Zuletzt geändert: Di, 21.03.2006

«K12/K13» 64. Hausaufgabe «PDF», «POD»




0.0.1 64. Hausaufgabe

0.0.1.1 Geometrie-Buch Seite 22, Aufgabe 1e

Löse das Gleichungssystem:

\begin{array}{rrr|l} {} 2 & -3 & -1 & 4 \\ {} 3 & -1 & 2 & 5 \\ {} 3 & -8 & -5 & 5 \\ \\ {} 1 & -\frac{3}{2} & -\frac{1}{2} & 2 \\ {} 3 & -1 & 2 & 5 \\ {} 3 & -8 & -5 & 5 \\ \\ {} 1 & -\frac{3}{2} & -\frac{1}{2} & 2 \\ {} 0 & \frac{7}{2} & \frac{7}{2} & -1 \\ {} 3 & -8 & -5 & 5 \\ \\ {} 1 & -\frac{3}{2} & -\frac{1}{2} & 2 \\ {} 0 & \frac{7}{2} & \frac{7}{2} & -1 \\ {} 0 & -\frac{7}{2} & -\frac{7}{2} & -\frac{7}{2} \\ \\ {} 1 & -\frac{3}{2} & -\frac{1}{2} & 2 \\ {} 0 & \frac{7}{2} & \frac{7}{2} & -1 \\ {} 0 & 0 & 0 & -\frac{7}{2} \\ \end{array}2 3 14 3 1 25 3 8 55 13 21 22 3 1 25 3 8 55 13 21 22 0 7 2 7 2 1 3 8 55 13 21 22 0 7 2 7 2 1 07 27 27 2 13 21 22 0 7 2 7 2 1 0 0 07 2

Widerspruch; also keine Lösungen

0.0.1.2 Geometrie-Buch Seite 33, Aufgabe 1

Löse die Gleichungssysteme mit dem Gauß-Verfahren:

b)

\begin{array}{rrr|l} {} -1 & -1 & 1 & 0 \\ {} 3 & 1 & 2 & 11 \\ {} -1 & -1 & 4 & 9 \\ \\ {} 1 & 1 & -1 & 0 \\ {} 0 & -2 & 5 & 11 \\ {} 0 & 0 & 3 & 9 \\ \\ {} 1 & 1 & -1 & 0 \\ {} 0 & 1 & -\frac{5}{2} & -\frac{11}{2} \\ {} 0 & 0 & 3 & 9 \\ \end{array} 1 1 10 3 1 211 1 1 49 1 1 10 0 2 511 0 0 39 1 1 10 0 15 211 2 0 0 39

x_3 = 3;x3 = 3;

x_2 = -\frac{11}{2} + \frac{5}{2} x_3 = 2;x2 = 11 2 + 5 2x3 = 2;

x_1 = x_3 - x_2 = 1;x1 = x3 x2 = 1;

d)

\begin{array}{rrr|l} {} -1 & 1 & 1 & 0 \\ {} -1 & 4 & 2 & 0 \\ {} 2 & 2 & 3 & 0 \\ \\ {} 1 & -1 & -1 & 0 \\ {} 0 & 3 & 1 & 0 \\ {} 0 & 10 & 7 & 0 \\ \\ {} 1 & -1 & -1 & 0 \\ {} 0 & 1 & \frac{1}{3} & 0 \\ {} 0 & 0 & \frac{11}{3} & 0 \\ \end{array} 1 1 10 1 4 20 2 2 30 1 1 10 0 3 10 0 10 70 1 1 10 0 1 1 30 0 0 11 3 0

x_3 = x_2 = x_1 = 0;x3 = x2 = x1 = 0;

e)

\begin{array}{rrr|l} {} 2 & -3 & -1 & 4 \\ {} 3 & -1 & 2 & 5 \\ {} 3 & -8 & -5 & 5 \\ \\ {} 1 & -\frac{3}{2} & -\frac{1}{2} & 2 \\ {} 0 & 7 & 7 & 0 \\ {} 0 & -\frac{7}{2} & -\frac{7}{2} & -1 \\ \\ {} 1 & -\frac{3}{2} & -\frac{1}{2} & 2 \\ {} 0 & 1 & 1 & 0 \\ {} 0 & -\frac{7}{2} & -\frac{7}{2} & -1 \\ \\ {} 1 & -\frac{3}{2} & -\frac{1}{2} & 2 \\ {} 0 & 1 & 1 & 0 \\ {} 0 & 1 & 1 & \frac{2}{7} \\ \end{array}2 3 14 3 1 25 3 8 55 13 21 22 0 7 70 07 27 2 1 13 21 22 0 1 10 07 27 2 1 13 21 22 0 1 10 0 1 12 7

Widerspruch; also keine Lösungen

f)

\begin{array}{rrr|l} {} -1 & 1 & 2 & 0 \\ {} 1 & -3 & 4 & 0 \\ {} 2 & -4 & 2 & 0 \\ \\ {} 1 & -1 & -2 & 0 \\ {} 0 & -2 & 6 & 0 \\ {} 0 & -2 & 6 & 0 \\ \\ {} 1 & -1 & -2 & 0 \\ {} 0 & 1 & -3 & 0 \\ \end{array} 1 1 20 1 3 40 2 4 20 1 1 20 0 2 60 0 2 60 1 1 20 0 1 30

x_2 = 3 x_3;x2 = 3x3;

x_1 = 2 x_3 + x_2 = 2 x_3 + 3 x_3 = 5 x_3;x1 = 2x3 + x2 = 2x3 + 3x3 = 5x3;

L = \left\{ (x_1, x_2, x_3) \middle| x_1 = 5k \wedge x_2 = 3k \wedge x_3 = k; k \in \mathds{R} \right\}\!;L = (x1,x2,x3)x1 = 5k x2 = 3k x3 = k;k ;

\vec X = k \left(\!\begin{smallmatrix}5\\3\\1\end{smallmatrix}\!\right)\!; \quad k \in \mathds{R};X = k 5 3 1 ;k ;