0.0.1 ↑ 40. Hausaufgabe
0.0.1.1 ↑ Selbstgestellte Aufgabe
f(x) = ax^3 + bx^2 + cx + d berührt die Gerade g(x) = 12x + 13 in A(-1, 1) und hat in B(1, 5) eine waagrechte Tangente.
{} f(-1) = 1 = -a + b - c + d; \\ {} \qquad \Rightarrow d = 1 + a - b + c; \\ {} f(1) = 5 = a + b + c + d = a + b + c + 1 + a - b + c; \\ {} \qquad \Rightarrow 4 = 2a + 2c; \\ {} \qquad \Rightarrow c = 2 - a; \\ {} f'(-1) = 0 = 3a + 2b + c = 3a + 2b + 2 - a; \\ {} \qquad \Rightarrow -2 = 2a + 2b; \\ {} \qquad \Rightarrow b = -1 - a; \\ {} f'(-1) = 12 = 3a - 2b + c = 3a + 2 + 2a + 2 - a = 4a + 4; \\ {} \qquad \Rightarrow 8 = 4a; \\ {} \qquad \Rightarrow a = 2; \\ {} \qquad \Rightarrow b = -1 - 2 = -3; \\ {} \qquad \Rightarrow c = 2 - 2 = 0; \\ {} \qquad \Rightarrow d = 1 + 2 + 3 = 6; \\ {} \qquad \Rightarrow f(x) = 2x^3 - 3x^2 + 6;