0.0.1 ↑ 46. Hausaufgabe
0.0.1.1 ↑ Selbstgestellte Aufgabe
f(x) = x^4 - 4x^2 = x^2\left(x^2 - 4\right) = x^2\left(x + 2\right)\left(x - 2\right);
- Nullstellen
N_1(-2, 0); \quad N_2(0, 0); \quad N_3(2, 0);
- Symmetrie
f(-x) = x^4 - 4x^2 = f(x); ⇒ Symmetrie zur y-Achse
- Extrema
f'(x) = 4x^3 - 8x = 4x\left(x^2 - 2\right) = 4x\left(x + \sqrt{2}\right)\left(x - \sqrt{2}\right) = 0; \\ f''(x) = 12x^2 - 8; ⇒
- x_1 = -\sqrt{2};
f''(x_1) = f''(-\sqrt{2}) > 0; \Rightarrow P_{\mathrm{TIP}}(-\sqrt{2}, -4);
- x_2 = 0;
f''(x_2) = f''(0) < 0; \Rightarrow P_{\mathrm{HOP}}(0, 0);
- x_3 = \sqrt{2};
f''(x_3) = f''(\sqrt{2}) > 0; \Rightarrow P_{\mathrm{TIP}}(\sqrt{2}, -4);
- Monotoniebereiche
f'(x) = 4x\left(x + \sqrt{2}\right)\left(x - \sqrt{2}\right) > 0; ⇒
f ist in sms in \left] -\sqrt{2}, 0 \right[ \cup \left] \sqrt{2}, \infty \right[;
f ist in smf in \left] -\infty, -\sqrt{2} \right[ \cup \left] 0, \sqrt{2} \right[;
- Graph