Zuletzt geändert: Di, 20.09.2005

«K12/K13» 4. Hausaufgabe «PDF», «POD»




0.0.1 4. Hausaufgabe

0.0.1.1 Analysis-Buch Seite 15, Aufgabe 9

Zeige die Richtigkeit von

a)

\int \left(x^2 - x\right) \mathrm{d}x = \frac{1}{3}x^3 - \frac{1}{2}x^2 + C; x2 xdx = 1 3x3 1 2x2 + C;

\left(\frac{1}{3}x^3 - \frac{1}{2}x^2 + C\right)' = x^2 - x; 1 3x3 1 2x2 + C = x2 x;

b)

\int \sqrt{x} \,\mathrm{d}x = \frac{2}{3}x\sqrt{x} + C;xdx = 2 3xx + C;

\left(\frac{2}{3}x\sqrt{x} + C\right)' = \left(\frac{2}{3}x^{\frac{3}{2}} + C\right)' = x^{\frac{1}{2}} = \sqrt{x}; 2 3xx + C = 2 3x3 2 + C = x1 2 = x;

c)

\int \frac{1}{x^2} \,\mathrm{d}x = -\frac{1}{x} + C; 1 x2dx = 1 x + C;

\left(-\frac{1}{x} + C\right)' = \frac{1}{2}x^2; 1 x + C = 1 2x2;

d)

\int \sin^2 x \,\mathrm{d}x = \frac{1}{2}\left(x - \sin x \cos x\right) + C;sin2xdx = 1 2 x sinxcosx + C;

\left[\frac{1}{2}\left(x - \sin x \cos x\right) + C\right]' = \frac{1}{2}\left(1 - \cos x \cos x + \sin x \sin x\right) = \frac{1}{2}\left(1 - 1 + \sin^2 x + \sin^2 x\right) = \sin^2 x; 1 2 x sinxcosx + C = 1 2 1 cosxcosx + sinxsinx = 1 2 1 1 + sin2x + sin2x = sin2x;

e)

\int \cos^2 x \,\mathrm{d}x = \frac{1}{2}\left(x + \sin x \cos x\right) + C;cos2xdx = 1 2 x + sinxcosx + C;

\left[\frac{1}{2}\left(x + \sin x \cos x\right) + C\right]' = \frac{1}{2}\left(1 + \cos x \cos x - \sin x \sin x\right) = \frac{1}{2}\left(1 - 1 + \cos^2 x + \cos^2 x\right) = \cos^2 x; 1 2 x + sinxcosx + C = 1 2 1 + cosxcosx sinxsinx = 1 2 1 1 + cos2x + cos2x = cos2x;

f)

\int \frac{x}{\sqrt{a^2 - x^2}} \,\mathrm{d}x = -\sqrt{a^2 - x^2} + C; x a2 x2dx = a2 x2 + C;

\left(-\sqrt{a^2 - x^2} + C\right)' = -\dfrac{1}{2\sqrt{a^2 - x^2}}\left(0 - 2x\right) = \dfrac{x}{\sqrt{a^2 - x^2}}; a2 x2 + C = 1 2a2 x2 0 2x = x a2 x2;