Zuletzt geändert: Fr, 05.05.2006

«K12/K13» 76. Hausaufgabe «PDF», «POD»




0.0.1 76. Hausaufgabe

0.0.1.1 Geometrie-Buch Seite 117, Aufgabe 1

Im Dreieck ABCABC ist \overrightarrow{AD} = \frac{2}{3} \overrightarrow{AC}AD = 2 3AC und \overrightarrow{BE} = \frac{3}{5} \overrightarrow{BC}BE = 3 5BC.

In welchen Verhältnissen teilen sich \left[AE\right] AE und \left[BD\right] BD?

\overrightarrow{AS} = \alpha \overrightarrow{SE}; \quad {}\overrightarrow{BS} = \beta \overrightarrow{SD};AS = αSE;BS = βSD;

\overrightarrow{AS} + \overrightarrow{SB} + \overrightarrow{BA} = \underbrace{\lambda \overrightarrow{AE}}_{\overrightarrow{AS}} + \underbrace{\mu \overrightarrow{DB}}_{\overrightarrow{SB}} + \underbrace{\overrightarrow{BC} + \overrightarrow{CA}}_{\overrightarrow{BA}} = \underbrace{\lambda \left(\overrightarrow{AC} + \frac{2}{5} \overrightarrow{CB}\right)}_{\overrightarrow{AS}} + \underbrace{\mu \left(\frac{1}{3} \overrightarrow{AC} + \overrightarrow{CB}\right)}_{\overrightarrow{SB}} + \overrightarrow{BC} + \overrightarrow{CA} = \overrightarrow{AC} \left(\lambda + \frac{1}{3} \mu - 1\right) + \overrightarrow{BC} \left(-\frac{2}{5} - \mu + 1\right) = \vec 0;AS+ SB + BA = λAEAS + μDBSB + BC + CABA = λ AC + 2 5CBAS+μ 1 3AC + CBSB+BC+CA = AC λ + 1 3μ 1+BC 2 5 μ + 1 = 0;

\lambda + \frac{1}{3} \mu - 1 = -\frac{2}{5} - \mu + 1 = 0;λ + 1 3μ 1 = 2 5 μ + 1 = 0;(\lambda,\mu) = (\frac{4}{5},\frac{3}{5});(λ,μ) = (4 5, 3 5);

\overrightarrow{AS} = \alpha \overrightarrow{SE} = \lambda \overrightarrow{AE} = \lambda \left(\overrightarrow{AS} + \overrightarrow{SE}\right);AS = αSE = λAE = λ AS + SE;\alpha = \lambda \frac{\overrightarrow{AS}}{\overrightarrow{SE}} + \lambda = \lambda \alpha + \lambda;α = λAS SE + λ = λα + λ;\alpha = \frac{\lambda}{1 - \lambda} = 4;α = λ 1λ = 4;

\overrightarrow{BS} = \beta \overrightarrow{SD} = -\mu \overrightarrow{DB} = -\mu \left(\overrightarrow{DS} + \overrightarrow{SB}\right) = \mu \overrightarrow{SD} + \mu \overrightarrow{BS};BS = βSD = μDB = μ DS + SB = μSD + μBS;\beta = \mu \frac{\overrightarrow{SD}}{\overrightarrow{SD}} + \mu \frac{\overrightarrow{BS}}{\overrightarrow{SD}} = \mu + \mu \beta;β = μSD SD + μBS SD = μ + μβ;\beta = \frac{\mu}{1 - \mu} = \frac{3}{2};β = μ 1μ = 3 2;

[XXX falsch.]