0.0.1 ↑ 51. Hausaufgabe
0.0.1.1 ↑ Blatt
l = 1,\!09\mathrm{m}; \alpha_{\mathrm{max}} = 4,\!0^\circ;
- a)
T = 2\pi \sqrt{\dfrac{l}{g}} = \ldots = 2,\!1\mathrm{s};
A = l \alpha_{\mathrm{max}} = \ldots = 7,\!6\mathrm{cm};
- b)
v_{\mathrm{max}} = A \omega = A \dfrac{2\pi}{T} = 0,\!23\frac{\mathrm{m}}{\mathrm{s}};
- c)
\alpha = 2,\!0^\circ;
y = l \alpha = A \cdot \sin \omega{}t = l \alpha_{\mathrm{max}} \sin\!\left[\dfrac{2\pi}{T} t\right]; \Rightarrow \dfrac{\alpha}{\alpha_{\mathrm{max}}} = \sin\!\left[\dfrac{2\pi}{T} t\right];
⇒ \arcsin\!\left[\dfrac{\alpha}{\alpha_{\mathrm{max}}}\right] = \dfrac{2\pi}{T} t; \Rightarrow t = \dfrac{T}{2\pi} \arcsin\!\left[\dfrac{\alpha}{\alpha_{\mathrm{max}}}\right] = \ldots = 0,\!18\mathrm{s};
- d)
v(t) = A\omega \cdot \cos \omega{}t;
v(0,\!18\mathrm{s}) = \ldots = 0,\!20\frac{\mathrm{m}}{\mathrm{s}};