Zuletzt geändert: Di, 10.10.2006

«K12/K13» 102. Hausaufgabe «PDF», «POD»




0.0.1 102. Hausaufgabe

0.0.1.1 Geometrie-Buch Seite 215, Aufgabe 3c

Zeige, dass die Ortsvektoren \vec AA, \vec BB und \vec CC einen Würfel aufspannen.

\vec A = \left(\!\begin{smallmatrix}a\\a+1\\a\left(a+1\right)\end{smallmatrix}\!\right)\!; \quad \vec B = \left(\!\begin{smallmatrix}a+1\\-a\left(a+1\right)\\a\end{smallmatrix}\!\right)\!; \quad \vec C = \left(\!\begin{smallmatrix}a\left(a+1\right);\\a\\-a-1\end{smallmatrix}\!\right)\!;A = a a+1 aa+1 ;B = a+1 aa+1 a ;C = aa+1; a a1 ;

\left|\vec A\right| = \left|\vec B\right| = \left|\vec C\right| = \sqrt{a^2 + \left(a^2 + 2a + 1\right) + \left(a^3 + 2a^2 + a\right)} = \sqrt{a^3 + 4a^2 + 3a + 1}; A = B = C = a2 + a2 + 2a + 1 + a3 + 2a2 + a = a3 + 4a2 + 3a + 1;

\vec A \cdot \vec B = \vec B \cdot \vec C = \vec C \cdot \vec A = a \left(a + 1\right) - \left(a + 1\right)^2 a + a^2 \left(a + 1\right) = a^2 + a - a^3 - 2a^2 - a + a^3 + a^2 = 0;AB = BC = CA = a a + 1a + 12a+a2 a + 1 = a2+aa32a2a+a3+a2 = 0;

0.0.1.2 Geometrie-Buch Seite 215, Aufgabe 4b

Für welche Werte von uu ist \vec a \perp \vec ba b, \vec a \perp \vec ba b, \vec b \perp \vec cb c?

\vec a = \left(\!\begin{smallmatrix}u+1\\2-u\\-1\end{smallmatrix}\!\right)\!; \quad \vec b = \left(\!\begin{smallmatrix}u\\u+2\\u+4\end{smallmatrix}\!\right)\!; \quad \vec c = \left(\!\begin{smallmatrix}2-3u\\u\\2+2u\end{smallmatrix}\!\right)\!;a = u+1 2u 1 ;b = u u+2 u+4 ;c = 23u u 2+2u ;

\vec a \vec b = u^2 + u - \left(u^2 - 4\right) - u - 4 = 0;ab = u2 + u u2 4 u 4 = 0;

\vec b \vec c = 2u - 3u^2 + u^2 + 2u + 2u + 2u^2 + 8 + 8u = 14u + 8 = 0;bc = 2u 3u2 + u2 + 2u + 2u + 2u2 + 8 + 8u = 14u + 8 = 0;u = -\frac{4}{7};u = 4 7;

\vec a \vec c = 2u - 3 u^2 + 2 - 3u + 2u - u^2 - 2 - 2u = -u - 4u^2 = 0;ac = 2u 3u2 + 2 3u + 2u u2 2 2u = u 4u2 = 0;u_1 = 0; \quad u_2 = -\frac{1}{4};u1 = 0;u2 = 1 4;

0.0.1.3 Geometrie-Buch Seite 216, Aufgabe 10b

Berechne die Winkel des Dreiecks ABCABC.

A(1,-6,-6); \quad B(2,2,-2); \quad C(0,-2,2);A(1,6,6);B(2,2,2);C(0,2,2);

\frac{\overrightarrow{AC} \overrightarrow{AB}}{\left|\overrightarrow{AC}\right| \left|\overrightarrow{AB}\right|} = \frac{-1 + 32 + 32}{\sqrt{1^2 + 4^2 + 8^2} \sqrt{1^2 + 8^2 + 4^2}} = \frac{63}{81} = \frac{7}{9} = \cos\alpha; ACAB ACAB = 1+32+32 12 +42 +8212 +82 +42 = 63 81 = 7 9 = cosα;

-\frac{\overrightarrow{BC} \overrightarrow{AB}}{\left|\overrightarrow{BC}\right| \left|\overrightarrow{AB}\right|} = -\frac{-2 - 32}{\sqrt{\left(-2\right)^2 + \left(-4\right)^2 + 0^2} \sqrt{1^2 + 8^2 + 4^2}} = \frac{34}{9 \sqrt{20}} = \cos\beta; BCAB BCAB = 232 2 2 +4 2 +0212 +82 +42 = 34 920 = cosβ;

\frac{\overrightarrow{AC} \overrightarrow{BC}}{\left|\overrightarrow{AC}\right| \left|\overrightarrow{BC}\right|} = \frac{2 - 16}{\sqrt{1^2 + 4^2 + 8^2} \sqrt{\left(-2\right)^2 + \left(-4\right)^2 + 0^2}} = \frac{-14}{9 \sqrt{20}} = \cos\gamma; ACBC ACBC = 216 12 +42 +822 2 +4 2 +02 = 14 920 = cosγ;

0.0.1.4 Geometrie-Buch Seite 217, Aufgabe 16a

g{:}\, \vec X = \left(\!\begin{smallmatrix}1\\1\\1\end{smallmatrix}\!\right) + \lambda \left(\!\begin{smallmatrix}1\\2\\3\end{smallmatrix}\!\right)\!; \quad h{:}\, \vec X = \left(\!\begin{smallmatrix}1\\1\\1\end{smallmatrix}\!\right) + \mu \left(\!\begin{smallmatrix}1\\-5\\10\end{smallmatrix}\!\right)\!;g:X = 1 1 1 + λ 1 2 3 ;h:X = 1 1 1 + μ 1 5 10 ;

Berechne den Schittwinkel von gg und hh.

\left|\frac{\left(\!\begin{smallmatrix}1\\2\\3\end{smallmatrix}\!\right) \left(\!\begin{smallmatrix}1\\-5\\10\end{smallmatrix}\!\right)}{\left|\left(\!\begin{smallmatrix}1\\2\\3\end{smallmatrix}\!\right)\right| \left|\left(\!\begin{smallmatrix}1\\-5\\10\end{smallmatrix}\!\right)\right|}\right| = \left|\frac{1 - 10 + 30}{\sqrt{14} \sqrt{126}}\right| = \cos\varphi; 1 2 3 1 5 10 1 2 3 1 5 10 = 110+30 14 126 = cosϕ;