0.0.1 ↑ 64. Hausaufgabe
0.0.1.1 ↑ Geometrie-Buch Seite 22, Aufgabe 1e
Löse das Gleichungssystem:
\begin{array}{rrr|l} {} 2 & -3 & -1 & 4 \\ {} 3 & -1 & 2 & 5 \\ {} 3 & -8 & -5 & 5 \\ \\ {} 1 & -\frac{3}{2} & -\frac{1}{2} & 2 \\ {} 3 & -1 & 2 & 5 \\ {} 3 & -8 & -5 & 5 \\ \\ {} 1 & -\frac{3}{2} & -\frac{1}{2} & 2 \\ {} 0 & \frac{7}{2} & \frac{7}{2} & -1 \\ {} 3 & -8 & -5 & 5 \\ \\ {} 1 & -\frac{3}{2} & -\frac{1}{2} & 2 \\ {} 0 & \frac{7}{2} & \frac{7}{2} & -1 \\ {} 0 & -\frac{7}{2} & -\frac{7}{2} & -\frac{7}{2} \\ \\ {} 1 & -\frac{3}{2} & -\frac{1}{2} & 2 \\ {} 0 & \frac{7}{2} & \frac{7}{2} & -1 \\ {} 0 & 0 & 0 & -\frac{7}{2} \\ \end{array}
Widerspruch; also keine Lösungen
0.0.1.2 ↑ Geometrie-Buch Seite 33, Aufgabe 1
Löse die Gleichungssysteme mit dem Gauß-Verfahren:
- b)
\begin{array}{rrr|l} {} -1 & -1 & 1 & 0 \\ {} 3 & 1 & 2 & 11 \\ {} -1 & -1 & 4 & 9 \\ \\ {} 1 & 1 & -1 & 0 \\ {} 0 & -2 & 5 & 11 \\ {} 0 & 0 & 3 & 9 \\ \\ {} 1 & 1 & -1 & 0 \\ {} 0 & 1 & -\frac{5}{2} & -\frac{11}{2} \\ {} 0 & 0 & 3 & 9 \\ \end{array}
x_3 = 3;
x_2 = -\frac{11}{2} + \frac{5}{2} x_3 = 2;
x_1 = x_3 - x_2 = 1;
- d)
\begin{array}{rrr|l} {} -1 & 1 & 1 & 0 \\ {} -1 & 4 & 2 & 0 \\ {} 2 & 2 & 3 & 0 \\ \\ {} 1 & -1 & -1 & 0 \\ {} 0 & 3 & 1 & 0 \\ {} 0 & 10 & 7 & 0 \\ \\ {} 1 & -1 & -1 & 0 \\ {} 0 & 1 & \frac{1}{3} & 0 \\ {} 0 & 0 & \frac{11}{3} & 0 \\ \end{array}
x_3 = x_2 = x_1 = 0;
- e)
\begin{array}{rrr|l} {} 2 & -3 & -1 & 4 \\ {} 3 & -1 & 2 & 5 \\ {} 3 & -8 & -5 & 5 \\ \\ {} 1 & -\frac{3}{2} & -\frac{1}{2} & 2 \\ {} 0 & 7 & 7 & 0 \\ {} 0 & -\frac{7}{2} & -\frac{7}{2} & -1 \\ \\ {} 1 & -\frac{3}{2} & -\frac{1}{2} & 2 \\ {} 0 & 1 & 1 & 0 \\ {} 0 & -\frac{7}{2} & -\frac{7}{2} & -1 \\ \\ {} 1 & -\frac{3}{2} & -\frac{1}{2} & 2 \\ {} 0 & 1 & 1 & 0 \\ {} 0 & 1 & 1 & \frac{2}{7} \\ \end{array}
Widerspruch; also keine Lösungen
- f)
\begin{array}{rrr|l} {} -1 & 1 & 2 & 0 \\ {} 1 & -3 & 4 & 0 \\ {} 2 & -4 & 2 & 0 \\ \\ {} 1 & -1 & -2 & 0 \\ {} 0 & -2 & 6 & 0 \\ {} 0 & -2 & 6 & 0 \\ \\ {} 1 & -1 & -2 & 0 \\ {} 0 & 1 & -3 & 0 \\ \end{array}
x_2 = 3 x_3;
x_1 = 2 x_3 + x_2 = 2 x_3 + 3 x_3 = 5 x_3;
L = \left\{ (x_1, x_2, x_3) \middle| x_1 = 5k \wedge x_2 = 3k \wedge x_3 = k; k \in \mathds{R} \right\}\!;
\vec X = k \left(\!\begin{smallmatrix}5\\3\\1\end{smallmatrix}\!\right)\!; \quad k \in \mathds{R};