0.0.1 ↑ 82. Hausaufgabe
0.0.1.1 ↑ Analysis-Buch Seite 115, Aufgabe 62
Berechne:
- a)
\lim\limits_{x \to \infty} \frac{e^{\sqrt{x}}}{x} = \infty;
- b)
\lim\limits_{x \to \infty} \frac{\sqrt{e^x}}{x} = \infty;
- c)
\lim\limits_{x \to -\infty} \frac{\sqrt{e^x}}{x} = 0;
- d)
\lim\limits_{x \to -\infty} x e^x = 0;
- e)
\lim\limits_{x \to \infty} \frac{\sqrt{e^x - 1190}}{e^x} = \lim\limits_{x \to \infty} e^{-\frac{1}{2}x} = 0;
- f)
\lim\limits_{x \to \infty} \frac{e^x + e^{-x}}{e^x - e^{-x}} = \lim\limits_{x \to \infty} \frac{e^x \left(1 + e^{-2x}\right)}{e^x \left(1 - e^{-2x}\right)} = 1;
- g)
\lim\limits_{x \to \infty} \frac{e^x + e^{-x}}{e^x - e^{-x}} = \lim\limits_{x \to \infty} \frac{e^{-x} \left(e^{2x} + 1\right)}{e^{-x} \left(e^{2x} - 1\right)} = -1;
- h)
\lim\limits_{x \to -\infty} \frac{1}{\left(e^x - 1\right) \left(e^{x-2} - 1\right)} = \frac{1}{\left(-1\right) \left(-1\right)} = 1;