0.0.1 ↑ 98. Hausaufgabe
0.0.1.1 ↑ Geometrie-Buch 208, Aufgabe 1
Berechne die Beträge von
- a)
\left|\left(\!\begin{smallmatrix}3\\4\\12\end{smallmatrix}\!\right)\right| = \sqrt{3^2 + 4^2 + 12^2} = 13;
- b)
\left|\left(\!\begin{smallmatrix}4\\-12\\-3\end{smallmatrix}\!\right)\right| = \left|\left(\!\begin{smallmatrix}3\\4\\12\end{smallmatrix}\!\right)\right| = 13;
- c)
\left|\left(\!\begin{smallmatrix}12\\-15\\16\end{smallmatrix}\!\right)\right| = \sqrt{12^2 + 15^2 + 16^2} = 25;
0.0.1.2 ↑ Geometrie-Buch 208, Aufgabe 3
Berechne die Einheitsvektoren in Richtung
- d)
\displaystyle\frac{\left(\!\begin{smallmatrix}0\\-2\\0\end{smallmatrix}\!\right)}{\left|\left(\!\begin{smallmatrix}0\\-2\\0\end{smallmatrix}\!\right)\right|} = \frac{\left(\!\begin{smallmatrix}0\\-2\\0\end{smallmatrix}\!\right)}{2} = \left(\!\begin{smallmatrix}0\\-1\\0\end{smallmatrix}\!\right)\!;
- e)
\displaystyle\frac{\left(\!\begin{smallmatrix}-1\\-1\\-1\end{smallmatrix}\!\right)}{\left|\left(\!\begin{smallmatrix}-1\\-1\\-1\end{smallmatrix}\!\right)\right|} = \frac{\left(\!\begin{smallmatrix}-1\\-1\\-1\end{smallmatrix}\!\right)}{\sqrt{3}} = \left(\!\begin{smallmatrix}\frac{1}{\sqrt{3}}\\\frac{1}{\sqrt{3}}\\\frac{1}{\sqrt{3}}\end{smallmatrix}\!\right)\!;
- f)
\displaystyle\frac{\left(\!\begin{smallmatrix}8\\-1\\4\end{smallmatrix}\!\right)}{\left|\left(\!\begin{smallmatrix}8\\-1\\4\end{smallmatrix}\!\right)\right|} = \frac{\left(\!\begin{smallmatrix}8\\-1\\4\end{smallmatrix}\!\right)}{9} = \left(\!\begin{smallmatrix}\frac{8}{9}\\-\frac{1}{9}\\\frac{4}{9}\end{smallmatrix}\!\right)\!;
- g)
\displaystyle\frac{13 \left(\!\begin{smallmatrix}8\\-1\\4\end{smallmatrix}\!\right)}{\left|13 \left(\!\begin{smallmatrix}8\\-1\\4\end{smallmatrix}\!\right)\right|} = \frac{\left(\!\begin{smallmatrix}8\\-1\\4\end{smallmatrix}\!\right)}{\left|\left(\!\begin{smallmatrix}8\\-1\\4\end{smallmatrix}\!\right)\right|} = \left(\!\begin{smallmatrix}\frac{8}{9}\\-\frac{1}{9}\\\frac{4}{9}\end{smallmatrix}\!\right)\!;
- h)
\displaystyle\frac{\left(\!\begin{smallmatrix}1\\1\\2{,}3\end{smallmatrix}\!\right)}{\left|\left(\!\begin{smallmatrix}1\\1\\2{,}3\end{smallmatrix}\!\right)\right|} = \frac{\left(\!\begin{smallmatrix}1\\1\\2{,}3\end{smallmatrix}\!\right)}{2{,}7} = \left(\!\begin{smallmatrix}\frac{1}{2{,}7}\\\frac{1}{2{,}7}\\\frac{2{,}3}{2{,}7}\end{smallmatrix}\!\right)\!;
- i)
\displaystyle\frac{\left(\!\begin{smallmatrix}-1\\-1\\\frac{1}{12}\end{smallmatrix}\!\right)}{\left|\left(\!\begin{smallmatrix}-\\-1\\\frac{1}{12}\end{smallmatrix}\!\right)\right|} = \frac{\left(\!\begin{smallmatrix}-1\\-1\\\frac{1}{12}\end{smallmatrix}\!\right)}{\frac{17}{12}} = \left(\!\begin{smallmatrix}-\frac{12}{17}\\-\frac{12}{17}\\\frac{1}{17}\end{smallmatrix}\!\right)\!;
- j)
\displaystyle\frac{9 \left(\!\begin{smallmatrix}\frac{7}{5}\\\frac{1}{2}\\\frac{1}{5}\end{smallmatrix}\!\right)}{\left|9 \left(\!\begin{smallmatrix}\frac{7}{5}\\\frac{1}{2}\\\frac{1}{5}\end{smallmatrix}\!\right)\right|} = \frac{\left(\!\begin{smallmatrix}\frac{7}{5}\\\frac{1}{2}\\\frac{1}{5}\end{smallmatrix}\!\right)}{\frac{3}{2}} = \left(\!\begin{smallmatrix}\frac{14}{15}\\\frac{1}{3}\\\frac{2}{15}\end{smallmatrix}\!\right)\!;
- k)
\displaystyle\frac{\frac{1}{3} \left(\!\begin{smallmatrix}-1\\-1\\\frac{7}{4}\end{smallmatrix}\!\right)}{\left|\frac{1}{3} \left(\!\begin{smallmatrix}-1\\-1\\\frac{7}{4}\end{smallmatrix}\!\right)\right|} = \frac{\frac{1}{3}\left(\!\begin{smallmatrix}-1\\-1\\\frac{7}{4}\end{smallmatrix}\!\right)}{\frac{9}{4}} = \left(\!\begin{smallmatrix}-\frac{4}{9}\\-\frac{4}{9}\\\frac{7}{9}\end{smallmatrix}\!\right)\!;
- l)
\displaystyle\frac{ \left(\!\begin{smallmatrix}-3a\\2{,}4a\\3{,}2a\end{smallmatrix}\!\right)}{\left| \left(\!\begin{smallmatrix}-3a\\2{,}4a\\3{,}2a\end{smallmatrix}\!\right)\right|} = \frac{\left(\!\begin{smallmatrix}-3a\\2{,}4a\\3{,}2a\end{smallmatrix}\!\right)}{5 \left|a\right|} = \pm \left(\!\begin{smallmatrix}-\frac{3}{5}\\\frac{2{,}4}{5}\\\frac{3{,}2}{5}\end{smallmatrix}\!\right)\!;
0.0.1.3 ↑ Geometrie-Buch 208, Aufgabe 4
Berechne a.
- a)
\left|\left(\!\begin{smallmatrix}3a\\-6a\\2a\end{smallmatrix}\!\right)\right| = \sqrt{9a^2 + 36a^2 + 4a^2} = 7 \left|a\right| \stackrel{!}{=} 14;
⇔ \left|a\right| = 2;
- b)
\left|\left(\!\begin{smallmatrix}a\\2a\\a-1\end{smallmatrix}\!\right)\right| = \sqrt{a^2 + 4a^2 + a^2 - 2a + 1} = \sqrt{6a^2 - 2a + 1} \stackrel{!}{=} 7;
⇔ a_1 = -\frac{8}{3}; \quad a_2 = 3;
"z.B. [will länger ausholen]... ah ne; die, die in Physik sind, wissen's eh, und die, die's nicht sind, wissen's halt nicht..."