Zuletzt geändert: Di, 09.05.2006

«K12/K13» 77. Hausaufgabe «PDF», «POD»




0.0.1 77. Hausaufgabe

0.0.1.1 Geometrie-Buch Seite 117, Aufgabe 2

Im Dreieck ABCABC ist \overrightarrow{BD} = \frac{3}{4} \overrightarrow{BD}BD = 3 4BD und \overrightarrow{AS} = \frac{1}{2} \overrightarrow{AD}AS = 1 2AD. BSBS schneidet ACAC in TT.

In welchem Verhältnis teilt TT die Strecke \overrightarrow{AC}AC beziehungsweise SS die Strecke \overrightarrow{BT}BT?

\overrightarrow{AB}AB, \overrightarrow{AC}AC linear unabhängig.

\overrightarrow{AS} + \overrightarrow{ST} + \overrightarrow{TA} =\\{\quad}= \frac{1}{2} \underbrace{\left(\overrightarrow{AB} + \frac{3}{4} \overrightarrow{BC}\right)}_{\overrightarrow{AD}} + \underbrace{\lambda \overrightarrow{BT}}_{\overrightarrow{ST}} + \underbrace{\mu \overrightarrow{CA}}_{\overrightarrow{TA}} =\\{\quad}= \frac{1}{2} \overrightarrow{AB} + \frac{3}{8} \underbrace{\left(\overrightarrow{BA} + \overrightarrow{AC}\right)}_{\overrightarrow{BC}} + \lambda \underbrace{\left(\overrightarrow{BA} - \mu \overrightarrow{CA}\right)}_{\overrightarrow{BT}} + \mu \overrightarrow{CA} =\\{\quad}= \overrightarrow{AB} \left(\frac{1}{2} - \frac{3}{8} - \lambda\right) + \overrightarrow{AC} \left(\frac{3}{8} + \lambda\mu - \mu\right) =\\{\quad}= \vec 0;AS+ ST + TA = = 1 2 AB + 3 4BCAD + λBTST + μCATA = = 1 2AB + 3 8 BA + ACBC + λ BA μCABT + μCA = = AB 1 2 3 8 λ + AC 3 8 + λμ μ = = 0;

\lambda = \frac{1}{2} - \frac{3}{8} = \frac{1}{8};λ = 1 2 3 8 = 1 8;

\mu = \frac{\frac{3}{8}}{1 - \lambda} = \frac{3}{7};μ = 3 8 1λ = 3 7;

\overrightarrow{BS} = \beta \overrightarrow{ST};BS = βST;\beta = \frac{\overrightarrow{BS}}{\overrightarrow{ST}} = \frac{\overrightarrow{BT} + \overrightarrow{TS}}{\lambda \overrightarrow{BT}} = \frac{\overrightarrow{BT} - \lambda \overrightarrow{BT}}{\lambda \overrightarrow{BT}} = \frac{1 - \lambda}{\lambda} = 7;β = BS ST = BT+TS λBT = BTλBT λBT = 1λ λ = 7;

\overrightarrow{AT} = \alpha \overrightarrow{TC};AT = αTC;\alpha = \frac{\overrightarrow{AT}}{\overrightarrow{TC}} = \frac{\overrightarrow{AT}}{\overrightarrow{TA} + \overrightarrow{AC}} = \frac{\mu \overrightarrow{AC}}{-\mu \overrightarrow{AC} + \overrightarrow{AC}} = \frac{\mu}{1 - \mu} = \frac{3}{4};α = AT TC = AT TA+AC = μAC μAC+AC = μ 1μ = 3 4;