Zuletzt geändert: Do, 25.11.2004

«11C» Bewegungen auf der Schiefen Ebene «PDF», «POD»



Inhaltsverzeichnis:

0.0.1 Bewegungen auf der Schiefen Ebene

#FIG 3.2
Landscape
Center
Metric
A4      
100.00
Single
-2
1200 2
1 3 0 1 0 7 50 -1 10 0.000 1 0.0000 2340 1170 90 90 2340 1170 2430 1170
2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 0 1 3
	0 0 1.00 105.00 150.00
	 1620 2610 1980 1890 2340 1170
2 3 0 1 0 7 50 -1 -1 0.000 0 0 -1 0 0 5
	 450 450 450 3150 5850 3150 450 450 450 450
2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 1 0 2
	0 0 1.00 105.00 150.00
	 2340 1170 2340 2970
2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 1 0 3
	0 0 1.00 105.00 150.00
	 1620 2610 1980 2790 2340 2970
2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 1 1 3
	0 0 1.00 56.72 81.03
	0 0 1.00 56.72 81.03
	 3060 1530 2535 1267 2010 1004
2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 1 0 3
	0 0 1.00 105.00 150.00
	 2340 1170 2700 450 3060 -270
4 0 0 50 -1 0 12 0.0000 4 180 330 2430 2250 F_G\001
4 0 0 50 -1 0 12 0.0000 4 180 315 2790 540 F_E\001
4 0 0 50 -1 0 12 0.0000 4 180 330 1620 1890 F_N\001
4 0 0 50 -1 0 12 0.0000 4 180 330 1620 2970 F_H\001
4 0 0 50 -1 0 12 0.0000 4 180 315 1980 900 F_R\001
4 0 0 50 -1 0 12 0.0000 4 180 330 2880 1350 F_H\001

Gesamtkraft: \overrightarrow{F} = \overrightarrow{F_H} + \overrightarrow{F_R};F = FH + FR ;

\sin \alpha = \frac{F_H}{F_G} = \frac{F_H}{m g}; \Rightarrow F_H = mg \cdot \sin \alpha;sinα = FH FG = FH mg ; FH = mg sinα;

\cos \alpha = \frac{F_N}{F_G} = \frac{F_N}{m g}; \Rightarrow F_N = mg \cdot \cos \alpha;cosα = FN FG = FN mg ; FN = mg cosα;

F_R = \mu \cdot F_N = \mu m g \cdot \cos \alpha;FR = μ FN = μmg cosα;

F = F_H - F_R = mg\left(\sin \alpha - \mu \cos \alpha\right);F = FH FR = mg sinα μcosα;

a = \frac{F}{m} = g \cdot \left(\sin \alpha - \mu \cos \alpha\right);a = F m = g sinα μcosα;