Zuletzt geändert: Mo, 02.10.2006

«K12/K13» 98. Hausaufgabe «PDF», «POD»




0.0.1 98. Hausaufgabe

0.0.1.1 Geometrie-Buch 208, Aufgabe 1

Berechne die Beträge von

a)

\left|\left(\!\begin{smallmatrix}3\\4\\12\end{smallmatrix}\!\right)\right| = \sqrt{3^2 + 4^2 + 12^2} = 13; 3 4 12 = 32 + 42 + 122 = 13;

b)

\left|\left(\!\begin{smallmatrix}4\\-12\\-3\end{smallmatrix}\!\right)\right| = \left|\left(\!\begin{smallmatrix}3\\4\\12\end{smallmatrix}\!\right)\right| = 13; 4 12 3 = 3 4 12 = 13;

c)

\left|\left(\!\begin{smallmatrix}12\\-15\\16\end{smallmatrix}\!\right)\right| = \sqrt{12^2 + 15^2 + 16^2} = 25; 12 15 16 = 122 + 152 + 162 = 25;

0.0.1.2 Geometrie-Buch 208, Aufgabe 3

Berechne die Einheitsvektoren in Richtung

d)

\displaystyle\frac{\left(\!\begin{smallmatrix}0\\-2\\0\end{smallmatrix}\!\right)}{\left|\left(\!\begin{smallmatrix}0\\-2\\0\end{smallmatrix}\!\right)\right|} = \frac{\left(\!\begin{smallmatrix}0\\-2\\0\end{smallmatrix}\!\right)}{2} = \left(\!\begin{smallmatrix}0\\-1\\0\end{smallmatrix}\!\right)\!; 0 2 0 0 2 0 = 0 2 0 2 = 0 1 0 ;

e)

\displaystyle\frac{\left(\!\begin{smallmatrix}-1\\-1\\-1\end{smallmatrix}\!\right)}{\left|\left(\!\begin{smallmatrix}-1\\-1\\-1\end{smallmatrix}\!\right)\right|} = \frac{\left(\!\begin{smallmatrix}-1\\-1\\-1\end{smallmatrix}\!\right)}{\sqrt{3}} = \left(\!\begin{smallmatrix}\frac{1}{\sqrt{3}}\\\frac{1}{\sqrt{3}}\\\frac{1}{\sqrt{3}}\end{smallmatrix}\!\right)\!; 1 1 1 1 1 1 = 1 1 1 3 = 1 3 1 3 1 3 ;

f)

\displaystyle\frac{\left(\!\begin{smallmatrix}8\\-1\\4\end{smallmatrix}\!\right)}{\left|\left(\!\begin{smallmatrix}8\\-1\\4\end{smallmatrix}\!\right)\right|} = \frac{\left(\!\begin{smallmatrix}8\\-1\\4\end{smallmatrix}\!\right)}{9} = \left(\!\begin{smallmatrix}\frac{8}{9}\\-\frac{1}{9}\\\frac{4}{9}\end{smallmatrix}\!\right)\!; 8 1 4 8 1 4 = 8 1 4 9 = 8 9 1 9 4 9 ;

g)

\displaystyle\frac{13 \left(\!\begin{smallmatrix}8\\-1\\4\end{smallmatrix}\!\right)}{\left|13 \left(\!\begin{smallmatrix}8\\-1\\4\end{smallmatrix}\!\right)\right|} = \frac{\left(\!\begin{smallmatrix}8\\-1\\4\end{smallmatrix}\!\right)}{\left|\left(\!\begin{smallmatrix}8\\-1\\4\end{smallmatrix}\!\right)\right|} = \left(\!\begin{smallmatrix}\frac{8}{9}\\-\frac{1}{9}\\\frac{4}{9}\end{smallmatrix}\!\right)\!; 13 8 1 4 13 8 1 4 = 8 1 4 8 1 4 = 8 9 1 9 4 9 ;

h)

\displaystyle\frac{\left(\!\begin{smallmatrix}1\\1\\2{,}3\end{smallmatrix}\!\right)}{\left|\left(\!\begin{smallmatrix}1\\1\\2{,}3\end{smallmatrix}\!\right)\right|} = \frac{\left(\!\begin{smallmatrix}1\\1\\2{,}3\end{smallmatrix}\!\right)}{2{,}7} = \left(\!\begin{smallmatrix}\frac{1}{2{,}7}\\\frac{1}{2{,}7}\\\frac{2{,}3}{2{,}7}\end{smallmatrix}\!\right)\!; 1 1 2,3 1 1 2,3 = 1 1 2,3 2,7 = 1 2,7 1 2,7 2,3 2,7 ;

i)

\displaystyle\frac{\left(\!\begin{smallmatrix}-1\\-1\\\frac{1}{12}\end{smallmatrix}\!\right)}{\left|\left(\!\begin{smallmatrix}-\\-1\\\frac{1}{12}\end{smallmatrix}\!\right)\right|} = \frac{\left(\!\begin{smallmatrix}-1\\-1\\\frac{1}{12}\end{smallmatrix}\!\right)}{\frac{17}{12}} = \left(\!\begin{smallmatrix}-\frac{12}{17}\\-\frac{12}{17}\\\frac{1}{17}\end{smallmatrix}\!\right)\!; 1 1 1 12 1 1 12 = 1 1 1 12 17 12 = 12 17 12 17 1 17 ;

j)

\displaystyle\frac{9 \left(\!\begin{smallmatrix}\frac{7}{5}\\\frac{1}{2}\\\frac{1}{5}\end{smallmatrix}\!\right)}{\left|9 \left(\!\begin{smallmatrix}\frac{7}{5}\\\frac{1}{2}\\\frac{1}{5}\end{smallmatrix}\!\right)\right|} = \frac{\left(\!\begin{smallmatrix}\frac{7}{5}\\\frac{1}{2}\\\frac{1}{5}\end{smallmatrix}\!\right)}{\frac{3}{2}} = \left(\!\begin{smallmatrix}\frac{14}{15}\\\frac{1}{3}\\\frac{2}{15}\end{smallmatrix}\!\right)\!; 9 7 5 1 2 1 5 9 7 5 1 2 1 5 = 7 5 1 2 1 5 3 2 = 14 15 1 3 2 15 ;

k)

\displaystyle\frac{\frac{1}{3} \left(\!\begin{smallmatrix}-1\\-1\\\frac{7}{4}\end{smallmatrix}\!\right)}{\left|\frac{1}{3} \left(\!\begin{smallmatrix}-1\\-1\\\frac{7}{4}\end{smallmatrix}\!\right)\right|} = \frac{\frac{1}{3}\left(\!\begin{smallmatrix}-1\\-1\\\frac{7}{4}\end{smallmatrix}\!\right)}{\frac{9}{4}} = \left(\!\begin{smallmatrix}-\frac{4}{9}\\-\frac{4}{9}\\\frac{7}{9}\end{smallmatrix}\!\right)\!; 1 3 1 1 7 4 1 3 1 1 7 4 = 1 3 1 1 7 4 9 4 = 4 9 4 9 7 9 ;

l)

\displaystyle\frac{ \left(\!\begin{smallmatrix}-3a\\2{,}4a\\3{,}2a\end{smallmatrix}\!\right)}{\left| \left(\!\begin{smallmatrix}-3a\\2{,}4a\\3{,}2a\end{smallmatrix}\!\right)\right|} = \frac{\left(\!\begin{smallmatrix}-3a\\2{,}4a\\3{,}2a\end{smallmatrix}\!\right)}{5 \left|a\right|} = \pm \left(\!\begin{smallmatrix}-\frac{3}{5}\\\frac{2{,}4}{5}\\\frac{3{,}2}{5}\end{smallmatrix}\!\right)\!; 3a 2,4a 3,2a 3a 2,4a 3,2a = 3a 2,4a 3,2a 5 a = ± 3 5 2,4 5 3,2 5 ;

0.0.1.3 Geometrie-Buch 208, Aufgabe 4

Berechne aa.

a)

\left|\left(\!\begin{smallmatrix}3a\\-6a\\2a\end{smallmatrix}\!\right)\right| = \sqrt{9a^2 + 36a^2 + 4a^2} = 7 \left|a\right| \stackrel{!}{=} 14; 3a 6a 2a = 9a2 + 36a2 + 4a2 = 7 a=!14;

\left|a\right| = 2; a = 2;

b)

\left|\left(\!\begin{smallmatrix}a\\2a\\a-1\end{smallmatrix}\!\right)\right| = \sqrt{a^2 + 4a^2 + a^2 - 2a + 1} = \sqrt{6a^2 - 2a + 1} \stackrel{!}{=} 7; a 2a a1 = a2 + 4a2 + a2 2a + 1 = 6a2 2a + 1=!7;

a_1 = -\frac{8}{3}; \quad a_2 = 3;a1 = 8 3;a2 = 3;

"z.B. [will länger ausholen]... ah ne; die, die in Physik sind, wissen's eh, und die, die's nicht sind, wissen's halt nicht..."