Zuletzt geändert: So, 26.06.2005

«11C» 51. Hausaufgabe «PDF», «POD»



Inhaltsverzeichnis:

0.0.1 51. Hausaufgabe

0.0.1.1 Blatt

l = 1,\!09\mathrm{m}; \alpha_{\mathrm{max}} = 4,\!0^\circ;l = 1,09m;αmax = 4,0;

a)

T = 2\pi \sqrt{\dfrac{l}{g}} = \ldots = 2,\!1\mathrm{s};T = 2π l g = = 2,1s;

A = l \alpha_{\mathrm{max}} = \ldots = 7,\!6\mathrm{cm};A = lαmax = = 7,6cm;

b)

v_{\mathrm{max}} = A \omega = A \dfrac{2\pi}{T} = 0,\!23\frac{\mathrm{m}}{\mathrm{s}};vmax = Aω = A2π T = 0,23m s ;

c)

\alpha = 2,\!0^\circ;α = 2,0;

y = l \alpha = A \cdot \sin \omega{}t = l \alpha_{\mathrm{max}} \sin\!\left[\dfrac{2\pi}{T} t\right]; \Rightarrow \dfrac{\alpha}{\alpha_{\mathrm{max}}} = \sin\!\left[\dfrac{2\pi}{T} t\right];y = lα = A sinωt = lαmaxsin 2π T t; α αmax = sin 2π T t;

\arcsin\!\left[\dfrac{\alpha}{\alpha_{\mathrm{max}}}\right] = \dfrac{2\pi}{T} t; \Rightarrow t = \dfrac{T}{2\pi} \arcsin\!\left[\dfrac{\alpha}{\alpha_{\mathrm{max}}}\right] = \ldots = 0,\!18\mathrm{s};arcsin α αmax = 2π T t; t = T 2πarcsin α αmax = = 0,18s;

d)

v(t) = A\omega \cdot \cos \omega{}t;v(t) = Aω cosωt;

v(0,\!18\mathrm{s}) = \ldots = 0,\!20\frac{\mathrm{m}}{\mathrm{s}};v(0,18s) = = 0,20m s ;