Zuletzt geändert: Fr, 24.11.2006

«K12/K13» 115. Hausaufgabe «PDF», «POD»




0.0.1 115. Hausaufgabe

0.0.1.1 Analysis-Buch Seite 256, Aufgabe 15h

\displaystyle\int\limits_0^{\infty} x^2 e^{-x} \,\mathrm{d}x = {}\int\limits_0^{\infty} x^2 \left(-e^{-x}\right)' \,\mathrm{d}x = {}\lim\limits_{\alpha \to \infty} \left[-x^2 e^{-x} - \int 2x \left(-e^{-x}\right) \mathrm{d}x\right]_0^{\alpha} = \\ {}\lim\limits_{\alpha \to \infty} \left[-x^2 e^{-x} + 2 \int x \left(-e^{-x}\right)' \mathrm{d}x\right]_0^{\alpha} = {}\lim\limits_{\alpha \to \infty} \left[-x^2 e^{-x} + 2 \left(-x e^{-x} - \int -e^{-x} \,\mathrm{d}x\right)\right]_0^{\alpha} = {}\lim\limits_{\alpha \to \infty} \left[e^{-x} \left(-x^2 - 2 x - 2\right)\right]_0^{\alpha} = 2;0x2exdx = 0x2 ex dx = lim αx2ex 2x ex dx 0α = limα x2ex + 2x ex dx 0α = lim αx2ex + 2 xex exdx 0α = limα ex x2 2x 2 0α = 2;

0.0.1.2 Analysis-Buch Seite 256, Aufgabe 16
a)

Für n \neq 1n1:

\int\limits_1^a \frac{\ln x}{x^n} \mathrm{d}x = {}\int\limits_1^a \left(\frac{x^{1-n}}{1-n}\right)' \ln x \,\mathrm{d}x = {}\left[\frac{x^{1-n}}{1 - n} \ln x - \int \underbrace{\frac{x^{1-n}}{1 - n} \cdot \frac{1}{x}}_{\frac{x^{-n}}{1-n}} \mathrm{d}x\right]_1^a = {}\left[\frac{x^{1-n}}{1-n} \left(\ln x - \frac{1}{1-n}\right)\right]_1^a = {}\frac{a^{1-n}}{1-n} \left(\ln a - \frac{1}{1-n}\right) + \left(\frac{1}{1-n}\right)^2;1alnx xn dx = 1a x1n 1n lnxdx = x1n 1n lnx x1n 1 n 1 x xn 1n dx1a = x1n 1n lnx 1 1n1a = a1n 1n lna 1 1n + 1 1n 2;

Für n = 1n = 1: \int \frac{\ln x}{x} \,\mathrm{d}x = \int I(\ln x) \left(\ln x\right)' \,\mathrm{d}x = \int I(t) \,\mathrm{d}t = \frac{1}{2} \ln^2 x lnx x dx =I(lnx) lnxdx =I(t)dt = 1 2 ln2x mit I(t) = t;I(t) = t;

c)

\int\limits_0^a x^n \ln x \,\mathrm{d}x = {}\left[\int \frac{\ln x}{x^{-n}} \mathrm{d}x\right]_0^a = {}\left[\frac{x^{1+n}}{1+n} \left(\ln x - \frac{1}{1+n}\right)\right]_0^a = {}\frac{a^{1+n}}{1+n} \left(\ln a - \frac{1}{1+n}\right);0axn lnxdx = ln x xndx0a = x1+n 1+n lnx 1 1+n 0a = a1+n 1+n lna 1 1+n ;

Speziell für a = 1a = 1:

\int\limits_0^1 x^n \ln x \,\mathrm{d}x = -\left(\frac{1}{1 + n}\right)^2;01xn lnxdx = 1 1+n 2;