0.0.1 ↑ 8. Hausaufgabe
0.0.1.1 ↑ Analysis-Buch Seite 36, Aufgabe 17a
Berechne mit Hilfe der Streifenmetnode den Flächeninhalt von
F := \left\{ (x,y) \,|\, 0 \leq x \leq 1 \wedge 0 \leq y \leq 1 - x^2 \right\};
[\sum\limits_{i = 1}^n i = \frac{n\left(n + 1\right)}{2}; \quad \sum\limits_{i = 1}^n i^2 = \frac{n\left(n + 1\right)\left(2n + 1\right)}{6};]
\mathrm{f}(x) = 1 - x^2;
{} \renewcommand{\arraystretch}{3.0} \begin{array}{rcl} {} S_n &=& \sum\limits_{i = 1}^n \frac{1}{n} \mathrm{f}\!\left(\frac{i - 1}{n}\right) = {} \frac{1}{n} \sum\limits_{i = 1}^n \left[1 - \frac{i^2 - 2i + 1}{n^2}\right] = {} \frac{n \cdot 1}{n} + \frac{1}{n}\sum\limits_{i = 1}^n - \frac{i^2 - 2i + 1}{n^2} = \\ {} &=& 1 - \frac{1}{n^3}\sum\limits_{i = 1}^n \left[i^2 - 2i + 1\right] = {} 1 - \frac{1}{n^3}\left(\,\sum\limits_{i = 1}^n i^2 + 2 \sum\limits_{i = 1}^n i + n\right) = \\ {} &=& 1 - \frac{1}{n^3}\left[\frac{n\left(n + 1\right)\left(2n + 1\right)}{6} + n\left(n + 1\right) + n\right] = 1 - \frac{2n^2 + 9n + 13}{6n^2}; {} \end{array}
{} \renewcommand{\arraystretch}{3.0} \begin{array}{rcl} {} s_n &=& \sum\limits_{i = 1}^n \frac{1}{n} \mathrm{f}\!\left(\frac{i}{n}\right) = {} \frac{1}{n} \sum\limits_{i = 1}^n \left[1 - \frac{i^2}{n^2}\right] = {} \frac{n \cdot 1}{n} - \frac{1}{n^3} \sum\limits_{i = 1}^n i^2 = \\ {} &=& 1 - \frac{n\left(n + 1\right)\left(2n + 1\right)}{6n^3} = {} 1 - \frac{2n^2 + n + 2n + 1}{6n^2} = {} 1 - \frac{2n^2 + 3n + 1}{6n^2}; {} \end{array}
\left.\begin{array}{l} {} \lim\limits_{n \to \infty} S_n = 1 - \frac{1}{3} = \frac{2}{3}; \\ {} \lim\limits_{n \to \infty} s_n = 1 - \frac{1}{3} = \frac{2}{3}; \end{array}\right\} \Rightarrow \lim\limits_{n \to \infty} S_n = \lim\limits_{n \to \infty} s_n = \frac{2}{3} =: A;