0.0.1 ↑ 65. Hausaufgabe
0.0.1.1 ↑ Geometrie-Buch Seite 40, Aufgabe 7
Berechne und vereinfache.
- a)
\begin{vmatrix}1&1&0\\1&1+a&0\\1&1&1+b\end{vmatrix} = \left(1 + b\right) \begin{vmatrix}1&1\\1&1+a\end{vmatrix} = \left(1 + b\right) \left(1 + a - 1\right) = a + ab;
- b)
\begin{vmatrix}1&a&-b\\-a&1&c\\b&-c&1\end{vmatrix} = \begin{vmatrix}1&c\\-c&1\end{vmatrix} + a \begin{vmatrix}a&-b\\-c&1\end{vmatrix} + b \begin{vmatrix}a&-b\\1&c\end{vmatrix} = \\ 1 + c^2 + a^2 - abc + abc + b^2 = 1 + a^2 + b^2 + c^2;
- c)
\begin{vmatrix}1&1&1\\a&b&c\\a^2&b^2&c^2\end{vmatrix} = \begin{vmatrix}b&c\\b^2&c^2\end{vmatrix} - \begin{vmatrix}a&c\\a^2&c^2\end{vmatrix} + \begin{vmatrix}a&b\\a^2&b^2\end{vmatrix} = \\ bc^2 - b^2c - ac^2 + a^2c + ab^2 - a^2b = a^2 \left(c - b\right) + b^2 \left(a - c\right) + c^2 \left(b - a\right);
- d)
\begin{vmatrix}a&b&a+b\\b&a+b&a\\a+b&a&b\end{vmatrix} = a \begin{vmatrix}a+b&a\\a&b\end{vmatrix} - b \begin{vmatrix}b&a+b\\a&b\end{vmatrix} + \left(a + b\right) \begin{vmatrix}b&a+b\\a+b&a\end{vmatrix} = a \left(ab + b^2 - a^2\right) - b \left(b^2 - a^2 - ab\right) + \left(a + b\right)\left(ab - a^2 - 2ab - b^2\right) = -2a^3 - 2b^3;
- e)
\begin{vmatrix}\sin\alpha&\cos\alpha\tan\beta&\cos\alpha\\-\cos\alpha&\sin\alpha\tan\beta&\sin\alpha\\0&-1&\tan\beta\end{vmatrix} = \begin{vmatrix}\sin\alpha&\cos\alpha\\-\cos\alpha&\sin\alpha\end{vmatrix} + \tan\beta \begin{vmatrix}\sin\alpha&\cos\alpha\tan\beta\\-\cos\alpha&\sin\alpha\tan\beta\end{vmatrix} = \sin^2 \alpha + \cos^2 \alpha + \tan^2 \beta \left(\sin^2 \alpha + \cos^2 \alpha\right) = 1 + \tan^2 \beta;
0.0.1.2 ↑ Geometrie-Buch Seite 40, Aufgabe 9
Löse die Gleichungssysteme mit der Cramer-Regel.
- a)
\begin{array}{rcrcrcl} {} 2 x_1 &+& x_2 &+& 5 x_3 &=& 1; \\ {} 2 x_1 &+& 4 x_2 &+& x_3 &=& 1; \\ {} x_1 &+& x_2 &+& 2 x_3 &=& 1; \end{array}
D = \begin{vmatrix}2&1&5\\2&4&1\\1&1&2\end{vmatrix} = \begin{vmatrix}1&5\\4&1\end{vmatrix} - \begin{vmatrix}2&5\\2&1\end{vmatrix} + 2 \begin{vmatrix}2&1\\2&4\end{vmatrix} = -19 + 8 + 12 = 1 \neq 0;
x_1 = \frac{D_1}{D} = \frac{\begin{vmatrix}1&1&5\\1&4&1\\1&1&2\end{vmatrix}}{D} = \begin{vmatrix}4&1\\1&2\end{vmatrix} - \begin{vmatrix}1&5\\1&2\end{vmatrix} + \begin{vmatrix}1&5\\4&1\end{vmatrix} = 7 + 3 - 19 = -9;
x_2 = \frac{D_2}{D} = \frac{\begin{vmatrix}2&1&5\\2&1&1\\1&1&2\end{vmatrix}}{D} = -\begin{vmatrix}2&1\\1&2\end{vmatrix} + \begin{vmatrix}2&5\\1&2\end{vmatrix} - \begin{vmatrix}2&5\\2&1\end{vmatrix} = -3 - 1 + 8 = 4;
x_3 = \frac{D_3}{D} = \frac{\begin{vmatrix}2&1&1\\2&4&1\\1&1&1\end{vmatrix}}{D} = \begin{vmatrix}2&4\\1&1\end{vmatrix} - \begin{vmatrix}2&1\\1&1\end{vmatrix} + \begin{vmatrix}2&1\\2&4\end{vmatrix} = -2 - 1 + 6 = 3;
(x_1, x_2, x_3) = (-9, 4, 3);
- b)
\begin{array}{rcrcrcl} {} 3 x_1 &+& 5 x_2 &+& 3 x_3 &=& 1; \\ {} 2 x_1 &+& -x_2 &+& -x_3 &=& -2; \\ {} x_1 &+& 3 x_2 &+& 2 x_3 &=& -1; \end{array}
D = \begin{vmatrix}1&5&3\\2&-1&-1\\1&3&2\end{vmatrix} = -2 \begin{vmatrix}5&3\\3&2\end{vmatrix} - \begin{vmatrix}3&3\\1&2\end{vmatrix} + 2 \begin{vmatrix}3&5\\1&3\end{vmatrix} = -2 -3 + 4 = -1 \neq 0;
x_1 = \frac{D_1}{D} = \frac{\begin{vmatrix}1&5&3\\-2&-1&-1\\-1&3&2\end{vmatrix}}{D} = -\left( 2 \begin{vmatrix}5&3\\3&2\end{vmatrix} - \begin{vmatrix}1&3\\-1&2\end{vmatrix} + \begin{vmatrix}1&5\\-1&3\end{vmatrix}\right) = -\left(2 - 5 + 8\right) = -5;
x_2 = \frac{D_2}{D} = \frac{\begin{vmatrix}3&1&3\\2&-1&-1\\1&-1&2\end{vmatrix}}{D} = -\left( \begin{vmatrix}1&3\\-2&-1\end{vmatrix} + \begin{vmatrix}3&3\\2&-1\end{vmatrix} + 2 \begin{vmatrix}3&1\\2&-2\end{vmatrix}\right) = -\left(5 - 9 - 16\right) = 20;
x_3 = \frac{D_3}{D} = \frac{\begin{vmatrix}3&5&1\\2&-1&-2\\1&3&-1\end{vmatrix}}{D} = -\left( \begin{vmatrix}2&-1\\1&3\end{vmatrix} + 2 \begin{vmatrix}3&5\\1&3\end{vmatrix} - \begin{vmatrix}3&5\\2&-1\end{vmatrix}\right) = -\left(7 + 8 + 13\right) = -28;
(x_1, x_2, x_3) = (-5, 20, -28);