCwZPUpZvI3lXeyyVSoWYH5KJwAWUXLXphi18q+nmzjFWkkzVQ+TOGBynxi2fmQbZY8GJVUPSK/PwIhR3RCz41Go06nQzcuWf4UPn+r1cpkMtBb2O47OzudTufmzZvkuuROMRqNptfr7e/vGwyG69ev82UsFotGo6qrcJkC5hfyqlar2+02Hf/wkUEzZVug0WgQC4UymEhBSqvV2t3djcVi4FQy0sXFOtWU3yTmVKHGZVKyeKRiu2uuphJ4Er6PMCuaqXSDQqoUoi0ESwFbCZ2vuuoCy36TPC/UGmgkqs9EwiiFQAjNob50uVVXUXZcS7/fL15qPB6vra0JH0hB6x2NRiaT6aWXXhLPkqH3dDpNxz/V80KJZrO5t7c3Ho8XFxcjkQhZTZVKRWsORepnMoX9qK4mxnQ6HQ3F5M0pz7BOdVUC5L9NroY007cQQiBCdnltFAm6aVGT9ZjiZaYHoNDSiuun7aK4g8B0hYsjY3may05TImVVqVQqlUoymRTe1vhqCRB8JGgQwhGR83PFYrHT6cRiMXnbiJuI3cWqmEwmEqeyl6ZSqarV6tnZWSwWc7lc4/HYZDIZjUZ5QypifsWsqlSqw8PD4XCYSCREBYDRaFxaWhpLtb8Tqc2SWsQUsmmYBuwml8GYQu7kXXh2dkaBmCwQcjQoT6u8ZqqrfoN4McEIEgpAIekKg6K4iVDUQvORZdDpdChbJECoPVTCYDAwmUzkJNVXoVL5ufV6HYPV7XafPn1KP1Hh/NpsNnj36XT6yZMnnU5HsR9kl8vv9+v1+uPjY8VOxVEwm82Li4uLi4siRyXrZnkhFFOqVqstFksqlaLETwQUTGChUHj8+HG73RaeDXfQydOqsBHy7hcT+lxdolKpIGLL2SwxREFMVUs+s2JbC+dLrLrswcgirzCNIvRQWAeNVKyukqrzZIsgLwyPJmxhm8r1Pwy12+2q1WqTybS0tJTNZnu9XjAYtNls5ALEjhcZQugOcmMlcUOciYuLC5VKlUgk5ufnZdWlUqm8Xq/f70dGxZeKmFBeBfnmjCQSieh0Ovg76qvOO2lbYRbz+fyvfUx5SRQ7QHXV/Mt7UZYSvseSyR4GAi6kUmhs+Q5QzuXIUF5phU8gMqti6ysQVvn+ilfAFRA5aGSID78llBDJSdqgyDFYp9N58OCBw+Gw2+29Xo/OrlqtFrBS0GKbzeb+/n4kEqEWFoRYYA+yNPA9WVNFGZ3qEuKU9fG0LhRjU/xW3AF5EpMjJjkYDEYiEZQuzY5RDzrFLdRXI37h+qkkA68QSXnvChup2FiyIE/bezFZQsjETpXN/DRcIZoTqCVsSmE15F5PKpWKSFKWSKGuKEeW5UnW7Waz+aWXXjIajfl8nhbDCEGr1To8PIzFYjCgyBXlcrlgMDi5GtPLk5DP5+12+8LCwkTiF8oXCFdMVgmyA6SWQj9ZMsRbK0r0VZLfIy+W0WhMJpNQc69IgzB+CoRczqPIkyh08nR0q3oevWVam2mkhPJzTYkiDaa6DL5liy7vj4kU18lYmcL2q6TiO2FuTCaTLPoTKXkoTADJaFFbAc1Qq9VS66hSqQwGw8LCAilKmYEh9gmyi1CK4EWYSB4nHCxRASHPkjwhXNnv941GY6fT2draajabsVgsmUxOi5e8dgxAkC1+g0xP+w2yapJXQiOx3cU0yauuluAaef0mVxs6yV7IeKpaVFh3IZeyLKqf1zlXIdCyFykr2/Flv2rNJakCNObs7EyGtOXZEP/bbrdPT09x/kUDr/F4bDAY1tfXSXjyc/q9PX78uFQqyW8kz0YoFIKmppHalMpO90QiN2guGRuyTRQTPhqNjo6OqMuALC84FrK2EFsdISPVolD2OvVVOFaxTRWLoZh32Q1WKJLJVSqm4iP7twqveCI1fRpLtGn53eSfizGIaHBarygAZrWEGeM6zMzMaLXa/f19p9PJuopXEGCoWq2uVCrpdFqv11er1RdffFHm7yjsN/GLvJ2Er1qtVu12u3AUOp3O8fHx7OwsDoS8G8UrFIvFQqGQSCRwzsQ1Qj4WFhYQKYBIMXgZMRKrg6E0GAwKv0Qt95mWF1WxQtOQ87Q0KOyTfJm8rRVu5kSKuERoIA9AvLZaAt0UZkV9FW4S3bvErbRXDzSYHh6QJdne6aJs/ms0Gq9fvy7yQ9ON7+WRG43GlZUV1RQ9DB6zXq9/+eWX5TH3ej1BoZBnHsHq9/t/M6MMYzEej6nSVMC1CsCNlubZbJZKDaEv1Wq1blrtywlvtdSdSq76liVXHpbMBp7OtSsct8kUxiBeUvM8khIzK/vncs4CvUf+UOCJgmDHZpWFW8ypsGLRaFRg+CqpFllWkyKLIcYs+4myDCnQLZbBZDKFw2Gbzdbr9bgbBTbpdPrs7CyRSMi0ATGB9B6fnih5j4lC3nq9Xq1Wgb1Vl1iqeop3bjAYhMssBv+b8jSF0ZXVsrxCCkdGUcghXzAt5tMOsOKhE6lRnpwZUl8NomTxEost/op3NpGiD4EyCU0wHXepLg+cEU6MYvDyrCn8AMWoZK4XNZNer7fb7R4eHtpsttnZ2clkUigUOp0OhKXxeLy9ve3z+SAxBAIBUc7V7/c7nQ5dKdWSOywGLMs0GzuXy9GSbHo5xFCDwWAwGFRJqR++1+EVqy9DI/XVFKLQCthXWZXJWKxa8tFUVz1KeaYU6W9ZAcj+hLzDZJ9GEXGprnobPK7T6YgW++KvuFcyMqbQkM1mE+qARqIRazQal8tlt9tlJSfzYxVy/9xAUfYQ6R2mvqTGqy6BYfUl+Li7u6vX68vl8osvvigUYa1Ws1gsNBfjhJyTkxNOyZJ3CHPb7/ez2Sw8KIW8yrYDL1IQ+X+DRf73//7f0VoiKHe5XN/+9rdpkK/Y1gqJE5MilAffPPcwGcV/5TsonErZEsmLrb4KqE2uhpQCthNPwUyI2EHhFIsxazSav/zLv/yv//W/Tqai8z/6oz/6x//4H9PYa3o2FFOh0WjoJU5BPq8jSuh1Oh1s27F0RJtare50OsVi8Xd+53eEnAmLTNw4Pz9fKBSOjo7K5fL29vbXvva1x48fx+PxpaUli8UijAVr3Ol04vG4oEipr9Yeilmt1+vn5+crKyuK7af7wQ9+oLr6iUajb7zxhsvlkiVXniNZ6uWNLguNYv1kayc0h2JCNdLhGXJzaDn1p4CY5IeqLrktHCbGYmCqFeOXxYi75fP57e1thTTwvchNgyigR+VoWXt5HB76VY4gELWLiwuLxSI6NYmaIi62Wq12u11+KO/ebDYfPHiQSCTm5uZsNtv6+vp7773X7/fz+XwsFtvY2IhGo7RaFpO5ubnZ6XSuX7/ucDgUTdCGw2E6nR6NRjQ4ttlsouBHBkWUWORzP/I0yXGmrDZl506ea3n5BcL4XOFgsTOZDCHfdAig+KH2atdnEZpPJhMUMosnM2CFDIm8vixPRqMxFAplMhl6gqpUKrPZHA6HQRcuLi60Wm00Gp1MJvV6Xa/Xm83m4XCYyWRGoxHnElgsFs6c4XF0COcoKWFEZAUmnFzBhaE2KxKJOJ3ON954g0k2mUw2m+1b3/pWq9ViclZXV+WG8tx5fX19IrHR5OkCU2k0Gpyiqbks+pZXWS1ymIqPrNJVz/MNFbKiiNnkeF1oUbHL5WWWn8JbBYNBsH2FHAibIicXeLQQC4PBQN5PfGTrrhDridQBiWl1Op3f//73k8mkmEc5Ux+JRBwOR6fTmUwmtVqNBvHD4bBcLsuhzfjyQw7F6XSGQiFR2S37gOK5/X7/8ePHW1tb9G7a2tqq1WridcaX1fHRaHR5eXl2dla+oUoyo3IUOhqN0uk0fQQmk0mlUjk+Pr527ZoMFSo+v9ENHo9nYWEhnU6n02l5T4utI+9yhbjIO2xyte2UuEBIgNzSTCFSCLVcDS37OPKophUGGkKcJyD0Fq/D6a5qibkjD158Qzrn7/ydv/P06dNPPvlEjjYZHm1dX3jhBTrLQ2MB8JFTLUJlGo1GSAkCBRoMBiywSOWkUim73X7jxg1YkxaL5dVXXxUImFarffDgwfz8PD0bFPOmUNIKn313d3c4HL766qv4wm+++aY4a296/n/tRTIj4XD4pZdeUqlUuVxO9stUVz0DhTstZ40nV4ufhJ+seKTs5U1rFFn+xEdzlcIkv/M0WCu+5+m47gL/UFhuBa0Ljb21tfXtb397Y2OjVCqJkXDzZDIJC4Y7yDlVeWBqKQoVhokBHB8fR6NRQQabTCZerxfUQXXZwVqertFoBHApbxuFE42npQBCtFrtl7/8Zb6nEyoegzxUOQZkKn6d0fZ6vWBesvum0AEi4yILhJBN1VTkLZs0leQiyBco/leeR/FoOacqi6k84zJKwTi5szj+US3BaOL95ZatfNlqtRwOxxdffAFFRVwjuz50zzg+PibXoLA+mqvH7yiwDTn2m1wyAcQA2G/VanV8ecQxHDj57TRXycmNRmNra8vn8y0sLKglEBovVQ6q5d2rklJOwAe/rv5jxD6fr1KpLCwsbG1tqS59NLEnuIWiMb/mKndZsTlkWyNbJtXlobDTDoSCpS1eQPO8sxUU0iO/oRyIynpOYSMYSbPZFL5YrVb7z//5PxsMhvPzc9GvQ8iW8AEZEpz3TqczrRsmk4lo2qVSqQRdZTweX1xcDIdDVlp9FacS81atVikLFg/lgqdPn3IwlajqRFh1Ol2xWKxWqyrJwxN/FXZTfDO5ZJQxWr6p1+vFYvHX8yLKVAaDwczMzP/+3/8byEzevjB/5Kaev03fCo61PI+KHI8sDcJRkpdWkdIUvxLVEAr1IGZBXC/+K6ZPvng8Hrfb7f/v//v/tra2bDabOJxU/rzyyiuvvfaa6P+ouLlQMIrXnEwmzWZT+O0TqZWraDUnCrPkYFV+ZbEBxMsKLSWAqenXlwVIFg7FzeVdJAam0WjUVquVNmPiYzKZbt++LYo35CcpXkBoYPmVftv4JlIPEFmXyuuqkO7JVRupllhMk6uwoPySsn4Sz6Vwm8hzIvHeBoMB6mF82T5BbCm1lG4eDodsGLFtBMygumTKCIoD+sNoNAqAWeAQ40tiVaPRoCUlF3AUotvtbrVak8mEDBal3xqNxm63DwYD2nh5PB6LxVIul6kZaTab/JBy8kgkwrlWtVrNbrdXKhUKb/AtKAgLBoOVSgUnt91ucx6aSqXa2NjQ/ZN/8k/u3bsnEmXdbpecCtWGWq0W1naj0eh2u8FgkIkQ1TLtdpumaJgf7svU2+32fr8/GAwoEO50OqVSyev1djodq9UKZ5xeJDwLZ2o0GsElJAFvs9mGwyFvpdFoWq3WcDi0Wq1er/f09NRisTgcDpfLxaOJ+qxW62AwyGQyEAj8fr9Go/noo49sNtvrr7/ebDaZzXQ6bbVaj46O/uf//J9/9+/+Xdp+DQYDv9+/ubnJCdfVajUUCuVyOZ1OFwwGz87Obt26BdKA8s9ms41GI5vNxuNxWsE5nc7j4+NSqTQ3N3ft2jX+ajKZrFar2+2mlvL8/LxUKi0uLnY6nUajkcvlIEjOzs4eHh5qtVqXy7WwsBCPx5mWxcXF7e3tfr/fbDbn5+c5v5tjDThtwOl09no9o9HocDhmZmYcDgenE3CqSqVS2dzcTCQSm5ubGo3G6XQeHR0Vi8XhcPh7v/d7DocDEWy1Wrrvfve7EHXOzs5sNtvJycnc3Nzh4eErr7xCPtDpdOp0uidPnpycnCwuLiaTybOzs4WFBdCP8/Nzh8Ph8/lqtVqlUpmbm0un0+Vy2W63I9q9Xi8SiWi12oODgydPnqysrIRCIafTeXZ29vjx47//9/++RqP57LPPjEZjOp2+ffu2wWAIBALD4RD3qt1uf/TRRz6fr9vt6vV66tc6nU6n0xkMBnNzc7RBHI1GpVJJrVY/evTI7/fPzs7WarWzs7OlpaVgMNjtdq9duwZAtL29HYvF7HZ7vV4fDoc//vGPwXMSicTJyQndFKANer3ecrm8uLi4t7dXKpV8Ph+QA8Oz2+1erzeTybz33nvxeDwYDLbb7dnZWfIRnFfQarVmZ2crlcpgMLh169bkkghJ4bbb7c7lcqenp9yNijmz2Twajd544w2fz1etVpeXl2k/WKlUbty44Xa7h8MhfTm0Wm08Hg8EAvV6PZVK1Wq1YDBYLpf9fv/u7m44HG42m+12+/DwkNiBLqdGo9HpdC4tLaFUCoWC2Wyu1WpUiWn/6I/+KBAIoIv8fn8oFOIZPp/ParU2m00IIKRMksmkx+Op1+tutxvWRigUuri4qFarlInRNUKlUg0GAzqh+P3+VCplNpttNlsmk3G5XKurq8Vi8fHjx4lEwuPxjEajn/3sZ3Nzc2tra8FgMBwOd7vdi4sLr9dbr9fFgX/NZrNcLjudTrPZ7PV6Nzc3OVGOwz+Ojo5KpVI0GtVqtZVKZXZ21uFwfPbZZ5BE2u32zMyMxWI5OTnZ3d01mUxms9ntdnMAyfvvv8+xAy+88MLc3NzBwUGz2QwGg48fP2bTWCwW0Z0b/X9xcUH3JFID1NRylGoul2s2m/F4fDgcms3ms7MznU731a9+dTgcglltbW196Utf2tvby2azDocjm82y0Q0GQ6/Xw6MfDAYc8xePxzlJ12q1ms3mZrM5MzPDOe53797V6XSZTGZvb29lZeXWrVucwTcej7vdrujmUa/XbTZboVBIpVIWi6VYLI5GI+r86T1yfn7e7/etVms2m9V+73vfu7i4QOggAXs8HrfbXa/XyZ7Z7XaLxVKtViuVCgc4YWJrtVooFOp0Ovl8HmiMNDzksKdPn964cYP9zWvTULPdbrdarbOzM6vV+vrrr3/++efb29tLS0svv/wyPf4NBoOoaDg/P9/f3w8EAjMzM0dHRyqVyuv1Wq1Wk8l0cnKCoDx58mRnZ+f8/FylUrndbs5oaDQagUDAbDYbDIZKpbK3t9fpdLxebyAQWFxcDIVCmD9SyT//+c/feOON3/3d3x2Pxzs7O7j05A6uXbtWr9cnkwmEuWAwKFZFpVLZ7fbHjx87HI7T01N2hUajMZvNmUwGF9XpdMZisXg87vV6+Qk3RxXt7OzkcjnAKIfDwU8wkd1u98UXX/T7/UDgqVTK4/EAQdZqNexLOp0ej8derzcSiXAeiV6v53TecDhM/RYlv0AOmUym0Wi89NJLarV6a2vLYrGsra0Ru56fn/Nb7X/8j/9RpVLt7e21Wi0ax40vz9ysVCrj8RgfpNvtWiyW+/fvx+NxRNhoNLrd7m63u7OzI87/MxgMh4eHbrd7dnYW5YOrxeTu7Ozs7u4+efLEarUuLy8bjUb2KK4DOoZqEISvVqv1+/1AIHB2dvblL3/Z7XZ/+umn5XJ5a2vrm9/8JgXt9+/fj0ajv//7v3/t2jWj0bi9vX1wcNBoNKhjbzQa7XabinqUnGjqjPu2u7v7i1/8wuFwJBIJl8v14MEDtVrN0ubzebVaXSqVLBaLXq/X6/UzMzPPnj0D1CoUCplMplwuo3Lb7Xaz2TSbzcViEbat2WzudDocYUUKMBKJWCyWYDAo0nI0Zmi32yaTaXZ2dn5+HtwQ44uThJo8Ozvrdrvj8fjs7Ozp06d0B3A6nS+88EKlUvnss8+q1Wo4HHY6nRcXF+zSSqWCO6XVaoPBoN1ubzab3W43FApx3s7e3t7nn3+u0+lu3LgxOzu7vb2t/f73v99qtZ49e8YgBoPB6emp3+8HIaZfRKPROD4+djqdnU7H5/Ol02mv18vdAdc0Go3b7aZsNBQK4VSimrrdrtfrhaHFnxYXF8fj8a9+9Sufz2e32202m8fjuXfvXrFY7PV6o9GoWCz+4he/2NrawvrmcrlPPvlkeXnZ4/FASEkkEl6vNx6Pg+TjixgMhmaz+cknnzx69AgrsLCw4Ha7Dw8PvV7vzZs37XY7maFMJnN+fo6vuru7+957783Pz7/44os6nW5mZob1KxaLyWRyZmZmb2+PtHI8HsdRF2FLKBTC4bdarfR/39nZcTgcJpOp1WpFo1Gfz7e9vc2Bu7jSOAf1eh0hcDqd1Wq13W5Ho9FcLsdfacazu7ubSCTi8fj29vbi4iJORqlUunbtWj6fB3nEr/R4PMPhsFAojMdjt9t9/fp12ozQxdjr9UKSy+fzeI5EkfV6HbUUDoc597dYLGr/w3/4DxqNpt1u22w2dNfCwkI2m7Xb7S6XK5/Pp1KpbDZ748YNj8cDYebRo0ck1lKpFB3P3W631+ul4RnbLpVK1et1rVaLS4HVr1ariUTC7/c3Go3xeLy6ukptayaTOTw8fOmll9hPlCYWCoWvfe1rb7zxBg7awcEBDQxef/111v7w8PDjjz9+8803l5eXJ5MJicdgMBgIBG7cuMFuwACHQiGM3a9+9StxrD00n4ODg/fee++b3/zmzMyMyWRCJZydnWElz87OsK+UQZ6fn8fj8VKplEqlgsEgns14PKZbz9nZGccsNxqNVqtlsVi8Xu/y8rLb7S4Wi6VSyeFwlEolMlJPnjzhm4ODA6PRWCwWLy4uut1uv98XHFr2JOB6NBr1er2NRoNN5fP5WEs61FcqFeJYp9MJB87j8Xi9XoIX3qvf75vN5n6/Xy6Xa7Vas9m8du1aPB632WxYc7PZrP3zP/9zCDaRSKRSqQBoay6bHBMR3b9/P5lM2my2Wq2GkkkmkxaLhdOMA4EAvXTRfpPJ5OjoqNPpOJ1OvNFcLtdut+/fv5/P54macJGcTmelUtna2vroo48ikUg0Gk0mkxSChUKhlZUV6pnMZjNR4osvvlitVjGxaE6NRhMMBg0GQ7vdfvDgQb1e7/V6MzMz9FvJ5/Mffvghmv/09DSVSkGAWFtbw+Rvb2+fnp7euXNnbm5udnZ2b2+P/m3r6+vj8VgE2NevX2+32+w8hjcYDDqdjsPhaDabhULh4cOHjx8/xvPXarVLS0uEFSqVqlwuE/tMJhPRE4hYCcdTp9PFYjH8VpPJtLy8nM/nb9686XQ6B4PB8fFxt9s1GAxY0vn5ebaByWTq9XrFYtFsNqdSKZPJ5Pf7tVotvWASiUQ2myXE8/l8pVLp4OCAQBTPw+12w7UHvLl9+7ZOp8tms9o//MM/bLVajx49ikQiyWTS5/OZzWbROFlACEjoxsYGxxxUKhXMaj6fLxQK+/v7k8mEHUBT63A4TL1pp9MBND05OeFQNiIFq9Xa7/dLpdLy8vL6+vrq6mq5XHa73e12G99zYWFBp9OlUincRpPJlM/nW60WbU263a7JZHrw4EE2m41Goxw96PF4yuXy6enp1tZWpVIJh8M3b95MJpOxWCyRSFAVqVKpFhcXbTab1WpNp9OpVOrevXuhUGhmZgaNSs46Eomw3t1ul6ivXq8TWbA1bTYbq3Xz5k3ACYgRt27dAsyoVCrEIEiV1+udnZ1leolp6/U6pCyTySTypbjG3W6Xji00BUb6k8kkm+Hw8BD6E+7LYDAAtpqZmcGRj8ViFxcXiEi9Xifs9Hq9BwcHR0dHcLSWl5dPT085buns7KxUKnW7Xe33vvc9WgkxxR9//LHD4WDtZVCPuCObzRLXEnSYTCaiSpVKxUR7PB6QFnSdRqMxGAxer5c6tdnZ2ZWVFeICulsAGHg8Huar1WodHR0ZjUbaZWcyGcznZDJ58OBBq9Xyer2gcnAD8Trz+Xyj0QgGgwcHBwIUuX79utFoLBQKjUbj7OyMsNPpdG5sbORyOTBHvV6fzWY/+eSTmzdvarVaMOPBYADwRRse3kun01HOUKlUKF9ptVq5XI7SKyDFcDiMWSTItNls9O6zWq0YTeyjw+HAMppMJrvdHg6H+/1+pVLZ2NigKpUeMUQKpVJpbW3N4/FsbW1pNJqZmRl8KYKIXC43Ho/NZjPOnMlk8ng84K3BYNDhcFQqFQrSu91ut9vd3NwkS9Lr9TQaTSQSofnt9va22Wyu1+saxDwajRIro09EQwLeE60+Ho9pAHDv3r1UKoXObzQa+Xze4XAUi8XPP/9co9EcHR3xD7z3TqdzcnIyHA5feOGFl19+eTwef/7556Q8iOA3NjYEqFytVqvVKukxlPM3vvENm82GexWPx1dWVvr9/tbWFrGPy+UiZ9Nut/G06ZkCClStVnO5XDab3dzc/F//6389fvzYbre//vrr2Wz2448//tnPfpbL5SiONplMFoslFotxlqjT6QwGg0Cf9Xp9YWHB7/e32+1yuUx3Vk5AxPsLh8O9Xo81WFxcbDabAIsAtbu7u51OB3fq7OxsMpk0Gg0sCOTEJ0+ebGxsVKtV0TDcbDYHg0FM7WAwAKwkMGZb4wlubm6SMyqXy/yEUxhJNvV6Pb1eD3hDe2yuIYHO5J+cnGCw7Hb77du3g8Gg9k//9E9VKhUeL34AbbGp7xFcWV7+0aNHXq+XwIFDL9rtdr1eV6vVVquVEUSjUaQvl8vBFatWq9yKWOPk5ATfuNlslkol+u0Svh4fH7tcrhs3bkQikXK53O12KSXu9/sk67rdLrDg6urqeDxOpVJLS0tf/vKXZ2dno9Eoy2kwGKrV6p07d1Dv8Fa+853vnJ6e0mfDbDa/9tprcFlrtdpPf/rT27dvr62tIbUsAMcZLi0t0ToUpIGKHTI4aMRisdjtdpvNZjqdBgxF5a6srJBHsFgsiUTC6XTCTWVuh8NhKpVyuVwnJycI3+HhocPhWFtbY0PabDY2WLvd5hReOuPT4RYI3263FwoFugbodLrd3V21Wn3t2jUSY6VSCbNCLFosFj0eT6vVWl1dBQw9OzsjL221WomZc7mc9pVXXgEPuH///sXFxauvvop8kbgzmUyiEECj0Tx79iyRSFitVsIVrVZ7dHRkMBgKhUIul8N1x53Z3t6+d+8e4cDjx4/X19cRHZPJdP/+/cFg8KUvfWk4HLrd7mg0Wq1WM5kMyMkrr7xiMpkoMLVYLAaD4eOPPz49PUXA6eeuUqkCgUAmk0HFgYkRtpycnAwGg0AgEAwGz8/PiWKIOzAc7XYbcxuJRBKJxNHR0U9+8pMXXnjh9u3buVwOdPzi4qLRaOzt7bnd7v39fSCEVqslDo0JBAKlUmk4HM7Pz2ez2Xa7XSwWG40G+w+0lEzS/Pw8UESr1SLFc3FxUSwW/X4/st5oNOx2O/opm81arVaPx1Or1WCcsN1pbPv06VPsERTqbrebTCbVarU4v5U4NhaLISWYs2w2q9frTSYT7nytVjs8PCQPFYvFzGYzfonX6zWbzdp/+k//aaPRWFpaslqtZ2dn8/PzzWaTZxCXFwqFaDRqs9n0ev21a9cACc7Pzy0WCzai0Whsbm72er1wOByPx9nB5+fnOp0uHo/ncjmi/Gq1itsxHo9v3brlcrkKhYLD4bDZbLu7u0QokUiEh3q93oWFBYidL7744urqajQaxV4kk8lAILCzs8P7mEymu3fvZrPZnZ0d8mqYfHDVu3fv3r59e35+nixaPB5fWFiAeazRaEKh0NHR0Y9+9KPXXnsNzYnLTQxGCB0IBAKBQLfbJfBmsdkeoVAIph3aAg+f4haAqVdeeaXdbuO9hkKhQCAAmdvtdptMJvzxQCAAXHbjxo2NjQ2PxxONRkejEYAVCUmHwxEMBklG1Ov1s7OzdrudSqV6vV6326WhNW7Z2dkZZ3HNz8/Ts5jWxriu7FK73Y7HrVKpCCT1en08Hr+4uNDNzc3Bz/F4PK+++mo2m/3iiy9effVVgIFsNktJkMFgyOfzYCNoRRJCxWJxd3f3m9/8JjkCEpsbGxsWi4WuVdevXxfwA294/fr1Wq22s7NjsVja7XapVAoGg7FY7PHjx5zbZLFYyO6srq4i8uh83FjCHM62Bt0Du00mk4uLiwTG77//Pn5xvV7H48ET7PV6Dx8+NBqNi4uLtPclJgQsR6k4nc5arcZBxFtbW5S+e71eOhyAF3U6nXq93m63Ly4uyA9h7zudjt1uB1BKpVKxWAwT43K5BoOB0Wjs9XqgFK1Wq1ardbvdXq+Hjvz888/b7XYymcRcTiaTRCLx9OlTEJ1ms7m+vv7222/HYrGFhQWQPZfLRRzLIXqTyWR2dhZEYWNjY2VlBb+SAEe0Rvd4PE6nM5/Pn5+fG41Gm83WbDapCdP+yZ/8CV9pNBqbzUY5OgAAm5Wcll6vh42D0Uomk7Va7fT0FLNCtJbP5w8ODo6Pjxk6yCMhCVjWzs7O9vb2aDTyer0ajaZQKBwcHEQiEQ6COjw8xL0gx6hWq7EU9+7dy2QyMzMzKE+OsidrChuDuDSZTHIWPd7lZ599ptPpSHafn5//6Ec/Ijp4++23E4kEvDG1Wl0sFn/yk594PB4sLhmBw8PDyWQCPu10Ou12u91uz+VyKpXKarWen59ja5vNptvtzmQy6XSa6MlgMND0icQvrjuhCklLk8n09OnTbrdLKyfqmtxuN5gbnj+5RyAv4oher2c2m0GE/X4/gL3FYtHpdByMzClFhULB7/eXSiVmu16vx2Ix9Kvdbj85OdFoND6fLxAIFAqFfD4fCASACnHF+v2+9o//+I+NRiMzq9Vqnz17trS05PV6aY3G1dQBkoc8PT3t9Xoej4dIDK4fwxUJjmAwODMzI/PVYD94PB6r1UoRIDbY7/fTJ9fpdBoMhkwmk0ql9Ho9Z8KPx+N6vb67u+tyuZaWlphf6BRPnz4lm2owGMrlMoSRSqVydHSUzWYXFxddLtfZ2ZnP5ysUCnDS19bW4KC6XK5SqfTFF19Atnj77bdfeuklQMZr1671+/1CoaDX609PT/FFMHPggJxsA9qfSCTy+fzTp0+j0Sht6DudDt4ZRDp8+16vt7i4mEqlxPmF8/PzpVIpnU6r1epCobC7u8sKORyOdDpNGvPo6Ein0yWTSbfbzfQCrbK1+v0+yRfOa4fIj5Scn58DK43H42QySRmn1WolAZRIJLrdLs4vijadTmOMer2e9t/8m38Dy5ujTqCxzM7OFgoFkADV5fHNdrsdYkEwGOz1ekdHR7FYLBKJ2Gw2g8GwsbFhMpnm5+dtNhsZXkEfUl2y4DGWn376qcfj2dzc/NnPfvbyyy93Op1yuUzabX5+PpFIfPrpp4A2u7u7sEK0Wi1T8PHHH8diMcYDvQBX//j4+MMPP+z3+5ubm+D24XB4cXHx6OgoFAq99tpr3/jGN5xO5+7uLpRls9lsMpnY/W+//TYQBdq+1+sR+3Q6nUAgYLPZcEU9Hg/xCBnh4+PjZ8+ebWxsXLt2ze/353K5crlMgh7ztLS0ZDAYHA4HTfk+/vjjpaUlGkXk8/mPPvoon88vLS2l02ksBbQ5nU4HLsyxRNFotNPp2Gw2AhaICABix8fHeOX1ej0UCmGpr127ptFoer3e7OzszMwMCQcyxmQVcDIAsshxkOcEZtX+83/+z3U6HYEZ/3C73bVaLZPJXLt2rVKpNJtNiDck6B48eDA7O3t+fl6v1wOBAO7k8fHx2dkZ0Q5hveB/EnQcHh4+ffqUINPn8+3s7BAOxePxVCo1vjyWFMSJpBF2gWFoNJrt7W3ELpfLVSoVUvKwDaxWK5DA8vLym2++OTs7S7IUVggKCWVWLBaDweAXX3xRrVbJFuZyuXfffZffBgKBXC63sbFBIOd2u4EONzY2FhYWYrHY3NwcWIigG5E0R2mRcchkMm63Gy+VSiGyEi+88AI0Nd40nU4nEonz83MOUkZ37u7uotWYOnIHHH3DcwuFgkaj4fXdbncikQCrZS+JPOLf+3t/D4He3t4muiH+bzQad+7cQewAe8ieLywsdLvdvb097X/5L/+FBnckomitbjabiReAmWdnZ8vl8ocffujz+dxu98nJyfr6usArNzc3T05OlpaW8GmZgs8++8zn8xmNxqdPn0Yikf39fUDGbrd7cHCwsLAwMzMzOzsLhj0YDMrlss/ny+fzjx49evHFF5Flt9sdi8UIZ2q1ms/n8/v9BwcHJpPp6OgIppbRaMzlcna7HRZQt9u9c+cOmqNQKHzlK1/55S9/yc2NRiMVq3NzczT6brVaDx48IEFK8TwRAdoY6hflezCdwJIJEVEDokE8Oxh0j04rWDGEm7Bc1Gru7++jxg8ODugGdHR0hM5wu93AULVajdoNUlnD4XBmZgYfot/vE1jlcrl8Pp9MJrvdbr1e93q9LDne0t27d9H6oVCo2Wzu7Ow0m825uTmy5CQ4qOOw2+04QNrvfe975CPOzs7AUyEDnpyckKlLpVKJRILwjOCk1WqRwXr27NnKykqxWAwEAgsLC8Cu0WiUN4EZDJ9xPB7fuHED7YJftre31263KZRzu90WiwVDSOb6zp07gnoJzoOKg1rIEXVOp7NUKsEmffbsGXjX6empx+M5PT0lczY7O0v0CI3lV7/6VTgcPjo6eu+992w2m9/v39jY+OUvf3nz5s3r16+jpS4uLvx+P2mk4+Njmvrkcjm9Xl+v14+OjhYWFuBJAM6SJMzn8xaLxWKxDAYDpNbhcGApoNAJcqzb7cad2t/fb7VawWBwYWGBlCZUNtBuEsJ2u31xcZFABp+pXC6PRqNyuXx+ft7r9Xw+HwezNpvNWq3WaDQSicRwOCTfGwwGjUaj1Wo9ODjAAmL+HA7H/v4+i8j8Q2XVvvXWWwAUaE6wDpBL2FQEe3a7HVIojIejo6OZmRmSh0+ePGFmgZ46nc6dO3disVipVIKqRRhCQqVerzebTb7xer21Wq1areJPgODSk51kh8vlIgZjOtxuNyPJZDLEHeFwmKydSqU6Pj7m9bjzu+++C4r15MkT3IvT09Nut0twBSAzmUx6vd5PfvKTeDwOgTEWi9EWlC4ILAlvQV+c2dlZnU5HqgXfyOv1ptNp1n5zc/P4+BiYi0Qlxy+bTCYsKflMqrUqlUooFCLxQYLD6/UCaqGkIcXgADqdzq2trWq1urS0dHBw0Gq1SqUSiexcLreysoKN4PXJVgOTWK3WWq12fn6OWwNcjYWi1wV5c7TFr6UBbUycg/cHsAqNjq6ZHo8nEAiMx2PWSafT5XI53KL5+XmO84LOCgknFArV6/WtrS2Kw4k20f/YVPDdfD5/cXGxuLhot9tbrZZOp6tWq7/4xS/i8TjgMSgkOJjX63327NnCwgKp8IuLi5deeqnT6UBrNpvNS0tLd+/eValU3/zmN61W6yuvvEKyEXjf4/EcHBz0+/2vfvWroVCIrnrvvPOO3+//1re+1e12wVhnZmaMRmO9XofEbLfb4XYUi0UMMIwVzi4mE7uyskJSGN+LjBEwlMPh2N3dhY7g8/lALdmU4/EY9TYcDkW2k6VaWVkhNQ/HB8T22bNnlUplNBrRw9ZisTSbzUajgetKob7NZnO5XBaLBcywUCj0+31O2CJBL7jgAApQKLi/9o//+I8rlQo9tFOpFCcrqi6LziaTyeHhIQxYEs38CUjE4/HgbVUqlUgkAnXl7t27xBFbW1tQHDh/3mAwHB0dtVotkHM8gHq9vr6+fn5+Tlr2xz/+MZWpwHNEWaenp4yQ/B4kCSLPfD4PuDkajW7fvg1rGVMC1X1vb4+hRqPR9fV14MJvfOMbdrudbrF379597733oDmBI00mk9PTU5/PR+aazDJSi+tOEAhZgcDdYDDs7u6mUim4QmRisTVwIHQ63fr6uqDeN5tNDp959uyZxWIBhsIwQT/xeDzhcPjg4MBsNj948GBlZQXeWywWo7YfEJrsPwaX1EYulyOdoVKpKpWK3W4vFotut5u6AXKhh4eHkCuxiWR0Salo//W//tdWq5WTo8mxkssRdYalUgnAnD+lUqnPP/8cXwE7pNPpqDbvdrs41YFAIJ1OGwwGl8vl8XgwnPQ/ABNEbSQSCbJlzWaTrXbr1i3o9sBB6HayR3Nzc5lMxuPxzM3N0d4XXtYbb7yxvLx8cXGRzWbv37+fTqeZqeFwCHCSyWQSiUQul6tWqxcXF5FIBCbtYDB49OhRs9n84IMPlpeXl5eXd3d3C4UCHJ+trS2mpdVqcahEvV6v1+tkoeLxeLvdhjQAMfr8/Hx9fZ2Nzh0mk4nNZiMsAkYDJ+WMiVqttr+/T6xYrVYpzOr3+0tLS8VikZUjfTqZTOjK02w2Z2dnsb+lUunzzz/HAEUiEcINPIBoNBqPx4+PjykwOTk5IdRMpVLQNXK53NzcHMmpRqNBOxGu1/7FX/yFOB+nXC4D/pTLZTbcYDC4du2aVqstl8uwP1QqFbMAfQ9/m2Q/xhVC6dzcXDAY1Gq1e3t7TqeTnD0T5Ha7S6XSzs6OyWS6c+cO/SXwnEEyyO5bLJZ4PB4KheAlABRCyXQ4HCTMwuHwtWvXoFkQGXW73Vu3bsHRxehg7Dwej9lsBq5mhEaj0WQybW9vf/TRR9CD4T5hWZPJZKvVAkExGo3lchkwkTQvOCZthan8odGH0WiEPEf0i+2na2ulUmEScrnc/v4+dgSSS6/XOz09BQtG8UAaQrWwcuDF/X6f4pdnz54lk0mVSoXzCBGSbDW3jcVi4OLj8Xh+fr7T6Tx8+DAejyNnBGIYUFjQoD7af//v/71KpaI0IBQKlctl+Gcej6ff78v9MeB3l8tlaClQu37xi1+43e54PA5VXKPRpFKpyWRitVpBnNxu9+Ty/OgHDx6Q31Or1Xt7e5lMpt/vr66ujkYjh8ORSqUqlUoqlQI0pfrn0aNHh4eHxGywXdxuNwfLnJ6ecjIwMSHbAg2HrR2Px++//z7+3fXr1/1+PyxqXJxms2m3209PT3/2s5/RR/7ll19mmmD3JJNJp9P55MkTfJ1OpxONRguFgsfj2d/fJwDZ2dkxGo3Hx8f5fJ6kP+KSy+UEfAcTx2w2g8+2222dTkfLplAoRGycTqdDodDNmzcPDw/J75Cm4QL8G9CdTCYDEWZlZcVisUCOVV82nSf7eHh4aDAY4vF4oVDY3t4OBALkR8gKwQJcWVmBGgN74ebNm0tLS9q33nqrVqthXImqS6XS1tbW9vb2rVu34MUDJqbT6a2tLThLZ2dnHo8HlzWXy4laPnFMG/COWq0+Pj6GzE4bLNGa22AwnJ6ezs7O+v1+m80GadFkMpGSOTo6wnvFuGi1Wurv3G43h8NT/bG0tMRT6IxXr9evXbtmsVjefvvt8/PzVqv1/vvvv/766wAbGo0GLG91dRU6BVVD/+///T+v1/v1r3/d5XKhmTqdDtnwXq8HgWNhYQEDCrYBVR9x50SQXC4Hn2w8HsMUx5dKJpN+v39paYkif4vFQg2jRqPx+/0+n4/MWSwWs1gsFMgPh0Po8zqdjmglEomMx2PY+rOzs9VqlaoYNjBMbo/HU6lUGo2Gw+GAEux0OrvdLlw3QD+NRrO7u0ulDMADrF3QuWazqf393/99KMKpVIoTDZ4+fQpbXG5DR/dNTumA98BWYGpI0qjV6qdPn6IkCGbUanW73f7xj3/c7/fn5uao3CJmoZCLcIOzIoGtQNYIW7RabSQSoRKSvU68PhqNPvvsM3ovUj6WSqVIo8MyInw4OjoCGXz27BmUKr/fT0KEiBcN+cMf/tDtdt+4cUOtVm9vb1M6gMeXzWa/9a1vwQP1er1LS0tmszmdTmMgyO8T5hHxA/PBiQI2JjsKQdBkMlHICpUZyHJ/fx+6HuE9uofgq9frEbGzfcmT1et1PMqNjY1erwdyhbSdnZ2hRWBhVatVgm1wIEpmyHZSoAYNU6PRrK2tUR6h/dM//VNSU2CCuAV4Fl988UUoFDo7OwOU1Ov1RGuwpILBICo3kUg8fPgQP6vZbIIoUxlC/+35+XnqNhuNRqPRIELDh4Du1mw2eVWgEt6ZyH53d9fv9zPvwWAQ2IfalXv37hHTajQa9o3VakVXLy4uhsNhOC8kIDKZzPHxMVxwoILz8/Pd3V273f5Xf/VXy8vL0WiUIJ7eJswAqW2/3398fEy8RxOFi4sL6jjw3drtdiAQAEl0uVzwmqi69Hg8BCOkDICbcL0hf7tcrkqlIrjH/X5/fn5+bW0NnyMYDJZKpfPzc/gidHMKh8PkFFOpFClD6lDI/jcaDZPJhHoGPbLb7R999JEoEVOpVFTz0VaAsmbqkbTf/e53y+VyJBKZTCabm5twR589e0Zhq16vPzo6otxxMBhQqdLv93HLu92u6CZBjB6Px8/Pz2FFAB2SBaZoGo6r3W5Pp9MnJydQYaFywHPHVw0EAlBvADzK5fLe3h4FgLS52NzcpEpifX3darWSxqTYaHl5GbrvRx99tL+/T3e+l19+mVwOlBwCfZA+dEMsFnvxxRdLpVK/319bW0NRHxwc2Gy2QCAAV5ZwdzweU3kBtf/8/ByFh9btdDqIpkajsVgsFNZ96UtfApCdnZ09ODgYDAZ6vR5GTy6Xg9tOshGJaTabJPd5HNgz84PHRpEIk0k2cjQadbvd2dnZXq9HNIfzB++wWCwWi8VEIkGVCk4rdCnOzXU4HFTOaf/dv/t32Wy2UCiEw+GFhQVCQY6C9/l8Op3u2rVrZMxg80HHRsXl8/mjo6N2uz0/P49mMxgMJycnTqdzdXWVo8RxPA8PDz/77DNiZQhLarW61+sVCoXRaARWOh6PT09PmYX9/X1KkWBWxuNxq9VaLBaJ41ut1o0bNxKJBCXVlUrlzp078XgcYICWAV988YXVav32t78dDocpncCmHh8fFwoFSChWq7VQKPzwhz8kPW0ymQwGQyQSOT4+Pj4+7vV6L7300ng8Hg6Hh4eHOD14ysS9zWaTXYUYGY3GarV6cHAATZl91e12qVtELQE/oN5Q6RRywf0fDAZms7lQKKyuriKUPp8vFouBKkKVppOEWq2ORqNQOMmYhEIhfDIY6gRZZMxRCdD5h8MhBc1+v39lZSUYDJLx+fUxC2+99RZD3Nvbe/jwYSKR4L4Q0jc3N2/evEnerN1u37x5E35sJpPp9XqMmBOY9vf3YXybTCYqYguFAgwDgEJqDcAuoevYbDZBMyeHhv6kHIoDaIfDYb/fh9TEKZQzMzPxePzg4ADv/f333y8UCoFAgFxUuVzOZDIYFKvVSlVguVx2OBxf/epXY7EY+WiCfpVKVSqV3n77bavVypkAxWLxl7/8JZYI/YcBmp2dpdKXvBoLCcWZfQaVlwITIvPFxUX6SZALBZuBxYOZKxQKy8vLNIgslUpURlA2CemeqBKAiMpHBD0WixHtNxoNnFO8JZ/P98ILL1A2jRaBscHRFSDrFKb+7b/9t4mTYd2dnp5i7LR/+Id/SH5hZ2eHLhm0LgNaxngDmBM0o+K++OILvV6/uroqagT++q//GjCVrMzFxcVHH31E95BkMmkwGDg/iaI5bF6n08FDPDk5gc4E1xIrjg/PJqY7AHQg2Dd7e3uHh4dms1mn09ntdqfTSSTZaDSge5Cn5m39fj8OMilTzhiCJVUul3/4wx/6fL719XXw44ODA7fbTVIeFxW+yWg0uri4ILfkcrmAPfB1MOf4aDMzM8Fg8MaNG+Ra4ZBS/ANRKBqNqtXqw8ND2puQUYTn7vV68UNNJlOpVAJoJ0F669YtsqDUA47H483NzVqtZrPZiP8pWKVXhMvlggT1xRdfQHQgvQk5TyTWOa+3XC6Dw/p8Pu1f/MVfPH78OJ/PA+oRVoXDYSJDuLmUytN/ikqsXq/XarUikQgzCNnJZrN1u13aFDYaDRqiQpOfTCYrKysYeDJvFouF9rgGgwFTFYlEBoPB/fv3IbKSx0LzU+aMkAEtBAKBx48fA2BnMpm5uTn4GoeHh/Q0cTqd8/PzJpPp9PT07t27eI6j0Yh1xdc5PT3V6/V/+Zd/GYlEvv71r4P5FAoFSOEgE9RYQhtEnlZXV6E4t9vtdrudy+UgbKLwKLahrQxtOqhMrFQqvV7vzTffxKWlThLMh9AgEAiYTCYY9CBpgIztdptqMygUfr//4uLi4uLi+PgYsrVarZ6dnRVHVLJvu93u0tISFWaQ6wEJ4Z0/efKERhe4hvQnabVa2n/wD/6B3W5PJpNWq5UGLrBOiGttNhtMCooUYBqqL9ucotaY2VAoVCgUoFWBkCSTSaQnEokQziLRW1tbHNpKnT/yztaJxWKrq6uAtZubmxR/EvG73e50Oo2yARJdXl7GIYpEIjj8vKTX66VdEI59Pp/PZrPUgsJsI75Fx7Rarb/6q79yOp03btxAq6vV6pOTE+Yun88DH7Varfn5eQGrUPIAMen8/JyYDRopyV7cQMqYqEYhuCUZS/UjtFv6zRJo0LknGo2Wy2U2MQ4vGHO9Xof8TUARDAZ3dnZgspAFTCaT4F1o61QqNTc3t7m5CVLncDio1S8WiyJZRRILh3pvb0/7ve99j5oeojUaB0G+/uSTT8gWQkSjbgSyE57t3t4egRCVHsjQzMxMKpWKRqPA6ZAfu93u//gf/4Nm6zqdDo4hhKtCoQBOMhgMLBYLnY5oqAMxGlvAjNDxqlQqPXjwAAjl9u3bLpeL0JQD6RgYYfrdu3dhgULynkwmFxcXCwsLw+Hw2bNnkUgklUq9++67VGwOh8OjoyOhugqFAix+zC10SBpXeDweeI4U9BFar6ysfPDBB1DazWbz9evXIbLitOIGUq8NM8Pn852ensLGZkKuXbtGWEEKKpvNjsfjQqFAMxpYlmdnZzMzM/CDms0mfnQul4Pq3Wq1cEc4EQPGMslnsgSj0Uiv1/t8vl6v12w2yfXzyuFwWPuDH/yAEiKKYqHX4RJTyEaLENTDBx98QEQnmiugBubn53E8CQEgWBeLRWoIUdGkNqjpCYfDP/3pT4l5/s//+T8qler69es+n++Xv/wlhZfsNn5InjedTkNxI+gAOQXwRqrIwoGa0Mbx/Pz8xo0bOHf423hq165d0+v1INw7Ozvvvfce/Y0IXH0+H9iD1+sNhUL7+/u0nkGNl0qlSCRSrVZrtRrlU1QYd7tdmLEcQtHtdqG/YmQJHMrlMh088KNFcWahUKjVamTCIDpHIhEAG6PRCDGuVCoZjUaYze12ezgcBgIBj8dzdnYGySoQCNArAiXd7XZpZ8NuNJlM1Wr1+Pj44uLC5XJ1Oh16jREPCtRY+wd/8AcnJyehUAg7R3NU4MJgMIgtyOfzxMEQXElD7+3t2Ww2kEeQ5mKx+M477wBBHh0dkUyaTCaPHj3K5XIwPyn0Ho/HEEzIxyeTyUajIfA+HG9CqWKxuLm5CQkYmJIjZmltRP5XtBql8c/5+TnJaHiajUZjZWUFyvVwOCRQFL3pT09Pf/GLX5hMpng8Lmr9yDhrNJp0Ok2qfW1tjT3w5S9/mfI9j8cD4wbm8O7uLqWheNzPnj1rtVq0QgMWpK6BVDjWRKVS4YPX6/VMJkP4R08S0BGyVuQX5ufnoazBCYKxApWEbmVUxJycnBweHsKwBUYi43NxcXF+fi5KY549e9bpdOiYj/L7tYj82Z/9mcvlIkdHDCM+ok8PzjxkkFdeeSUcDp+cnLz88stUS8JJr9Vq29vbLpdrfX2dlDTZ2FarRQk9UbVWq11cXIRYRfxJlNHr9YiSseidTuf999+HVwiDgWISMrChUOjZs2c6nS4ajUIsoBaRcMDtdi8vL4PNUSS/vb0NrRfd6HA4cIkQoPfee4+9NT8/73a7Nzc3qY66e/cuXbfgLNFdRa/XLy8vj8djcYZANps9Pz83m83lcpkTzDAxeGckuOm7AKWWwmrKcyE26vV60oz1ej2dTlOFEYvFCDhRq4JbRVoxm80eHR25XC4CYIw1LVrsdjtMDjhmlEidnJzQGe7mzZvEuhC3zs7OsCkajSaZTGr/03/6T4wMvEx12XgXUqvZbH78+PFHH31ENQhepMPhgC8K0NHtdu12e7vdNhqNq6urBoOBng06ne7s7KxYLMLTIkc1mUyOj4/hpVHWgitXKBQ4k4IUF9AvJw/TEy6RSOh0OmrO0SLUlJH7ppnEzMxMt9v1+Xwmk6lSqezv70OFTaVS1Wp1bW1tZWUFV4AOj3CRf/SjH8G6hswNaEhpFJ7X66+//uTJEzy1UqlE4A0HjIQhBEwQTIomRJNsAEcqhiEHQUEjPY0RpPKdjsacrklcg3qPRCKUCu7u7p6dnQUCgVarRRwHXfTi4oKy9P39feILi8VCD2IIQXa7/eLigi6TtVrt0aNHer0ezh86dWVlhYyS9q233ppMJriNtVoNk0z7RWQZT1uQ38kewbWCAF2pVCiX29vbI7iw2WwYRZwJmokQEFOPbDKZvvjiCwgsdI6iBKPT6dy7dw+8CAiIYAmvGMY6DAy73e7z+TjXRa1W//KXv8xms9evX3/69Gk+n5+ZmRHthWhUcuvWLc3l4SX0d4IuXK/XQZ++8pWv0O8CH3tnZwcOVSaTIa9GyEfwSfe/TCbT7XapHgPw39/ft1qtt2/frlarWq0Wehxz4vF4KFCGCU13KbVancvlKGYk3jYajeg5Foy+gtTUzs3NHR8fMyFU6VxcXKysrMBi/PjjjxcWFkDbZmZmUKIAD0tLS8RB5BbgKuj1+mKxaLfbyfyBVWjfeuut7e1tHMt33nknFoulUqnBYLC7u8vOg5iF2qAf2/n5OQ5go9FIpVKUqYdCITAZ2BbQKjHeT58+hcUFpRiEKhgMnpycUKRM7RhoD/YVFiHamKIJi8VSKpVgcEQiESKrbDYLAWRlZWV1dRV2F9xUrVZLzTi5H7PZ/OGHHwJso5DQ4Y1G44c//KFOp3v99dePj48XFhZAHcjWlstl4GSK82kmSmg+GAyoxePQB3iUEOkgt1EMMzs7+8ILL8zOznY6nVQqNRqNotFopVK5uLhAIIg5gYOSySQUeGIHjua9efMm6hbiGg47UwRAjDBNJhOYsTMzMy6Xa3NzE4BcpGPwEpxOp1qtBvxALRH60QNJ+9ZbbwHWQsIR/8CWBAIB/E+yjoPBgJi40+nAyIZ5BrJEqyz6teIHgZIKxhu5fL7MZrOZTAZKPmkq1eUhpCCAwDsbGxv4XETV0B6RdHizlHXQfGN/fz+ZTIoVxSMTHVvy+bzZbKZ9B6xdCDvvvPMOvdOgqG9ububz+W63S3HV0tJSLBYjSfvaa68tLS2Jg0NoEZpKpXZ3d6vVKiXVsViMd6QYMBKJwLrW6/W7u7v4yzabjfJ+Go5S+QO55osvvqDkq9FozM7OXr9+nSJVIlXSyyKXBg3/9PR0YWGh0+kQM5PvAFAio0bW6vDwkETxeDwWUO9oNGJr8V/tW2+9xYk/ZCmPj4+h3haLRVi5UEZhlCDCuO5AfnA9xNFN2Kd4PO50OskaEOvjgmB6Yef96le/isfjfr+fyggcdUDc4XBIcwVmDZoafS2g2BCyE/WQrYC7iw6ET3ZwcEDAQuqkVqvdvHkTFOTRo0enp6eiJdY777xjNptfffVVnU63vb0dDoeHw+E3vvGNTqdD39NkMlmpVLB61CkgWERbwLIUYhiNxldeeWVvb4/sPxFvpVJhZzcaDVrscoCd0+nc2dkBMscFQVXQmIBDVAFgTk5OfD6fy+WCCGg2mz/99FO73Y7MsZljsVg+ny+Xy9ls1u/3w1jG7tMJhJ5/VHuGQiE64jocDr/fbzQaw+Fwu93W/smf/AlI7bNnz8gptFqthYUF7D29ss/OznZ3d0OhEMmFaDRqt9uR01KptLe3R8KTPmpE2OSjaWpHW0OXy/Xw4UMOhHn06BGtFOiR4PV6Hz9+TESqVqs3NjaIYgAW8ddohwxyRftqVCXegOrypBdqDUKh0Gefffbzn/98ZmZmfX19MBg8fPiQYOzTTz+lBBl3uNFovPvuuxqNZn5+nqbtn3/++Y0bN5xOJ5Q+WiY0m03YVvTmcblcs7OzkGgoxIMzTK4ZvAQEHfNqMpkKhQKnYLtcLrqudDodfF5IFYeHh9Akt7a2wuGw3W5PpVIQw2gVDgm5VCrR7g9eK60a8CQIMagQJxClXQkq4e7du+BJ9Xr95OSE7zGCpBo++eQT7T/6R/8ICgIEHjLOqArWG0eGuq21tbVEInFxcVGv18mZwgekQwXkKGIeMGksKCx74EVY8MD7JCBo8kVzZSr5iTBpKQqMo9Pp7ty5Q0BIOo68PrqRqacrcbfbvXfv3vr6+vLyMoxL+n6QutXpdPRfpUkgVPcPP/yQjqQUN1arVZ/PB9JHnNVsNqPRKPopFAqdn59TqZ3JZHDdaajDNmBHVqtVtD39kLib6Lg7Pz+fyWSOjo7W19fBTmhBCjpEd6avf/3r6AM+JNigKmJeK5XKzMwMP9/Z2QF/MxqN1C1ubm7GYjE68A0Gg1Qqtbi4SH9Tk8m0traGygRyBG90OBzaf/Wv/hVqXFBi6NEqjl0QcD2NZOFZkDaE5ktOjIbCoscdUklvZii1gA2np6eAPPDECdPZYcPhEDI07Do8g2AwOD8/f35+DqLMPmP2yRdzfKw4J2d3dxc4i6wgfo/FYqEkoVqtQqcm4icd9atf/arb7X7ta1+DSQa/V8A7sGcdDgeBFUcdcSrfo0ePXC7XX//1Xy8sLFBRSTQE0ZeeyIuLi41Go16vX79+HSI87XygJ4nzOBAC2mPAJwKnInAjfobvc3p6ura2lslkTk9PcbQ5EZXUA73lQqEQbGnRmpniJdLWJycnuFOUx4Ga5/P5SCTyGybcT3/600qlcv36dfpCYG/wtuicS1UMi3H//v2dnR2tVkvBUzwef/r0KfAZSJlGowELQuhwGzkhmlJa8FpadlAYTz5XVHaTZ4dfCbeKbUpZKnkpCKUq6Xwbj8cDbnH//n3OKccPIJdIF1IEHc6+zWZ79913tVrt7du3aUAD1QCkhBPKAQ1psgEjkLYFZHr8fj9diyqVis1m++pXv0qPZ6iqoCZbW1ska/ANSVhjAnjfubm5SCRCzg86D/4BwAY4G8QI+sLQCIsNA0vW6XRihpgcqEYAtfTD2N/f/3XDWK2WqNVqtZbL5ePjY+TP6/Vqf/CDH/T7/Q8++IDEBq5ApVIpFAoESzqdjgibL6mtg/8JGRVOPc3o4FQRwNAZ4/79+0SehElOpxOGKlEr1au0nCF5DW4DkRVGBp2zMMBLS0twgmdnZzGiuIqQPnZ2duLxOG3c8f4wtxyJIE6aI/lbqVTYpj/60Y/o58vpKfiAer0+nU4nk8mXXnqJ0hT6lqARC4VCtVoNBoOADXCHEK9+v394eNhsNgmUisViLpd76aWX+v0+OnI0GlHWbLPZjo+Pd3d3yWIDu6E/qEjAhRwMBpQesZDkSujlRsRot9vpCFOr1ajjvnnzJj1+A4HA8fExDRvhahNT0FAMtgtwBZCG9h/+w39IpEBaGVJNPB6nNS3Kqlqt0lnB7XYLMjTHdNLsFEpgKBSqVqvY6VKpRP1FPp+/du0abbFbrZbP59Pr9R9++CHt4jQazeeff261WhOJhDgxi/oLeuliSmhYmc1m8YOINrPZ7IMHD7rdLpECKT4a4lPBTpYE/IPddnx8TFMYfH7SNj/+8Y8bjcYbb7zRbrfh3ZNdI7YEEecfMJt9Ph8paUALoCS2o9fr3d3dbTQay8vLCCVUlEqlQmKFDj2c4DIajba2tkAgIKuRd6XdAI6RzWYLBoOcK1EsFgmbAYTI+oo6FyA1EFgKN/CBBoPB/Pw8tRhIDFNKl1Nisbm5uXK5bDAYdACfcOEpmhZYKVnUp0+f0vHJZrNxNuh4PCa/3u/3aXYHAAyqTySZz+dBMwlmRKFOJpOBLkuZ7+Hh4Ze+9CUgF/pLIA10WucoDrobBQKBW7duUXYNqILoIIJsykQiQbkq+vnw8JCmV/TZ01yesC5OzEKsiZyh0qysrCQSCZjNVqv1/v37w+FwdXWVev6joyP4O2Dn3W6XJDKUBUIGwHtCDM5emJubQxYPDw8FcxNL5PV6Y7EY2qtUKmHIOUVnMBjMzs5Cwzw8PFxdXfV6vRhQukSwSyeTyc7Ozu/8zu/cuXOnUqlQvrG/v48ppKcRjIVMJoOV7/f7MzMzy8vLBFDkqKm31v75n/85DQNarVY4HAZyZrrBTGh6CI0RDhYtBKvV6k9+8hO4aCRYcVPJqczPz9frdby509PT4+NjWplAPLl9+zYJDgrjOViGUx7o5E7v/OXlZVgtZHhtNtv5+Tn8EY/Hwynx4XAYQjrmBmyfVs3Pnj2j6M/tdjcajYcPH9JzlPY/kBk7nc6Pf/zj4XD47W9/m76vKysr+/v7FEu12+0XX3wRltv6+nqj0SDNZrfbg8EgfZOOjo4ol/D7/YVCQdQLkcqhKyAuAhwLDAqq/tGjR4LzItqGDIdDBMXpdKJ+oBMgK3AGOJwNlUxdKOkSo9FIRSTNz6Fcc4xDr9cDx8TPgBxar9fj8Xir1QLX0b711lsffPABDKVarcbpNuLcS85fI/QHfcMLBS1vNBqvvvoqdQrMHcxSMrlUOJEqJH1iMBiortzd3YXnD6UYu0VjS3JOdMjq9/t0aPB6vXRepcwL/J8iEwqMiKba7fbJyQlJI+qyOcmCuvparRYIBPr9Pk1PwuEwAMlPfvKT0WjEhMJXIJ9OL8tMJvPmm2/SIzIajTocjouLC2hFvV5vfX0dMgT9BpPJZDab5XQJg8GQTCYp8RYd+SORCFWdaAvKUo6Pj8PhcK1WIzbpdDoMFSRKziJxag05dJqch0KhwWCwvb3d6XTW19fxQzEBvKPVasXGhcNhsLLZ2dnj4+N79+5tbGyAjq+treHkar/73e/WarUnT56gduhseHBwgECIM3tZG1ructIcjN6tra3Z2VnMKjGC0Wjc2toilw23giNutra2iKExIuTUyV4+efIEYLhUKiWTSSqjKTvheC2gceFPUbICwaLb7dK9VvTKX1xcBDrb2NjodruBQABCCuXu9L6gPSdo40cffdRqtWKxGOypSqUSCATW1tZsNhvuM1vq//7f/8uxWxCgyY9AVQKohu3SaDTK5XK73eZYXCrpSCgAwyDQ4XAYtBeKAyXRwWCQUga1Wv3CCy+gw6FagTQDT0EfpB0iYQs7Ckj+4ODgxo0bfr9/b28PF4cDQcC7IpEIsTcZcHY1XVZ6vZ623W7/5V/+5aNHjx49evTgwYN33nmHnok05gdFhjqRz+epmTk/P6f61uVywYKhwwiEJbLJeKqpVIpjZKgK4uQLmmsiTKRJAXzS6TSHi3NQRyaTabfb+DGwAsfj8cHBwd/6W38LRloymQSZ2d7ehicCvx4AcWdnJ51Ov/DCC6VS6ec//zlzQSEXkD5p6zt37jx9+rRYLGYymc3Nzd3dXQgje3t7d+7coUxlPB7Pzs6ura3Nzs5iHSaX530DG9Osgobv7HIOCOEcRHAh0auc7iWhUIgDFtLp9PLyMtuPTqK0SOB4gcFggCTF43FIfoAKSCFuEBywTCbDZJLvdrvdMzMz0FbIu1KTCWeHdkeNRoMNHw6H4dNqtVrtnTt3Li4uADTOzs6cTue//Jf/kvRBu90mpMYu0rWEU+HINoEVcuhWNpsluS6SK+Rs4KqEw2GSqvAzwSo+//zzW7duzc3NUbUIuo4RpUoH4eDwBfAiEE8iTJxB8oEwVwlKqZQKhUKLi4t0VqC1WywWK5fLBwcHa2tro9GIdp4ff/zx4eEhZbWVSoUDHTKZTKlUevXVV7/2ta8NBgMyBZFIZGdnh0AGXh3p/q2tLdqjwG0ElqVUlXoYDDEJAtYb8gGedbFYxG+l6Q4nA7JxSW1QHgJ0iBdydnYGiFIulz///HN6OtNIlQ0AWwJs9+nTp2AY0CTPz8/JaOBgcoYFDCvt7Owsjoz4zM/Pf/vb3xZ0bNgocLdJTXGuIaE23nsikUin0x6PB8IWHAh6DcFc5cQKgqhiscjrwSqmQQLJfmBzIEv6QS0uLoKtEkdRuEcDDU6nEcV97777LkEH7JjV1VUaLqFdOXiBg19BzcW0fvbZZxcXF8DhvDJOOFF3NBql6zg8ZiCZmzdvYss5O4rky9zcnFqtTqVSmUwGN5xkt8lkol8wcBlVGI1Gg8YYnGDALqdBBY3rBoMBcp9IJGBiEkIDw9MhhKKB4+Pjfr9PyEoe1WAwUO68vr7OaXd4PNQ80s6LONNgMNy6dYv4VqvVaoQQ4DwKL0EcdwxwBmeVg5QGgwFUFHqa879f+cpXOF2vWq1yNNTR0RF85QcPHkDDIv9La6lSqXT9+vUvfelLdATguNJCoSCarAYCAbr20bkZxhjhH8Lx5MmTVqtFXOBwOL7zne+QM8Pl5mQKOKKQ0wGUzs7O4OPAp+WYc/Yo7+73+7///e/Tcoq8bjKZhCRXr9fp103HFsjDTqdzbm6OYziIaeEc0LV1NBrB9EdqNzY2IA2RCsnn8xhNyJgWi2VhYYEuMPgKNEXB++n3+4THwB5+vx+wORQK4YXAJkmn0yR4U6kUnZpffPFF6kJ5o263C8eAQiOakaXT6Vqtpo1Goxw98gd/8AfxeHxnZwfdgOOmVqtpIVAqlahIL5VK8FQNBsOdO3fW1tbwDFA+1Nnt7OwMBgP6ZVar1YcPH964cQOcmwIbCP9wOuhGzp9EtyzIQgglM67X6x88eDAYDBYWFgi0PB4P52UMBgOKPsingM+MRqONjQ2OPXr48CF4EYd23L9/n5LLTqcTDoc//fRTOGGNRmN1dfUrX/nKt771LXD61157DXuHi0fyExYnNAVqLDm1slwuJ5PJcDjMQUI0eaSKlwgokUhQCAWVBt4b3jrUGIoG6JIGOw2ypN/vp30TO5imaRCmaR1dKpVos+p2u8vlciKRIG9JMpKzcQCBqNihfJ59TvfQarWaTqd/LQ3/7J/9M7fbzTFRc3Nz3/nOdyCDcDXdUIkJCZQBy5LJJEg+CWicf5fLRd9leEeQhsku0vwelrDD4fjkk0/YWCcnJzT3ox0TzibVDaRtTCYTcKRo4k3eaGNjY3V1laJKnU5Hkw21Wv3gwYNUKtVut5eXl+G8cADc9vY21XDRaJRVdDqdH3zwAY3itFptLBarVqsvv/zyz3/+c7po0bqKhm3U+XP+ijjws9vtptPp8/NzEobiQJSTk5N4PE4Gp1ar4UvR+o+TGUhnkwGmx7FWq4WdBnCn0WhoH4xR8Pl8FxcXBBSUAnM0AdWhhGlQmKjI9nq9IL8wb+mU1e12OZSFNrMIK6+m0+l+bRo4ZADzKVKCUMHYpjdu3ABHAyWlzRF9Dn70ox998cUXVGsg44VCAUcaRjmq/sMPP6RoaTgcIoLRaJSTOYLBIIXhUF7pDtPpdDi7OJPJUJtLWTTyBOj75ptvgmEAVJ+enmYymdFo9M1vflOv17/88suoBIPBsLe3p1Kpvv71r1+/fv3FF18kGiQlK3rNkCYglyjoXjRlpeCYOn/o43hqgHKUwIqhMrOJRGJ3d/fRo0crKyvz8/MQJLFKMAVv376NdqTAiwSH6GZBnugrX/kKnCC8E5fLtbGxQauyarVKvyzoEQ6Ho1wuP3z4kJiiVCpxnF+tVgN1IE6Be6C6PCqStNHR0RHF8r/WDScnJ1BIyuXy3Nzc7/7u78KwxnEDcATdrFQqu7u7MzMztGQmB7G2tsZxSg6Hg3MJIEn0er379+83Gg3qt0Tov7e39+TJE5wsCnyB7ThfEL+P1kasGTE6p7jCRAK0pxECVLl0Oh2NRufn51GPHDoOWGQ2m9n0gKTD4fDp06fQMLvd7sOHD+n1RDUAdLT9/f1er3f9+vX19XWTyUTTu/X1ddIl+AE0FKBnPQxK+BD0BIUihb2n+zD41Wg0gtwci8Xg8nM6Eifu2Ww2snG0EoM8QP0g3azZh/CzMUYsM2dSUkxMd0t6KeH5ORwO2p+xkbBQNBGj4wzP1c7MzFBDcnZ2xnTMz8//3u/9HsJB7xUyfvTuo6KGDo+0VSA5RK6dRCraEtou9Za4+pzwTR4I9n2r1eJE4l6vRx9USmjw8ClggotBujIQCADjIP7MBdkBkgXsPFpsAkHiVEIaIx4myU6SxePx3L9/nx4XpK2Pjo5o3gBtn3gdre7xeIhoqBhGq2Mx6bwHs0gcLCDOzgBLWFtbQ4vAoYKLu7m5SZ+8bDYLwYIKRNaYmknOUYUUQi6XlhgWi4WTDiuVChuVOff7/TibFoulXq/fv3+fk6iz2ezh4SGpVLQdBwJy7I/RaFT/2Z/9GaKKySBjRPQJXUelUvV6PZgj6ssPEQ5lr3Dd4OfodDr8fKZAUBaEuEBrwx7hlxDE8gg6tqsuD5gmDY04QuijIAlkDR4vOTZej71Fypj6bpi93Ip8HYfgEi7BN0EngxrJkTbADl4LhwCC8hJo0GyQMm1AcXJ7bAnQcaBlqic44IOxsSk5EZR2XQSTwjMlvhM0DujdiDX/IAPOSPDw6DpC1CASC+Tnxpcf0gvCDYD4zwVEDP8/KOUcn7yVE1oAAAAASUVORK5CYII=
0.0.1.4 B. S. 383: Photonendichte

Aus der Verteilung der Schwärzungen folgert der Metzler eine Photonendichteverteilung:

Die Dichte der Photonen ist proportional zur Intensität II und damit proportional zum Quadrat der Amplitude der elektrischen Feldstärke \mathcal{E}^22. (Metzler, S. 383)

Richtiger dürfte aber nur von einer Dichte der Schwärzungen, nicht von einer Dichte der Photonen hinter dem Doppelspalt, gesprochen werden. Die schwarz gefärbten Kristalle sind nicht Photonen!

.cache/331c6fde7c37e796f317eb9ea8732c9e.png
Size: 422x294
Scaled to: 422x294
0.0.1.5 B. S. 383: Aufgaben
0.0.1.5.2 Aufgabe 1

Die kleinste Lichtintensität, die das menschliche Auge noch wahrnehmen kann, liegt bei I = 10^{-10} \,\frac{\mathrm{W}}{\mathrm{m}^2}I = 1010 W m2 . Wie viele Photonen (\lambda = 560 \,\mathrm{nm}λ = 560nm) treten bei dieser Intensität pro Sekunde in eine Pupille der Fläche A = 0{,}5 \,\mathrm{cm}^2A = 0,5cm2 ein?

\frac{n}{1 \,\mathrm{s}} = \frac{A I}{h f} = \frac{A I}{h c} \cdot \lambda \approx 14 \cdot 10^3 \,\frac{1}{\mathrm{s}}; n 1s = AI hf = AI hc λ 14 1031 s;

Bei der Herleitung der Lösung hilft es, die Einheiten zu betrachten: Weiß man, dass \left[h f\right] = 1 \,\mathrm{J} hf = 1J und dass \left[I\right] = 1 \,\frac{\mathrm{J}}{\mathrm{s} \cdot \mathrm{m}^2} I = 1 Js m 2 , so kann man erkennen, dass es nur eine denkbare Möglichkeit für die Formel gibt, wenn die Größen AA, II und ff in ihr vorkommen und das Ergebnis die Einheit 1 \,\frac{1}{\mathrm{s}}11 s tragen soll.

0.0.1.5.3 Aufgabe 2

Ein Laser habe eine Strahlungsleistung von P = 1 \,\mathrm{mW}P = 1mW bei \lambda = 632{,}8 \,\mathrm{nm}λ = 632,8nm und einen Strahlquerschnitt von A_{\odot} = 4 \,\mathrm{mm}^2A = 4mm2.

a)

Wie groß ist die Anzahl der Photonen, die pro Sekunde auf A_{\perp} = 1 \,\mathrm{mm}^2A = 1mm2 einer Fläche senkrecht zum Strahl treffen?

\frac{n}{1 \,\mathrm{s}} = \frac{\frac{A_{\perp}}{A_{\odot}} P}{h f} = \frac{\frac{A_{\perp}}{A_{\odot}} P}{h c} \cdot \lambda \approx 8 \cdot 10^{14} \,\frac{1}{\mathrm{s}}; n 1s = A AP hf = A AP hc λ 8 10141 s;

b)

Vergleichen Sie die Intensität des Laserlichts mit der des Sonnenlichts (I_{\text{Sonne}} = 1{,}36 \,\frac{\mathrm{kW}}{\mathrm{m}^2}ISonne = 1,36kW m 2 ).

\frac{P}{A_{\odot}} \approx 3 \cdot 10^2 \,\frac{\mathrm{W}}{\mathrm{m}^2} \approx 5 \cdot I_{\text{Sonne}}; P A 3 102 W m2 5 ISonne;

0.0.1.5.4 Missverständlich: Photonenstrom?

Bei Aufgabe 1) treten nicht Photonen in die Pupille ein, sondern Licht. In der Pupille kommt es dann zu elementaren Wechselwirkungsereignissen zwischen dem Licht und den Lichtrezeptoren. Es ist nicht zulässig, von einem "Photonenstrom" zu sprechen.

Analog treffen auch bei Aufgabe 2) nicht Photonen auf die Querschnittsfläche, sondern Licht.

0.0.1.6 B. S. 384: Anwendung des Gesetzes der großen Zahlen

Betrachtet man die Schirmfärbungen einer Lichtquelle variabler Intensität, so bemerkt man, dass sich die Färbungsverteilung mit zunehmender Intensität der Intensitätsverteilung auf der Höhe des Schirms immer mehr angleicht.

Wir kennen das aus der Stochastik: Die Augenzahlverteilung nach zehnmaligen Werfen eines Würfels weicht noch stark von der "theoretischen" Verteilung bei unendlich vielen Würfeln ab.

Es folgt ein interessanter Sachverhalt: Beobachtet man eine bestimmte Stelle des Schirms, so lässt sich nicht voraussagen, wann eine Färbung eintritt. Es lässt sich aber vorhersagen, wie viele Färbungen pro Zeiteinheit durchschnittlich zu erwarten sind.

Ein ähnliches Phänomen kennen wir bereits aus dem Physikunterricht der 10. Klasse: Es lässt sich nicht vorhersagen, wann ein radioaktiver Kern zerfallen wird; es lässt sich aber vorhersagen, wie viele Zerfälle pro Zeiteinheit durchschnittlich zu erwarten sind.

.cache/01a29b90bf91a231ab6a953d9630a955.png
Size: 431x276
Scaled to: 431x276
0.0.1.7 B. S. 386: De-Broglie-Wellen

Die für Photonen geltenen Formeln E = h fE = hf und p = \frac{h}{f}p = h f lassen sich auf andere Teilchen übertragen.

Beispielsweise ist die de-Broglie-Frequenz eines ruhenden Elektrons (E_0 = 511 \,\mathrm{keV}E0 = 511keV) f_e = \frac{E_e}{h} \approx 1{,}24 \cdot 10^{20} \,\mathrm{Hz}fe = Ee h 1,24 1020Hz (\lambda \approx 2{,}43 \,\mathrm{pm}λ 2,43pm).

0.0.1.7.5 Wellenlänge eines ruhenden Elektrons = Compton-Wellenlänge!

Interessanterweise haben wir diese Wellenlänge bereits im Kontext des Compton-Effekts unter dem Namen "Compton-Wellenlänge" kennengelernt:

f_{\text{C}} = \frac{c}{\lambda_{\text{C}}} = \frac{c}{\frac{h}{m_e c}} = \frac{m_e c^2}{h} = \frac{E_e}{h} = f_e;fC = c λC = c h mec = mec2 h = Ee h = fe;

[XXX v \neq c;vc;]

0.0.1.7.6 Wellenmedium?

Der Metzler beantwortet nicht die wichtige Frage, in welchem Medium sich de-Broglie-Wellen ausbreiten, bzw. genauer: welche physikalische Größe bei de-Broglie-Wellen schwingt.

Gezeigt wird nur, dass man, wenn man mit de-Broglie-Wellenlängen genauso umgeht, wie man es mit elektromagnetischen Wellenlängen tut, Interferenzberechnungen anstellen kann.

0.0.1.8 B. S. 387: Interferenz von Elektronen

Elektronenwellen interferieren am Doppelspalt oder an BRAGGkristallen "ähnlich" wie elektromagnetische Wellen; es sind die gleichen Formeln, wie beispielsweise \Delta s = n \lambda = b \cdot \sin\alphaΔs = nλ = b sinα, gültig.

Elektronen sind also nicht "klassiche Teilchen"; man sieht beim Doppelspaltexperiment mit Elektronen keinen "Schatten", sondern ein Interferenzmuster.

Schwierig ist wegen der sehr kleinen Elektronenwellenlänge die praktische Durchführung von Elektroneninterferenzexperimenten: Anstatt Spalte nutzen zu können, ist man auf von der Natur vorgefertigte (und damit nur begrenzt veränderbare) Kristalle mit festen Netzebenenabständen angewiesen.

Auch gibt es für Elektronen kein "durchsichtiges" Material, wie es beispielsweise die Luft für sichtbares Licht ist; man muss daher mit dem Vakuum hantieren.

0.0.1.9 B. S. 389: Vollständige Beschreibung?

Das Verhalten von Elektronen wird nur dann vollständig beschrieben, wenn man zur Ausbreitung Welleneigenschaften und für die Wechselwirkung Teilcheneigenschaften verwendet. (Metzler, S. 389)

Diese Aussage ist in zweifacher Hinsicht missverständlich.

Abgesehen davon, dass es Elektronen nur im Modell gibt, wird das Verhalten von Elektronen in jeder denkbaren Situation nicht durch die Kombination Wellen-/Teilcheneigenschaften beschrieben; genauer müsste der Satz lauten:

Das Verhalten von Elektronen wird nur dann für alle uns momentan bekannten Fälle treffend beschrieben, wenn man zur Ausbreitung Welleneigenschaften und für die Wechselwirkung Teilcheneigenschaften verwendet.

0.0.1.10 B. S. 389: Wechselwirkung ⇔ Teilcheneigenschaften?

Außerdem muss noch eingeschränkt werden, welche Wechselwirkungen mit Teilcheneigenschaften beschrieben werden müssen: Wechselwirken nämlich zwei Elektronenwellen miteinander – beispielsweise bei der Interferenz am Doppelspalt –, so ist eine Beschreibung mithilfe der Teilcheneigenschaften nicht möglich (bzw. wenig treffend).

Stattdessen muss man (naheliegenderweise) bei der Wechselwirkung Elektronenwelle↔Elektronenwelle die Welleneigenschaften nutzen. Korrekt müsste daher der Satz lauten:

Das Verhalten von Elektronen wird nur dann für alle uns momentan bekannten Fälle treffend beschrieben, wenn man zur Ausbreitung Welleneigenschaften und für die Wechselwirkung mit Materie Teilcheneigenschaften verwendet.

0.0.1.11 B. S. 389: Aufgaben
0.0.1.11.7 Aufgabe 1

Zum Versuch von Jönsson: Elektronen werden mit einer Spannung U_{\text{A}} = 54{,}7 \,\mathrm{kV}UA = 54,7kV beschleunigt, bewegen sich durch einen sehr feinen Doppelspalt mit dem Spaltabstand d = 2 \,\mu\mathrm{m}d = 2μm und werden im Abstand von e = 40 \,\mathrm{cm}e = 40cm registriert. Berechnen Sie die Wellenlänge \lambdaλ der Elektronen und den Abstand aa der Interferenzmaxima auf dem Bildschirm.

E = E_0 + e U_{\text{A}} = h f = h c / \lambda;E = E0 + eUA = hf = hcλ;\lambda = \frac{h c}{E_0 + e U_{\text{A}}} \approx 2{,}19 \,\mathrm{pm};λ = hc E0+eUA 2,19pm;

\lambda = d \sin\alpha = d \sin \arctan \frac{a}{e} \approx \frac{d a}{e};λ = dsinα = dsinarctan a e da e ;a \approx \frac{\lambda e}{d} \approx 438 \,\mathrm{nm};a λe d 438nm; (!!)

0.0.1.11.8 Aufgabe 3

Berechnen Sie die de-Broglie-Wellenlänge einer Metallkugel der Masse m = 1 \,\mathrm{g}m = 1g, die sich mit v = 1 \,\frac{\mathrm{m}}{\mathrm{s}}v = 1m s bewegt. Warum ist es praktisch unmöglich, in diesem Fall Interferenzen nachzuweisen?

p = m v = h / \lambda;p = mv = hλ;\lambda = \frac{h}{m v} \approx 6 \cdot 10^{-31} \,\mathrm{m};λ = h mv 6 1031m;

Um Interferenzphänomene beobachten zu können, benötigt man Objekte in der Größenordnung der Wellenlänge – beispielsweise Kristalle mit einem Netzebenenabstand der Wellenlänge.

Sogar die atomaren Maßstäbe sind aber viel größer als die Wellenlängen makroskopischer Objekte.

0.0.1.12 Fragen
0.0.1.12.9 Unsymmetrie Photonen vs. Elektronen

Wenn wir von der Ausbreitung von Licht reden, denken wir uns eine sich ausbreitende Welle. Wir denken uns nicht, Licht bestünde aus Photonen; wir reden auch nicht von Photonenströmen.

Bei der Ausbreitung von Elektronen dagegen spricht der Metzler von sich bewegenden Elektronen, die lediglich in ihrer Ausbreitung Wellencharakter aufweisen. Außerdem ist es bei Elektronen anscheinend auch im Kontext der Interferenzexperimente sehr wohl zulässig, von einem Elektronenstrom zu sprechen.

Ist es möglich, diese Unsymmetrie aufzulösen?

0.0.1.12.10 Auswirkungen der Polarisation beim Fotoeffekt

Laut Metzler (S. 382, unten links) hat die Polarisation der einfallenden Lichtwellen einen Einfluss auf die Emissionsrichtung der Elektronen. Wie deutet man das?

Die Polarisationsrichtung als "Bewegungsrichtung" der Photonen zu nehmen scheitert, widerspricht sie doch unserer Deutung des Phänomens, dass Kometenschweife immer von der Sonne weg gerichtet sind; die Impulsrichtung ist nicht von der Signalrichtung, sondern von der Ausbreitungsrichtung abhängig.

Die Welleneigenschaften beschreiben den Fotoeffekt aber nur unzufriedenstellend – der Fotoeffekt war ja gerade die Motivation, von Photonen zu sprechen.

Wie also kann man die Signalrichtung – eine Größe des Wellenmodells – auf bestimmte Eigenschaften der Photonen zuordnen?

0.0.1.13 Bildquellen
  • http://netmeme.org/blog/archives/images/darwin-ape.jpg

  • http://www.hqrd.hitachi.co.jp/em/emgif/fig2.gif