0.0.1 ↑ 32. Hausaufgabe
0.0.1.1 ↑ Selbstgestellte Aufgabe
f(x) = \begin{cases} {} x & \text{f"ur } -1 \leq x \leq 1; \\ {} x^2 - x & \text{f"ur } x > 1; \end{cases}
\lim\limits_{x \to 1+} = \lim\limits_{h \to 0} f(1 + h) = \lim\limits_{h \to 0} 1 + 2h + h^2 - 1 - h = \lim\limits_{h \to 0} h^2 + h = 0 + 0 = 0;
\lim\limits_{x \to 1-} = \lim\limits_{h \to 0} f(1 - h) = \lim\limits_{h \to 0} 1 - h = 1 - 0 = 1;