Zuletzt geändert: Mi, 31.05.2006

«K12/K13» 84. Hausaufgabe «PDF», «POD»




0.0.1 84. Hausaufgabe

0.0.1.1 Analysis-Buch Seite 149, Aufgabe 5

Leite ab:

a)

\mathrm{f}(x) = x + \ln x; \quad \mathrm{f}'(x) = 1 + \frac{1}{x};f(x) = x + lnx;f(x) = 1 + 1 x;

b)

\mathrm{f}(x) = x \ln x; \quad \mathrm{f}'(x) = x \frac{1}{x} + \ln x = 1 + \ln x;f(x) = xlnx;f(x) = x1 x + lnx = 1 + lnx;

c)

\mathrm{f}(x) = \ln -x; \quad \mathrm{f}'(x) = \frac{1}{x};f(x) = lnx;f(x) = 1 x;

d)

\mathrm{f}(x) = -\ln 2x; \quad \mathrm{f}'(x) = -\frac{2}{2x} = -\frac{1}{x} = \left(-\ln x\right)';f(x) = ln2x;f(x) = 2 2x = 1 x = lnx;

e)

\mathrm{f}(x) = \ln x^2 = 2 \ln x; \quad \mathrm{f}'(x) = \frac{1}{x^2} \cdot 2x = \frac{2}{x};f(x) = lnx2 = 2lnx;f(x) = 1 x2 2x = 2 x;

f)

\mathrm{f}(x) = \left(\ln x\right)^2; \quad \mathrm{f}'(x) = 2 \ln x \cdot \frac{1}{x};f(x) = lnx2;f(x) = 2lnx 1 x;

g)

\mathrm{f}(x) = \ln \sqrt{x}; \quad \mathrm{f}'(x) = \frac{1}{\sqrt{x}} \frac{1}{2 \sqrt{x}} = \frac{1}{2 x};f(x) = lnx;f(x) = 1 x 1 2x = 1 2x;

h)

\mathrm{f}(x) = \sqrt{\ln x}; \quad \mathrm{f}'(x) = \frac{1}{2 \sqrt{\ln x}} \frac{1}{x};f(x) = ln x;f(x) = 1 2ln x 1 x;

i)

\mathrm{f}(x) = \ln \sin x; \quad \mathrm{f}'(x) = \frac{1}{\sin x} \cdot \cos x;f(x) = lnsinx;f(x) = 1 sin x cosx;

j)

\mathrm{f}(x) = \sin \ln x; \quad \mathrm{f}'(x) = \cos \ln x \cdot \frac{1}{x};f(x) = sinlnx;f(x) = coslnx 1 x;

k)

\mathrm{f}(x) = \ln x^e; \quad \mathrm{f}'(x) = \frac{1}{x^e} \cdot e x^{e - 1};f(x) = lnxe;f(x) = 1 xe exe1;

l)

\mathrm{f}(x) = \ln e^x = x; \quad \mathrm{f}'(x) = \frac{1}{e^x} \cdot e^x = 1;f(x) = lnex = x;f(x) = 1 ex ex = 1;