Zuletzt geändert: Di, 05.09.2006

«K12/K13» Bohmsche Mechanik «PDF», «POD»




0.1 Bohmsche Mechanik

Die BOHMsche Mechanik nach David Bohm (1917–1992; [1, 2]) ist eine alternative, deterministische (!) Interpretation der Quantenmechanik, die alle Vorhersagen der konventionellen Quantenmechanik reproduziert (!) [3, 4].

Im Folgenden sollen einige bekannte Beispiele gezeigt werden, deren übliche Interpretationen paradox, ungewöhnlich oder "unzufriedenstellend" erscheinen [5]. Anschließend soll die BOHMsche Mechanik vorgestellt werden, die diese Konflikte auflöst.

0.1.1 Einige Beispiele und ihre konventionelle Interpretation

0.1.1.1 Interferenz am Doppelspalt [6]

Zur Erinnerung (konventionell interpretiert): Eine elektromagnetische Welle trifft auf einen Doppelspalt. Die beiden Spalte senden HUYGENSsche Elementarwellen aus, welche am Schirm interferieren und so das typische Interferenzmuster erzeugen.

Interessant wird es, wenn man versucht, den Weg, den jedes einzelne Photon der Lichtquelle durch den Doppelspalt nimmt, herauszufinden; man also zusätzlich zum Schirm beide Spalte beobachtet.

Naiv könnte man vermuten, dass eine Beobachtung nichts am betrachteten System ändert und dass deshalb keine Veränderung des Interferenzmusters festzustellen sei. Dies ist aber nicht der Fall; stattdessen verschwindet das Interferenzmuster! [6–8]

Erklärt wird dies im Rahmen der konventionellen Quantenmechanik wie folgt: Die Messung, welcher Weg von den Photonen genommen wird, verhindert in diesem Kontext die Interpretation von Licht als Welle; stattdessen seien die Teilcheneigenschaften der Photonen heranzuziehen.

Jedes einzelne Photon bewegt sich also geradlinig durch jeweils einen Spalt; auf dem Schirm sieht man nur zwei Punkte.

Dieser Diskrepanz ist unter dem Namen Wel­le–Teil­chen-Du­a­lis­mus bekannt. Üblicherweise "löst" man das Problem dadurch, indem man statuiert, dass das zu verwendende Bild – Welle oder Teilchen – je nach eingliederndem Kontext anders zu wählen sei. [9]

.cache/02f72142182e970cf9f47703147a023b.png
Size: 347x254
Scaled to: 347x254
0.1.1.2 Schrödingers Katze [10, 11]

Eine Katze befindet sich in einer isolierenden Kiste. Der Zerfall eines radioaktiven Präparats bestimmt, ob ein betäubendes Nervengas innerhalb der Kiste freigesetzt werden soll.

Nach dieser Präparation wartet man einige Minuten. Über das radioaktive Zerfallsgesetz kann man bestimmen, wie groß die Wahrscheinlichkeit ist, dass das radioaktive Präparat zerfiel und somit den Giftstoff freisetzte.

Solange man nicht die Kiste öffnet – man den Zustand der Katze also nicht bestimmt –, befindet sich die Katze in einer Überlagerung (Superposition) zweier Zustände – zum einen Katze bewusstlos, zum anderen Katze lebendig. Salopp ausgedrückt, ist die Katze "lebendig und bewusstlos zugleich".

base64
iVBORw0KGgoAAAANSUhEUgAAAlgAAAEsCAIAAACQX1rBAAAACXBIWXMAAAsTAAALEwEAmpwYAAAAB3RJTUUH1gkDEQA2xUjE0wAAAB10RVh0Q29tbWVudABDcmVhdGVkIHdpdGggVGhlIEdJTVDvZCVuAAAgAElEQVR42ux9d3xUVfr+uXfunblTUyYJoSMgAaQYCDVAAPkJFsrqLjZAkY6yNhTd1a+urn7XsottpasoNrCBihQFIaGDFAEJ0oRASJlMZjLlzp07c39/PN+cnQ0kpExIO88ffCbDzJ1bzjnved/3eZ+Xa9u2bTgcvnjxYuvWrUeOHPnOO+8QBgYGBgaGJgPu/vvvd7vdJSUlp06d+u2336xWq9vtZveFgYGBgaGpGEJCyF133RUIBARBCAaDbrf7/Pnzv/76K7s1DAwMDAxNAbwoip988ondbpdlOSYmpnnz5rIs63Q6dmsYGBgYGJqER6hpWuvWrS9cuCCK4pgxY3ie53k+Ly9vx44dPp+P3SAGBgYGhkbuERJCzp07l5SUFAgEVq1aBb/Qbrfb7faUlBR2gxgYGBgYGiWysrL+4xHSd7t163bkyJFBgwaBSrpjx47Y2Nj9+/ez+8XAwMDA0NARHx9fXFzMcVyHDh2OHz/+Xx4hxeHDh/v27ZuVlbVx40ZCSO/evV0uV5cuXdjtY2BgYGBoWBg0aFCzZs2Q7xMEgeM4p9OpaVo4HD579uz9999/eUNoNBp3795NCCkqKlq5ciXP80OGDDl27BhzChkYGBgYGgRiY2NFUeQ4bseOHYWFhZqmaZoGBijP/5/Jg3W8jCHs16+fLMuEEJ1Op6pqKBRatWoVIWTYsGG9evViN5eBgaECxMXF6XQ6juM4jjMajRzHmc1mnufxDrs/DLWKPn36NGvWjOM4nudlWQ6Hw4SQcDjM87zRaOR5XlEUnufxvtlsbtOmzdKlSy9jCA2loKPWZrMtX748KyuL53mTycTuNQMDQ3nwer3hcNhqtRJC9Ho9IcTn84GCgD8ZGKKOYcOGwfgdO3asqKiIEKJpWiAQCIfDGHWqqsIumkymQYMGbdu2TdM0j8dz7NixyOMI/zGJPB8KhVRVhVMYCoU8Hg8hJBgMTpo06dtvv7VarSUlJezWMzAwlMHAgQNVVRVFEUuE2+0WRTEYDCL6pCgKu0UM0UJ6evrRo0d9Pp+iKHDbYNsIITExMS6Xy2w2+3y+YDAoCML111+/Z8+eKx7zPx7hTz/9FAwGNU3r37+/IAiiKMKKEkI++OCD3r1745cKCwvZk2BgYIjEwYMHNU0LBoOEEJvN9re//e3JJ580mUzhcDgcDouiOHDgQHaXGGqCfv366XQ6nud//vlnl8uFIKcg/J8vZzAY4LYRQrp164aBFwwGK2MFSZnyiUjExcUVFxcTQkwmE8/zsILwGtkjYWBg+K91hOOQDgyHw++88067du0MBsORI0fmzJkjCIKqqiaTyev1shvFUCW0bt06Jycn8h2dThcOh2G2OI7TNM1kMimKArtYbfPEl/cfoJlyHOfz+TweD7in4XDYZrOxx8PAwFAG4XA4FAqlpKS0bdsWrISOHTtKkoS1iclUMVQS7dq1A8GK53lYQQTYOY4TBCEUCmmaJkmSTqfTNC05Ofmuu+4KBoOhUKgmThp/xcFtNBrxAvTTkpKSxMRE9rQYGBgoEJgihNx///16vZ7jOLANKOGcyRczXBbp6enJycnU8nEc9/vvv9OyP3wG/h8NXrZv337ixImqqmqalpubG0n+rDaEK37C5/PBF6QxELfbDZ+UPUUGBgZCSCAQwAvszUFblyRp5MiRu3fvVlWVLiAMDECzZs3y8/MlScLgQRQBlkWSpGAwiDEjSRL6QPTt2/ebb76x2+21cTJ8ZT6kaVpCQkI4HBYEQdM0RVF0Op3ZbB4+fDh7nAwMTRzjxo2jwasTJ04QQiwWCyjoPM8jw8L2zQyEkCFDhtjtdtTp5efnE0JkWUa1u06n0+v1mqbFxcWB84lAgt/v1zRNVdXt27fXkhW8siF89dVX8aKgoABnw/O8KIqapvl8vs2bN5vNZvZ0GRiaMnbv3o3NO8dxXq9XURRVVfEvISQUCsFMMsJ5E0fz5s0zMzOLiopCoZCiKHq9XhRFnU5nMBiwbWrVqlX37t27du2qlQJD6CrgCobw8ccfjxzBmqbp9XrUZ2Dc+/3+5ORk9owZGJoscnNz8SIcDg8YMMBgMASDQaPRaDAYwDDA1j4hIYHdq6aJ/v37G43GgoICFLmHQiFBEBRFCQaD11577aZNm6D/efLkyUOHDtGOEFcTQmU+FDmC/X6/KIqokMWLvLw8FvpgYGjKgHKjqqq9evUKBoOKokiShKoJjuNA50tOTr548SK7V03NC3Q4HKFQCMMgFAqh2l1V1YEDB27btq2+DOBqfGfw4MHg82B8I+7RunVr9tQZGJomkAiEU+j3+0GvUxTFbrfHx8cTQjiOy8vLYzeq6QBm4uLFiyBPwVhwHIdqd03T6o8VrKxHWAabNm3CC4vFAvdWEIScnJz27dufOnWKjQAGhiZoCMFuCAQCgiCgmkKSJKPRCA9AURSmxdF0AC4oguQGgwGMGL1e37t37+3bt9fHkEZNvjxv3jzICaqqKgjC6dOn27ZtywYBA0OTAq33EgSB53mdTqcoClrZKIpSUFDg9/tDoRDNFzI0VqAiUKfTBQIB+i9on0OHDg0EAvXTCtbUED7zzDOapnXo0IEQoqqq0Wg8e/Ysz/OMPsPA0HQgiiIhRK/Xq6oaDAZBgofwFYkopWfS240Yw4YNEwQhLy8PEmhGoxGMGFVVMzIyNE3bvHlzfT5/vuaHaNWqVfv27cEgNRgMmqYVFxcnJSWxwcHA0BQAC6cois1mo0YRbSg4joNMMUNjRZ8+fQwGw5YtWxD6xr9+v99sNj/00EPhcPinn36q/1ch1PwQSBnGxcV5vV5oBAQCgYKCAjZEGBiaCNCy1O12C4JAA6EGg8Hj8UBihmmNNjK0bds2JycHPh+VDUIwoFmzZiNHjoyK8llDMoSA0+lEf2qDwaCq6lUrhGRgYKgk+vfvv2vXLnQbhTIGMnk1XUQEQVVVj8cTExMDVyAUCsmyrCiKIAjhcJhZwUaD1NTU7OzsYDCIFV7TNFo5Y7FY/H5/A135hSgeKxQK0akliiIrLmRgqD+4ePHioUOHCCEGg8Hv94fDYSoQWkOALMPzvMvlEkUxEAhomma1WkOhUCAQQNMAcEoZGiiuueaaM2fOYNODfQ/sH0ojMKg8Hk/DXfD56B4uMTERswL/CoLQqVOnoUOHspHEwFC36NOnj9/vJ4T4fD7azq3mhx06dGgwGEQfb1o4YTabITeD3TBT3G6gaNeuHbpAwAqiqQiygNCdRtflrl27okCi4V5plA3hhQsXMOgVRYmNjQ2FQr/99tuhQ4deeOEFNqoYGOoQqGeH/AX63USlNRIEsTDr77zzTofDIQiCy+Xq2LEjaDL79u1jFYQNC0lJSWiK9Pvvv+PZ6fV6SZI0TRNFMRgMSpLUq1evKVOmoAfDkSNHGvolR9MQRkqSCoJQXFzM87zBYHA6nYsXL2bDi4GhrtCjRw8EJ2kgK1qKxrQz+P/8z/+sWLEiMTFRlmVJks6ePWu1WjVNKygoYM0IGwTS09PRCDCS6gh1UEVRFEXhOC4YDHbp0sXv9+/YsWPRokWN5tqjaQgjJUkRLSGEBAIBSZJycnJatWrFhhoDw9XHsmXLfvnlF/iCCF36/f5olbfTgBjyRtAT8fl8cXFxwWBw1KhRVGuUMQbqLex2O8dxe/fujXxGCIoqitKhQ4dp06YhHahp2tGjRxvfHeBr79C7du0KhUJ6vV6WZZPJdP78eaPROGzYMDbsGBiuGlJTU6dOnRoTE4NmuZMmTUJcFPnCGiI2NlYURWx5eZ5fvXq1oiiiKFqtVniK3377rclkwoejkpJkqAkubezQpk0b9Fo3GAyoB8WibbVag8Ggpmm9evX67rvvGn1Ij6/VGQifWqfTYYcoy/LWrVvZcGRguDrQ6XQHDhyQJMnlchFC7r333nHjxoHyTr3DmsDv9weDQQRdRVE0Go16vR7KoqgmtNlsgwcPRmiUGcI6x6BBgwghs2fPRp2bTqc7d+4cHk0gEEAUlBCyefNmt9uNjoD79u1LSUlp9HdGqO0fsNvtgUDA6/Wi0BAq9UOHDq3nijsMDI0DHMfJsiyK4saNG4uKipC3g02quTKw2WwOBoMcx0mSVFBQwPO82+1OTEx0uVyg11Mng7DQaF1j8ODBR48eLSoqouUu4XAYtF5a3JKRkdEghGAakkcIFBYWpqWlYQ7gX51OVyetFxkYmhpQ0kAIQQV0TEyM1+vF+zzPZ2dn1/D4RUVF4NDLspyQkOD3+xMTEx0OhyiKoVDIZDKhVBHnwAxhXaFt27Ycx2VlZZWUlMAbobsTUioGO3z48EAg0DSt4NUwhHC0ExMTIcaKxlRMd4aB4eoA692YMWPgHULwDDMxKsdHODQcDn/44YdGo7GoqEgQBJ1OZ7PZ3G63oii9e/dm5RNXH8OHD2/VqhXUvs6ePctxnCiKKIE3Go06nS4YDI4YMSIcDquqqmnajz/+2JRvl3B1fiY/P3///v29evXCBgTi9DqdDsq8DAwMtQF4ZoQQs9msaZrH44H+WRR/AqQbjuOMRqPP55MkCbSLwsLChIQEJJnwAVZEcXXQvHnzixcv/sfX4XmYPcQ/LRaLx+MRRZF5I1fbIwRSU1Pj4+Mj21gzWXoGhtp2B+H5fffdd6Ioms1mdEoSRTFaZslkMoF64/F4TCZTKBTy+XyBQMBut/t8PnTqhhVkhrA2kJ6eji6AcPcFQbh48aJOpwPzRRAEvV4PE4gP9OjRA1Xw7NbVgUcIOByOjh07njx5Enlag8HAcZzdbqeV+AwMDFEE8hEcx/l8Pq/XixlHCAkGg9UzSxcvXizTbRSC2uDLlJSUQGUNbZji4uIQ8tE0LRQKMbnRaMFsNkPQtUx8m2ZhQ6FQKBTiOI4qyrIEbX3xCIHWrVsnJSWFw2G6T3E4HBkZGexJMDBEf3rzPCkV/KSmka6V1TjgpT23dTqdKIpgHsbHx5tMpnA47HK5zGZzYWEherThA+xxVA+DBg2y2Wx6vV4QBIvFgqdJfX1JkvR6feRjNRgMYCfp9fr09HRUwbPbWL8M4ebNm9etW9e8eXNFUcLhsMVi4XkexYVMj5SBIbqANwBqDG0XIAiC0Wikde41BFw9JCMLCwv9fr+maYmJiX6/32az/fDDD3BA2bOoNnbu3Il6TVLaAxl5Wexy0O4Kpg40pT59+hw+fFjTNFa3XX8NISEkNTX1woULCQkJ6F6NGCkhZOHChex5MDBEEdB8AT0N4qJoIOD3+6PYIxCZDkEQkpKSDAaDJEmFhYVYmqnuDEOVkJGRkZSURPcukK+DtwcvkBASHx+PD6O9AZxyVVUzMzObQgl8gzeEAMpv0bYQNbkXLlyYPXs2eyQMDNEC3AjqLiCqBiZFzWVlACSiEGh1uVyKojgcDrvdbjAY0MEVWUmqWgKsXbt29uzZw4YNe+GFF0BxbNmyJbTfkMisW6DqQBTFDh06pKWl4cRqFXDm6K9v3bq1oKAAtwI7CdxAj8cD0coZM2YUFBRgf+N0OtlQryGEOvztwYMH//TTT+iXbTabvV7vO++8Qwjp27fvL7/8gga/9bm7r91u79ix486dO9kwYqjPoEIWtFPEpQnCp556Spbl+fPnt2jRIjc312g0IrYW6fMRQgwGQ05OzsKFC1GJ0aNHDzTd1el0rVq1gv9nMplkWQ6FQnPmzCGEQH3UbDZ37Njx7NmzNEyK5OKOHTv+53/+x2w2I6ZKSov966qFIRYc2nU9Nzf36ixByOTBItJrl2XZYDCguTF9M1rtlBnqiyGEylp8fDwobZIkIepNu4ZiL6nT6ahWU72Cw+EoLi4WBIEuK01QTRGzF4+sdevWZ8+ebZoT6dixY3gBCrTD4aCDhL4uKiqiUteRHlLksMEUuBTlkTwFQcCqXVxc3KJFC0i9wGIpimI2m2VZ5nk+GAyGw2FFUWjTCYPBcOzYsc6dO3fr1o32k3vrrbcwmGl1IDVOBoNBVdVAINCiRQtqzIxGYzAYNBqNMGOapvn9flVVLRZLcXFxMBhE1Zqqqk6ns7i4WNM0vV6vqioa2dOJ4/V6TSYTorUIA9bZgigIuFc4T7/fj8BVbac5dTodCtvxQ/Da/X5/IBDAnVEUBdUR6enp27ZtY6ar8RhCujrgRc+ePQ8dOhQ57TFP6md7a8zVSEYWLHdTa8bN8zy9Azk5OZF/NnrQvVp5o7SMM4EP01La8o5ZDW8PlMK5c+ciwoaDgzpP6YVoKe73+1FPFggEVq1atXbtWlmWExMT6aMsLCxE23H6RcRs4IgYDIZgMJiQkICkht/vpzwOdJyQJCkQCPj9fmi5eTwenufz8/PtdvvLL788b948QgheZGdnR6ayRo0aBWZN3Xa0p10b4Y316tWrW7dumzdvPnHiRK3+LsrbBUHAPmDAgAGZmZmRH8CNVRSFeYSN0xBSYFuKoRAKhTAVMXsrpnpj5muaZjabmzVrZrFYQJNTFEUQBAwgk8kESremaYFAgOd5vV6PKQcSQXkpfewNUYIKjQaXy1VQUIAFJXKlQ3C/qRnCyOuNvBVNwRzCB7qilSrzZ5W+UhlPAhVjPp9vz549W7ZsoSwYqIdQhWWs7PDg8ZUePXo888wzZQ44ffr0U6dO5ebm0kkBmgbHcc2aNevYsWOZdqz4FZ7nvV4v8v2EEJPJlJeXR0plTbZv3z569GhYQUIIXpQhdKxbt44txxUAqxatC2RotIaQ7oxiYmKKi4vr/7278847d+zYgWAg1iMULzepAQQnGJsAUNeq59kwVA+hUKhly5bnz58nhGzcuPGee+7x+XwwSIqirFu3jnqHiEZeMepY1c5zOD4K6iHlZTabXS7XypUrETINh8NMU4aBGcIqA73T6j8+/fRTNoAiMWPGjFOnTiG2xkrHrtIEFgS/3z948ODLVoxFbkeohEVthATgMqI4GGd18OBBVVV1Ol3//v1R383AwAxhZYFdJHswDRFlgmYM9QHw1AkhCHXWRiMIhOxotjIQCKiqihwHIeTmm29myiaNCcuWLZsyZUojuyi+vp0Qs4IMDNG1UvgXIdNa8koFQQAlFWpqaO5DhWyYxHN9wIgRI0wmE5gN4DqBNlUlcBzXKPe79c4QMikKBoZogbJXUJ1WS54ZeP8XLlwIhUKyLOt0utjYWLxJCLFYLMwjrFtMnz6d47gff/yRcobBogINsErQ6XR79uxpfLeo3oVGWW6JgSFaiGxHgFWvNn4FecEzZ87QHCEY4JqmiaLYrl075hHWLc6cOUNJUnQ/VL1mTI11T1MfPcLaOGx8fDxVMLJYLLfccgubHgyNHijBhiGspQQhwq3g7IiiaLFYQqHQ0qVLCSGSJKmqiuaj7FnUIXJzc8OlwKiodkPKcDg8YsQI5hFeDY+wNjIZTqcTJjYcDnu93vXr1zeRWjeGJu4R0kbkoVCoNuQOunTpcvToUfwKSn4DgcD+/ftRSoGyxbi4OPYs6nYY0OXu2Wef7dChg9VqFUURdaXlGTxUYJOINLPf79+7d+9zzz1HpSGGDRv2448/MkPYkICgK9SSoOOOKUqlbRgYGGoI5AhpSgkGmAVg6hbUCnIcl5SURLsbVuz5geiEjhYQ5Pv444+zsrIIITabDYpCmzZtSkhIaASd1fkmMhRoh9JgMAiZR0jZOp3OMrr4DAwM1YbRaDxx4gQVe5owYcKFCxeicmQq2cpQDUNIzWGzZs3MZrNOp4NoV3lfMZvNPp9PVVWTyQTZoLNnz27fvh1cG7fbjdAdx3GN47k0CUM4bNgwqvmydOlS0H/BHUAAh+O4jIwMNmEYGGoIvV6fk5NDVVgnTZo0c+bMqBzZbrez21s90LbMhBBUUEAEqoKcsSzLkApCy9i4uDiTyYTNDbohEkKwfjYST6kpjIMdO3aQUk3hKVOm3HfffZqm3XHHHYSQUCiErhdZWVnp6elszjAw1ARutzsuLg4NKLCeXvErl61vGzhwILuZ0UL1SFIweyaTiRBSXFycnp7+3XffffXVV++9997333//xhtvoGNG44ioNQlDCInFMiqLH3zwwZIlS+hc1TRt586dHMcxc8jAUG1QjwFM0SuSwMurb9uxY0d8fPy0adPYLY3CKs/zlDLq8/ngyUEfuLyvqKpqNBpDoRBaAaOTgd/vlyQpOTmZ4zgoKRJCGkdtTFPJEULwqQwfderUqZqmDRw4MHLvs3fvXjZzGBiqB0mS0IAJPNLTp09XbAWpZAntvkTr25xO52+//cZuac1hMBhIKXc0Ly/P6/WGQqFL18NIGI3GQCAQDAZNJpNOpyspKVFVNTExURRFahpp5QwzhA0DtDHCZaX3t23bhm0sHjDkg202G5s/DAxVBQoWSWnH4PLiZlarlfbvLK++DW4Hu6VRMYQwWpqm5efnu91utDas4CvoSAyn0OfzCYIAFWiqK4sKUdJY+swI9WoKgdek0+kyMjK2bNkSxSPDwlUQK3/mmWf++te/oumgXq+XZbldu3Znzpxhs4ihMQG2BzvCsWPH1vyAJ0+epNtNzDVN0wwGQyAQMBgM/+///b9Lv5KRkYFNp6IomPI//PADNMExAW+66SacJFwZhhri559/hhsA2vyJEyeSkpIsFgu2LCaTCfWC4PrSjnLhcNjn8ymK0rZtW8RITSYTSimwVsMo1oZKQ5M2hJ06dTpx4gS4TJftKVMTIA5QAV34L3/5i9lsfvTRR9HRlxASLdp3vcLZs2fbtGnDloambAhJaUvhrKysQYMG1fCAgUAAhYOTJ09GBT3eRC/7mJiYS8MztEUizufNN9+EAk4gEECcjTqIDYKIYbPZSkpKCCGg3U2aNGnBggX16gyxvcBd/f7779Gi2eVy5ebmyrJsMpnQzJmukLRzCCEkLi6uuLgYMbO77777zjvvbJTzoh6FRrOzs2kzs+geWa/X0/KJl156qbwWzw899FAoFDIajcj2G41G7Hoax5MeNWoUx3Ft27ZFAApSc9x/Y/DgwcxUNAVDCHTp0iUqx0TyqUOHDhaLxWg0EkLgEYbD4dWrV2/fvr2MP2owGIxGo6qqbdq0+fLLL1NTU51OZygUAiOD7lbrf0ff9PT0yPspy7LP54POav1a5Xk+HA4bjUadTrd///4zZ84cOXLk9OnT4An6fD5QfBGNg9un0+mwC3E6nXDxZVl+7733Guu8qI+rfCgUitYUBfr06YMZSAj55ZdfKo63vPzyy9dccw0hxO12Q4UoLS2t4T5gCM9zHLdhwwa80Ov12O6hdIQQYrVaMVsgG8HQiEEVRkiNK/MwtODhCYJAA5sWiwUeISFk48aNKIRAaYRer4eN9Pv9er1+7ty5drvd6/W2atXK6/WC3Y3gG1o4Yc7WTyQkJGzfvl0URbiDdB7Vt77ioiiGw2FRFP1+P8RiIApjNps5jsNj8vl8Op0OQVF4h6FQSFEUq9UKTyAQCEiS1Ig1KeujIQyHw7GxsVE8YFZWFraWOp3uiiyYOXPmHD169K233kI8XZblffv2NdwH/PHHH2MyUL3BQCAAgSVZlhGMKikpwUYB23mGRoxIgkOkr1ZV3HTTTUuWLAGZAgsllEqCwWCLFi3oT6xYsYIW1/M8rygKQqm33Xbbhg0bunbtWlxcHAwG8/PzW7RoAbEnURTxgtS/XgfLli3DhRgMBiiqYE9pMBgkSSopKak/1iIjIwOBHzRJDgaD2PVKkgRXz+/3YzWQJAkZwVAodN1113Xu3LlXr169e/du375969atO3XqhM837r5A9Yv5SgPZbrc7ukfGeOU47tSpU263+4rm8MEHH3ziiSf8fr8gCA2uYjQ7O3vo0KEXL14EH4EOYhqwwpt2u93hcNBm4oIgdO/enZmKpoPFixdXo27d4XAkJCQQQgRBgBXkOC4tLa1Dhw5wDeFqyLLMcZzZbPZ4PKBp4H/feOON1NTUYDBYWFhotVrhRTmdTkVRIPOEfCEmrNlsrg83at26dXl5ebIsP/TQQ1OnTiWEKIqCyaVp2uDBg2+66aa//OUv2FzS7FrdgtIszGYzClpkWRYE4YYbbpAkyWw2q6r65ZdfchwHjxb222az3XzzzU6n02AwoHDC5/O9+uqrNLPLDOFV9eVrY1eFzdHWrVuXL18+Z86cK37+pZdeevLJJwOBwBWJNvUELpcrJiamb9++Bw4cgG4cna6EkAkTJjz33HMdOnS49LZgOUtMTNy1axczD40edDBXSW5++PDhW7duhVo9git0xR83bty9996bkJDgcDhgDNasWZOVlfXyyy9jCaZN6sePH3/ttdcWFBRIkpSYmOj3+30+n16vt9ls+OQ999zjdDpx2Li4OCQp6grvv/++qqpJSUnt27e/6aabsE1H8iwcDgcCgWuvvXb+/PlCKVCEXh/ymgMGDMCuVxAEr9er0+lGjhyZmJiIBcHj8TidTovFcuONN6qq+u233yJxGw6Hd+zYkZaW1qxZM3j5qqqazWZKqmjEEaP6ZQix6QgGg7XRlVCSJL/fryjKn//858oYwocffnjdunU//vgjxrfFYvF4PPX5Wc6ZM2fLli15eXnBYBDTUqfTKYqyaNGi6dOnX/r5kydPjh07lnrhjZIly3BZQ4gnTpNbVwSMHF4jtokjpKamTp8+vX379jqdzul0SpIEpqiiKCNGjEhOTv7www+zs7O9Xm9aWtrEiRN79uyJ/j46na64uJg2r4d9VRTF6XRi6Or1+tatW0P76ar5xwaDwWq1apqm1+tFUfR6vQ8++CD61WCa4LXf73/ttdf69u0L9RwQ3ZFL8/v9dd58sUyzrdTU1G7dummaJsuypmk+nw8xUjjoer3+rrvu+uijj2jHpb1799544424XnSUBGdQp9M14r6SQv2cqFGPRw8bNgyxAjzgt99++8EHH6xMSKRbt25HjhyB/vrgwYMzMzPr54Ncs2bNypUraXIFTt6LL744b1LNM2IAACAASURBVN688r6yZcsWynBrNORYhjJrIkYCskR6vR4yLjBjlSlXT09P37VrFypxFUWhXcwIIUOHDn300UeNRqMgCIihIffs9XpByEpLS+vWrRsKBP1+P2j68CqwCqP6XlXVY8eOPfzww1i+4WhKknTw4MGrY/9iYmISExNbt24tCEJ2dva77757+PBhLEG4b6CYybKs1+snTJgwZsyYxMRE2BW41yAKWa3WkpKSWtLiQD07qUSuLrL7YGpqaseOHZH/o8laWvmHkHUoFLrjjjs+++wzfHfHjh0jR47EA6Lh0HpOXGqchrA20L59++3bt+NxSpL09ddfV8YQEkIWLVo0aNAgr9crimJNyAW1ipiYGGRV6e61b9++kyZNmjVrVgXf+vvf/47Pk+rK8jLUc0Q+VnACQcukKiH0f2fNmnXo0CFZlh0Oh9lsNpvNhw8fBnUQ3BB4DBzHSZL03HPP9ejRIxgMNmvWLDc3l+d5SZKw+AaDQZRG6PX6kpISMPJBf/N4PFartaCgwGw2o0ZQ07Ti4uKvv/76888/B0cfBnXAgAHbt29HqD+6N2TlypXFxcV2uz0mJgbmwWg0bt68GR1peJ43mUwI/KAOElYcpLl+/fqNGzeud+/eUKFCOBE8zOzsbOphoxQh6oAV5Hm+4jpg3DHQZAKBAJx17FHYdGCGkCxdunTp0qVms9nv98uyXPk6gfT09A8++GDSpEkwGOnp6du2bauM94kNlF6vp1XGl0WfPn12795dk0vr2bMn9uCKogSDwdjY2GeeeebRRx+94hdPnz4NYgKbBo0S06dPh/MnCML111+PDT6sGuqjDx06BMOGbrpUcTcnJ4e6gPDeEGn4+uuvqdqLyWRyu91utxuESRhaEEehY4liCRjdQCDg8/ngQsXFxYVCoezs7OXLl+/evRvmGScMW9unTx/sOKNrBV0u1+rVqydNmpSenr5nzx7qV+EETCYTTs/j8cDqQ/tUFMWHHnpoyJAhVqsVn5Rl2ev1gh3q9/tFURRFcenSpTiaKIpz586tjacZGxtbXFxMCGnXrl15n3n55ZexIQ4GgzqdrmvXrog5m83mxs35ZIawakCJDGb+yJEj169fX5lvTZw4cdKkSYj/7Nu3Ly0tLVKYe/jw4Zs3byalnEwalEBdKpYSxH/KiPLhY7/88gveHzJkSPVU5Y4dOwZdK1EUMzIyNm7cWMkvUhIpmwaNEsePH6dr/e23305K8wLUt/u/JUAQKGHKYDBgjqDUAXFUWLW33npLkiQUpQWDwZKSEjiURqMxHA6DGgp1So/HYzQawcuAqYBFgWETBMHhcDzwwAPYJuJjcF8QbsVsqgnmzp174MABj8cjCML27dsjA5gzZ86EawXKNKWnYiuA5Ho4HO7YseMjjzzSu3fvvLw8s9msKIrb7UZGDaQSiMMh2VlUVPTrr7/ip4PB4KXCdQaD4dprrxVFsYKmVFDnkSTJ7Xbr9Xqz2dyzZ8/FixfTD1AOUQV46qmnKJc1FAo1b97c5/Nhy9KweC4Oh+Opp55SFEUQhNjY2Ndee40ZwmgCUwJTbsOGDZX/4rJly6ZMmYI5s3//fvo+XU0oR4tS6bCg0OlByimKwtzgOG7r1q1oAlV5b7Vv37579uwBsQjb+UpawZdeeumZZ54pY5IZGhn8fj92OYFAoFevXqQ0/YZtGZw/v9+PSCCGLqaGxWIJBoPY1d16660jR45s164dVNng27Vs2dLlcoEgisEjSRLihLAlkiS5XC4YOXDfvF6vxWI5cuQIeGo2m83j8WCbiH+RjavhJQ8dOnT//v3wimgqlJRyXIPBIP0Jh8OBnCX1/+68805BEIqKim699dauXbsGAoHc3FyLxWK1WnNzc+Pj41EaAeYI7gZOPjY2FvoAWFuwzwb1nVbrHj58mMaHyjt5qmeNE9u9e/eHH34IC40ALF1bEMjp27dvGcoC2LlosTRmzBhIR1H6UgMauvPmzUMIARQq5hHWii00Go0ocrrrrrs++eQTr9d7xXKl+++/X1XVGTNmYJRTQQ1SmsTGCkK7qaF0AR/AXg82mJ4DtT10lOMr27ZtGzBgADoJV4y4uLiSkhKqEwhWXiVvwosvvohzM5vNrANqYwWEY2gDMqySWMSNRqPP58PIQVRQVdX58+f36tUrEAjIsszzfEJCQn5+PoQGsbwiKGIymS5evGg0GuHq6XQ6KML4fD5oNRiNRlD2BUGIi4srKCgIBoNxcXH79u177LHHcEperxc5NkVRJk6cuHz58pr4f5999tmFCxeoQikuGVeq1+spgwwbVkRuccJGo/Hpp5++/vrrRVFEAymQSjweD4LD4XDY5XLBbINKqigKXQEwfyFRRinlKNeDBaI7D7RrqGBNB2+FGtfIXTLcdKp2jU2MoihZWVngv1gsFtTyR+b7W7Zs6XA4wHGNrj7JVQDSSdhzMEMYZdDcOzZZoih++umnI0aMmDJlSmW+Pn369C+++GLDhg0wXZgwGLWYEpMnT27Tpk3z5s2HDRt2ableeVi0aNHKlSs3bdoEv1AQhJ07d44YMeKHH36o4FsWiwV1Vz6fD3N4z549VQoRY7EwGAxV8owZGhAixVlQS4N8sKqqWKD/+Mc/jh49mgqEktIOMKhqyM3NjYmJQVzU4/EkJiaGQqELFy4kJiZaLBa00kUoAtVmmqZR+Wm/3282m0VRXL9+fX5+vizLS5YskSQJbB1U9N5yyy3ffvtt9S7t7NmzhJDnn3/+hx9++P3330kE7Rn0Tuo/BQKBTp063XrrrS1btlQUxWKxJCUlJSQkhMNhWZaTk5Nzc3Nh8Px+v06nkyQJoUWEPQOBANIHsFI4JjYBqqpiHhkMBlhB5Eqfe+45TdOcTmeLFi38fv93332HRm8kooLzsqFRmDHUv+OU8HPQP4O3TVs2ktKWgeFwGPcc/hPO3Gaz5eTkcBxnMplsNltRUVHD6uNBt25gKjkcjhrKATJD+B/Q3DuGI3ZbU6dOraQhJISsX78eEwBeIEIf8+fPryQB9bKYMWPGjBkzCCHvvPPOAw88gMVl8+bNBoNh/PjxH3744aVfQUQLYRbs1qv0iy+++CISPzqdjqaRGBof8vLysICiBhzBSYz59957z2Qy3XXXXSBwUh4NiJ2Kovh8voSEBK/XKwiCx+OJiYlxOp06nQ5CaBDIVlUVB9fpdDzPo3cr0o2wi263OzICj4AhWM1paWnVtoLLly/fsWPHhx9+GKmQCf8S7qxer3/99dc7deoEh0lRFNgMWZYR+0HM1mAwoLQfKUy0GfL5fGazGfLZiDGazWYokFFjhigrhDpxOcjMYUnp06ePoiiUgtSrVy9kT5HxKs8QwtZKknTx4sXnn3/+119/pWw72juiTP8/7EUiCxxpXMpqtYqiSJVuGlw3K8qfwnDKzs6u7cBVU2QMDh48eOvWrZEx98rjnnvu+eijj5BvT0pKysvLi9ZZzZ49m+M4alM5jluxYsXHH388ePDgn376iX5sxIgRIL5jXr355ptV+pXJkyd/9tlnmFGhUKi291kMVwHZ2dkpKSmXvr9v3z4s5QhgUHdw/Pjx48ePL7MBx1qM8BpWfwwzLMSowkZTOkRTUFMIxQY0roNSNsdxfr/fYrGsWLFi6dKlNEiI6YYX1c4F3nbbbV999RUpTShQswSPsHfv3snJyTfccMN1112HggFqKmAhcAmRX8c9wUGoRUSMB2EeFITgK4qiIDhJo6a0GpJeEcLFVLOQ2i28SUp16RBN1el0LpcLxCJRFLGZaNGixSuvvIL7T5cCGtlGvQch5Lfffvv+++/j4+NTUlKCwSDdcCBlA5OMDyMyHK32ubSfJTYfVJwhuoBdhz64wWDIzMxkhjD66Ny5865duyCQX15LpvLw/vvvv//++/TPwsJC6C5GBbNmzRo1alR6enpubm4gEMD+NDMzEyGOjRs33nXXXQgKYVbs3bu3Z8+elT/+K6+8gpPH6lbzXnQM9QGXtYKSJCUlJeXn5xNCJk6cqNfr0U2lqgd3uVxmsxnNAjEOVVVF1QTWQTBFSWm/Aqz4p06dgj41snEwDKIoxsbGJicnV/Uc5s6d+/bbbyMBSQhBQg7y3Ih2vvzyy9dee63NZisoKEBSMxgMgtgZRR+FOmSw99Tw0CATbdQA83/Z42Blt1qtHMd5vV6j0RgbG+t2u2FcOY4rLi7W6XTI+aGzfCAQoFrBcEwDgUDHjh3vu+8+m83GcVxeXl7nzp3PnTuHHCeYQSjKLCgoQCQsiuYKHnY4HI6Pj3e5XFEpQV6zZs2XX36pqqrJZFq8eDGi07jPHMdFtxnRZdEU9UQWLVrUu3dvUioWdfPNN1f7UFG0gsA111xz4cKFW2+9lbJgsHhpmpaenn727FnKxFm8eHGVrOCbb74JlRnsbQcMGFBvVXIYKukIXvb9G2+8Eatnfn4+slajR49GqVw1fgWLr9frlWWZCpTExMQghQbaF43aCYJgs9lkWb7//vtBVEHg7o477jh27JiiKPn5+YcOHar8rw8fPpzn+X//+9/YtsInQ0JO07THHnvsq6++WrNmTevWrWGeYZBQPBdFK4hLo+typHukqirtmwj36Ny5cyUlJXI5ACUHnd+9Xm9RUdG5c+dcLpcsy+fPn4czjToNSZIKCwvdbjc8VNRsBAIBhIJCoVBiYiIMZ2FhoaZpXq8Xlliv119//fXQq0NmN4q0cNj4cDis1+uLioqotlwNsXr1alR4u93u6dOnUwYGuVqc9iZaTL1t2zZsb30+3/fff19JxbWrhm+++YYQsnjx4meeeSY/P5/GduDCRuodVx6PPfYY8haCINCaZYYG7QjOmjXryJEjJSUlqF6PlHqA3JeiKJ07d+Z5nlbIVdU80A5KBoMBCXIcipT2ccWySDORHo/n1KlTKKWPTK1VFXa7HS1hqTeDXHggEOjdu/fkyZN79+5dUlICVwl9EoLBoMlkQigYAVhIuEXHYyhldeKU8C8UOJ1OJ04DdnHhwoWUVnMpqNSOqqpt27bt06ePTqczm82tWrVq0aKFqqpOp/Ps2bPnzp3DRgeOEY2LCoJgMpnsdnu7du1iY2PhAjqdTtwB3Kj77rsPJiohIQG2M4rbAlByTCYT7F+kc1xtOBwOjB904IIaALZZzBDWOiZMmLBixQoECd9///16ZQiB6dOnT58+nTa7wSghhFSe3UPx7LPPgitoMBh69uxZmfIMhvqGSO7cDTfcAKZxJKj5QbdYk8n0xRdfkNJAOuiUVf1RSKahrRISabTiEAs0mDIwhyCJ/Pzzz6BioWqiGle6bNmyoqIinU6HxugwgUh3ff755xaLRZZlj8eD+gekA6lQAJVRxMIaLe1AlEVaLBYk86hRpDUSVOa+MhKp2JQcP35848aNZrP5zTffhL8bDoe/+OKLVatW4ZIpy5TK40VGOKn6KPnvllhY06xWK3wsxEijFRrFOSiKUlBQgM1WzY+5dOlSRVEQPKdXit0bamCiHnhjodH/AIRMDO763Hp34cKFCGoJgvDvf/9b0zToIlYeS5YsefHFF8FJCwQCrNdSA4Xdbm/fvj2ic7CCyJnBLcPemfZvSU9Pf/XVV2mNrF6vdzqd1YhigUoaDofRrNztdiNibzabwUXE8k3Zm4SQFStWUOp/lTo9UVB9fJ/Ph4NzHOfz+UKh0KlTp0KhUHx8fCgUiomJMRgMKJJDgMdgMOj1eqiYwnmN1s0vLi6Gh33pDdfr9bQ0hZqlip1s7FdgogKBgM1mi42NjY+P1zTt888/pzxwehw8OCgV0OcOK4jFgcZsNU07f/48NNVofjeKgxB0qmAw2LJly6hYQUJIQkICPXnkd2nIHe9fBU5fk+45gM0diHDr1q2rnyc5depUr9eL/imzZ8+u6tcXLVr0wAMPgD8my/LQoUOZRWlYcLlceGE2m0+fPo2lEKMXKyYNK2Hdv+222xYsWPDkk09ee+218fHx4JXwPI/RXtVfR31FKBQ6ePDgU089ddttt7366qu//vorWulSoW0wCWkxHDbyqNa4bAuwitG1a1cS0WYBdUpwQJ944ombbrpp2rRp58+fR+bS6XSiChBuK2rPaXlDtJ4CrCylklKJDIPBYDQaoUGKZwE+UQW+IKXVIHiLKkye58+fPw+7CI4oiWhIhx0G7fuBYkEckHbepjc8Pj4eMeQ2bdrIsoyfiNZ9CAQCYMZSucqah0YHDRqEuAKtMSX/zT+iLcBYaLRW0L9//8zMTCTebrvttr///e+V0apuWHjggQdA5AMDvuZCjgxXGTExMeguglWYVuPBTqSmpk6dOhWtdoxGI9ZKpPSg/wl2htVqpUVvVfr1v/3tb5mZmZEU68zMzJ9++ukvf/lLhw4d2rRpQyvQqRQINckdO3YkhDz99NNVveR58+Z9//33W7duxeIOlxSHxfp44sSJKVOmCILQrl27u+++OzEx0WAwtGzZEt4SCm2hiRqtp5CcnFxSUgKqGtUN5nne5XLBocGqjXrNyhywZ8+ehw4dAvcEFfRGoxElKJiw7dq1++2338p8a/LkyatXr0ZWEgaJdq1CuJjjuMWLF48fP95iseTn58NvhuZcVBAMBq1W68GDB59++unqBdsvRVZWFgLa2E5hIFFomvbrr7+y8olaxNatW+12e1FREdgojz32mNVqnTZtWmOy9FgWkWloxH01GzFGjhwJK0gFJydOnNivX7+YmJjmzZtD7RNBJNg5rNR0506VzLBwQ3kyNzc3OTkZBYLghUL2DGHGgoICu93+yy+//PnPf6ZhtzKFRvPnz7fZbB9//DHN6Ljd7ri4OBgt/Ba+UnHboPJAa2dnzpx58uTJkydP5ubmgkYBOwTDfPr06Zdeeol6PL169RIE4b777uvUqRMttEciE2bMYDBAWMDj8aBuAe4XbRRM5wvuJEwvVOiwEaFeGvYcFosFMWfqtFXyAmniEycGrxchUxSrXFYm+7333rvs0YYMGZKVlUW5PJIk+Xw+TdPMZjPdD+EF3aZQ7b1Iag9uL01M0pIVapPwsV27dtHXY8aMqeEILywspBEFhDcovQtDOjExkYVGaxeTJ0++8cYbsZRIkvTiiy82mkv75z//uXfvXqTlKYW6PM49Q/3E2LFjkTBDnVlycvJPP/00ZsyY5s2bt2jRgq7jKFRAZTeWkvIOCPoJKsA8Hk+zZs2oTnRycnJhYaHT6YyLi/vkk08ef/xxGsqj3ezAyUSz8sLCwpMnT6Lfb0lJid1uh+ARpZKi5rWGWLhw4caNG0+dOgUtp4EDB4I1RqkxKFUEDh06tHv37jlz5owYMeKGG25Yvnz5yZMnDxw4cPz4cap3EwgEUK8GrxENlTiOs1qtRqMRNoP240Uxg9vtpgoyNAEJY48ySspurTw3B9YUe1M8L9RF6PV6zNYqxTOvu+46SNzh5n/zzTf5+fkoZYEElcvlAo8GTiR+CFFWh8Px+++/w8dFjB1RaBR70FAwrc0oKSlBCTIudvXq1QsXLqzJI+7SpQsOXoddUZt6Lzo0+MAgQClP47iu7t27nzlzBuU4kVoely2+ZqhvGDRo0M6dO7EuRLZUfeedd7xeb3x8PMdxTqcTNFFa4k2pjBVUd2FlVFUVLSbAs4co165duz777LM9e/ZQsgbVDdm/f//cuXPtdvvUqVNHjhxJxaCnT5/+ww8/BAIBWFaTyYSyeny3NiIQtFXZ0KFDEVKjfRNJKW+W+ourVq2iDEyqJNW/f/977rmnU6dOcHfgLGKhd7lcsPEockBinhBis9kQHC4pKQmHwzabDcpzyDhQbQHK+K8MYI3weep4UY1plElU/rYsWLDg2LFjcKMxNnbt2pWcnAxmAPzOnJwcSm8BIxdsUlAQYJjj4+MTExODwSAi3qFQyOVy0cYaEDEIBoMdOnSgnNWzZ8/OnDmzJs+UNrGqQ7CmrIQQgvIjr9cbxaxyXeGDDz649957SYTmciO4qKaGvXv3IuxGexWtWrUqJiYGfgmU1jVNQ9t3OBC09AoSoOUdGXxCg8FQWFiIfnUWi+W1116jZDF0moWbhSPffPPNXbp0mTlz5ujRo+HE3H333StXroRK9UsvvfTEE0/AvmJlb968OZSsa3XgReoOwi7u2rULF07vADUqCHLikzt37oxshY1QZEZGxujRo1NSUmhTs0geJiyH2+2WJMlsNp8/f95oNNrtdtSogJKDTUOVqhTo/cE5wL9Hc3lFUdCGlyI7O/ull14yGo3luV+bN2+Oi4vDt+Dir1y5khBy8803owcFyi5RWALFcI7jYmNjnU4nZN5gert06YLYbFxcnMvlOnr0KG6j2WweMWKELMsul+vYsWOwgikpKW3atFm5cmUZ0b4q4cyZM1S1p65awjFDSAghPXr02LlzJ83G04h/g8OSJUumT5+OYR0KhWw2W8+ePRFbY2hAQNwPEipWqxUvEP/EAhoOh00m04ULF6xWKwL7oM8g1UQ78lwKRC8hR5menk4i+vbBi4r8YkJCQkFBAV7DCgIff/zxJ598glhWVlbWnDlzRFFMTEw8f/58fHz8gAED1q5dGxUaRfXs4qxZs86cObNx40Z0CaZhTNp/mC67SByoqrpp06Yff/yREALezcWLF1VVTUtLmzx5ckpKSkFBAarIUZYH0TLoosmyTLuNVmkRR1kITM65c+fMZrPdbgffFU8ZFFCKzp07095P5dlCp9MJug1uPpz+tWvXoqNycnIyJExpnSXM7W+//YYOJPDzwDTGTVMUhXbgMplMMTExkLBBx4+EhIRrrrmGEFJJK+hwOJ588knc8DKNt+q8JSozhIQQMm7cuJ07d2IIggL+1ltvoYNow8K///1vSZKwWRNFkTLvGRocYJYgxPzaa6+BjgjiBixQMBgsLi7Ozs6mrWKxZsXFxSUkJNBeK2XA87zX6120aNHatWtJqeosfotSJwwGQ9++fSveP23YsOHGG2+02Wxut/vixYvt27fPz89PSEhAAybKzamTW7dgwQLacw1x5u3bt9OiNFwjbWxEF2JQbd1uN1XoPnDgwAMPPGA2m7t37z5u3Lj27dtDXgCedzgcRo0mpTLhQVR25RUE6HeDxnL8+PFWrVpRxiktkKdAqi8UCp04ceKKWygEh7F/QlwBugTwNXEfIjs82O12JBR5nj99+rTJZIJAAcIMoF8VFBR8+umnrVq1KigowK+43e7s7Gxovs+dO/e2226rmNs5b948eL2hUOiee+4xmUxLliwhpeWDyLDW1ZhhhvD/ntC8efNatWp1/vx57BY//vjjhmgIDx06hCmNvTB7sg0UIOwhDbN8+fLmzZsjnXP69Ok33njjyJEjl8YtaFgpJibGbreX5zTo9frFixevXbsWez6qW6bX6/v06fPSSy8NGTKkuLi44lauxcXFMCFut1sQhJKSEhBJIKGZl5cHdycyu3mVEbkPyMrKKvO/w4YN++mnn4xGY7NmzYqLixFOpEnNyDZtOp3O6/Xu3Llz586dhBCj0di2bdtjx47169dv2rRpzZo1EwShsLAQvXORna3grG699db169fTiKggCOCkvPDCC7if8AKxFz969OioUaNoyJq2diosLKzMLgoMW1hZ/BasV3x8fEJCgsvlKiwsBIlUluUzZ86IohgXF9eyZctQKHTx4kXKJaYhbpQ2nj9/HgdEGevp06cffvhhqHsfOnTIarUmJSUtWLDgsmdFW39Qgw3zSbdNdegXMkP4H4wePXrhwoVojIlx3+BAk/yVLGZiqIeYMWMGwtput/v1119v3rw5GvuBUwBWPdZc2lmJbqs1TXO5XBU8/ddeew2+YKRSdpk4KqzgwYMHy1N1//DDDyFhGllBD94KWl3iz3pbrnPZatrp06e/++674MTSmjZaChIOh+FanTt3jhCya9eu3bt3cxx3/fXXx8bG0uaFFadFYQVpCgYBaspQpQQciKb6fL7169fHx8dDnQcmk9qzigErPnjwYGwCUOOP4LDVam3Tpg1GkclkKigoyMvLQ3jW4XBs3brVaDRarVZ0vykpKbFarTgmLm358uW0AAP44YcfEEvAFSUkJJRnCCE8C38UmySHw7F06VLouVO9njpBPSqfMBqNVMy3VatWdRJRAWWmgs+8/fbb/fv3x1MXRXHAgAFVFTyr3X2NIND1kaGB4tixYxiHgiAcOHDgscce++Mf/4jaanRoI6Xke7o8USo8Vm0kESnjH1kZm822YsWKtWvXok6LlKa1yssmVtDbBJJXtGIduUmEvMDCgDNRV2Gu6mHx4sUooUMEEluNIUOGII8IPXESwXCBvTxy5Ajk7rAHrfgnsNCrqooaDBg/KJSWIbXBssL5pg8ahvaKv0KRmZmpadqxY8cGDx4cGxuL2COeS2xsbExMDM/zSUlJPXv27NKlS48ePdq3b9+2bdu4uDjcAXTJyMnJSUxMHDRo0MiRI/v37w9lcFyIwWCw2+2iKFIdANyW8qRBly9fDloi7jP2AeDowh0so2lOSusXr4LWaD1aMRExxw2FSEQ9xJw5c1A8hMUFMZNZs2aZTCa0QOvatevEiRNbtWo1YcKEq396mCeKoiB7wdAQAbuCubBy5UqISmOVpDXywWDQbDZ369YtMnRBe8DiX/SaR3Uaz/O5ubkrV66EuaJq1BW4fRVtn8u3cIFAACUHdLls0Ijk4MTHxzudTrhWVFSF+mdIqlW8B+3Ro8fPP/+MGgnaep5cUj+H5QWPqebM25SUlBYtWoRCoV9++aWwsNBqtTZv3jwtLc1isRgMBrPZfPTo0ezsbJPJhDIJbAJgnOClQVhcp9MlJyf7fL78/Hz82a5du7Zt2+bn5xcUFDidTjz3/Px8s9l80003ff/995eNdixcuDBaLUEap0eIB4Cc9rvvvltv5waNk9ClB4kE6HcfPXr0qaeemjhxIkSuU1NTywsU1Abgx803UwAAIABJREFUp4IQwSxKwzWE6KoDz4CUClvHxMQMHTqUrlMej6dMAB+xCmzVT548CX4E9M8EQTCbzZBnI4R06dIFXJhqWEFSmuYp7+Tp/r3OqYDRRVFREa1OeeCBB4YOHWowGECnpMqfFfsuyFzSxvHY7lBPCJHDw4cP/+lPf2rdujWpik5NxYiPj4cPCmcDK5UkSZAL6NGjxx133HHHHXd07doVggOSJFHXDUbaYrF079597Nix48ePHzduHCHEZrPZ7Xaj0XjbbbeNHTs2JSUF5ZXwdBFAvhQDBw6sQ0ZMw/AIKerz/EGchJRS20lpyQ7quijNHZW2qqoeOHBg9uzZCxcurExzlqjcOlmWG8FOvClj7969kTsbTdMyMjLKlM1dFjt27ECDkUAgQEunJUkKhUIlJSVGoxFjFUSbIUOG4ANXpMZUySPUNK1bt26bNm1C0C8jI4OWwDcmQIgjPT19+/btaWlplexrlpeXB45JBdnTlJSUTz/9tHv37uXZkmoA2qSUSyUIAnqJmEwmOJ1g4vTq1SstLY0G51BRSkrF5MB+Sk1N7dixI2QpbTabzWZLS0vLy8tD/nLPnj341mX14ehWKSpdDButR0jJzfV5AiD7QgiZP3/+hg0b1q1b949//ANPF2eO3m8IZ0HxlhBy+PDht956q9pTrm/fvigK5jjOZrMhRf/mm29e+uFevXoZDAZN00wm0/3338+MSgMFGrMRQoxGo9ForIwVBBAIRUQL5gopHKS+EM3jOC6ygU5VrWDFk5TneXhF8CQad+fLbdu2aZpW+WtEf/lLWSHDhw+/dJ2J4mKIAkRqftBXUhRFQRAcDgdE8rDCYPBQoRlZliEzgj9RwBMXF3fLLbc0b95cr9eDMxUbG2u326EICtoLdZGrFE5ghvA/s6ueEz0wUAghLpcLCZvOnTtDWgJxjJUrV27duvXee+9VFAWVfGArfPnll1c8+B//+EdYO8QlUAz09NNP79mzB1VKhJCSkhKDwXD48OHLNsqYPn06khY+n+/zzz9nFqUhgrZkI4SMHz8e0dEqRVNQU4gglaIokJLBKEVgn1IBox6zoTxS2luOPVAK+ElwtuibDofj1KlTZT4J/m0Uc2nQYUfECGwd0FMhw0YFcTBaaHtFnU5nMpkoURkrHqKpd91114QJE9LS0pDAhkY2rs5sNlegsBMbG1sPF/l6ZAipcG19JpshaC6K4uLFi6FMiMGB/DkhpLCwsKCg4Pbbb//yyy8/+ugjjC2DwbBt27YKDvvXv/6V47ivvvqKEAL1BzouYdiomCT2lYhdXHqcGTNmIBoGkzly5Ei2+jQ4hMPhyZMnP/LII5qmlddt4IpBC6SvDAZDKBSiA4Z2Kq+hcFIFyxy4PDS6Uw9pEXULrBJUHJUQYrfbk5OTL/Ud0Qg+WiMKzBf0IfH7/SirD4fDaDgM8gvtGAzbBvMGDiCMqF6vR4MOdOqw2WwQX5UkCY4gHrfNZqvguS9YsIDlCK9sCKnrUz8xYcKETz75JBgMXrhwwWKx8Dzv9/vBBkY0w+FwdO7c2ev1QtN27Nix69atu2Lpz8cff0x36+DNYzXBgkW5xTT6VMF2YebMmeBlaZq2YcMGtvQ0RFSbLIYqWIwNFKUJgoBVCap7pLRDei15hMg20aZCjYwvU0PAqFClNOoRXro+IEoZLaFH2g8kEAj8+uuvp06datu2rdlsRl8qdKUwGAxwEynwJspCUF+P7sehUCgpKQnW1Gazwb+kRaUYbxWERkmddploAIYQTjdtGFRXUSlajFWemVmxYgU+OWLEiBkzZowZM6Z79+5Hjx5VVdVoNObk5JAIhaR+/fqtXr26TAnqpejSpcuZM2cQix8/fvzKlSupqXvnnXdatGghSZJer/f7/aNHjzYYDBiR5W24Fi9ezEJSTRNer5f24cPiRUr52JHxqBruNVFCcOnEwRRGVQAt82cP5T/xt9LyzciNiN1ux/v9+/enNODIZoGR+w/oZVf1d5csWXLzzTeTUvGEYDB49uxZSZKsVisNwl86NiJfwC5CxlZVVeSV9Xp9hw4dYmNjYeCRd0QcvmLWOjpv0GI5enMSEhJQnJaTk4MYGP73KjTmrUcuqt1uB4G4a9eudWiMKw7+lJSU9OnTh5RGzBctWvTOO+9MmjQJj9bv9/v9/oKCAjT0Qoew+Ph4SBRW8Ltr167FB3Q6HRqQ0oBGt27dCCEWi0VRlE8//RT7MqPR2EBlwRkaAUCswGuTyaQoyqWmkaFKKOMX4mZS6YNIX6rilaSCFQZNsgghaLFUUFCALUsZlDGKeEdRFLfbXVhYmJubm5+fn52dfebMmbNnzx49erS4uBgq/8gvlhke5UUUytMot1gsqGiEFwt06dKlCXmE0NDjOA4U3jp0CsvbyZ48eXLUqFGjRo2ifbkwwr777jv6lU8++eTdd99NS0u77777EhMT9+zZA4WkK8pNYRrIsgz9J+g5oWzfYDBs3rz5m2++2b17N7SX/H7/gw8+yJYPhrraLx46dAgl4WjzWyW9aYbLrn6RxoO68vRNuuBUm3XZoUMH9FtVVXXDhg14fJV32WkSEUsQfX/s2LG33noryqZhwq/otsKtvKwPCrI9KQ2f0obATcgQ4iaaTKYyHTquviGkyblLRxJeTJ06ddmyZfShyrKMTDI8QkLI/v37f/nlFxrZEEWxU6dOFf/uP/7xjyeffJL+6fF4oLk8fPhwaEA4HA50DSWEDB8+vNr1GAwMNZ+nCE4gDHvNNdcgisUKWKuNlJSUyBWfsn+poUL5HfJ81fuJLVu23HjjjaAvuFyu5OTk/Px8SK+hlFCWZRShUjk3WZZ9Ph+YO9QqowgHjZy8Xu/evXsRr4qJiUHpxRV5Hn/961+fe+65S20wouv4LQwnfKYyOuONxxDu37+/RYsWV0FW7oq7XfLfbcEvxZIlS5YsWTJjxozFixfTpKbf77dareDOlBmvqqo+++yzFf/u448//uOPP65fv55qGyIE6vf7PR4PSvVpwwH0TmNgqBMYjcZdu3ZhQLZr1w5abswQRmXloVsNbKAjPSc4W1UqpymDDRs23HDDDYqi2O12uPIoDeR5XpIko9FIDTByPdjoIOZJnTNVVd1u99mzZ7HE5efny7J8+PDh3r17I7cF+fWKrT4pJ1ENPwT0QPrvVTAK9SiakZqampOTc+DAgbo6gZkzZ+JJcxzXr1+/K35+0aJFmqYNHjwYS4NerwcRGdlBjGMQjlu1ajVmzJgrHnDdunXdu3enNfukNKAK1h+S0mlpaeV12GFguDqgO3RN0+68805w6y9NaDFUNRZVxiMsQ7vFnzUswouLi0OO0Ov1ejweShaldCcUTkCfFiUcXq/X7XYXFxc7nU6Xy8VxXHJyssViodq2RqPx5MmT8FlhPq84EmiBDU1F4ddpnVjkf6HvSpPwCGNiYtxuN6lTmllmZibVDr3lllsq+a0ffviBvj5//jyVC3///fcvXrzo8XiaNWtW+daGhw4dWrBggd/vdzgcSUlJxcXFlNP8yCOPsMWCoT7gm2++QUaAEDJo0CD0NEBYjN2cqBhCyi+l78A5U1W1hp15oqWzcfvtt+fn558/f76oqKigoACMdzTyjeSCVny9ZWw/9Udpj7CmFRodN24cOhfX7UQ6evQoVPk1TZs3bx4hZOnSpbm5uRDZ8/l86HZrNBpjYmJmzZp16REim2bcd9991TuNyx6ZgaH+AMoPtJ09VXNmhrAmiIyCorwv0hbGxMQUFRVxHHfNNdfU4UlOmDDhjTfe2LZtG07P5/MhAAb7h0uopBWkLyITopEOIg2TTp06tfEbQqqDhyKk6dOnL168uE7OhOd5Khmq1+shNYScXCRlC6ngTZs2rVq1qn7OKAxElrBpmqAdekFg0ev16CeAFneR2+3qAW0rMBcefvhhMKjRgSgQCND+J7Q7HXsikY+G2jn65po1ay69S7t376a1yMOHD9+0aZPD4air0+7Xr9++ffugTBQKhdasWXP33XfTKkBk8vC/ZS6t4jUqkpMIm+d0Ops1a0YiutVjFG3btq0yqaUaLf41/P7q1aur/V273a7T6aB0B50eVVVPnDhx9R8zAtO49XjYwWAQsv3UQOLDiAJpmoZNcc2BgHAtzTq2Q29qANOKNonFYIbiNuTWsLKYTKZq/8SkSZMgpqWq6sCBA1GgDZ0R9CY7fvw46BJR1EZpHKCbg0gm3ZgxY5AKgUA/BUQ7eZ7fvHlzixYtpk2bVlenffr0aVrMAOtVUFBA2z5jp0U/3EC3PtU3hH379uU4bty4cWUIQvv376/M12NjY1En5/f7sYmQZbl6taLVxpAhQziO2717N04A/yLao9PpkAIhhNAmt3jGsC5QaqgeXn311T//+c9wKG02W5W++8orr2RkZAwdOvT1118v7zM4/zIheIamAMSmoClKxYmQucEeDh/Dvrt6+P3337FTFEUxMTER8wUmsKSkRKfTXbhwAarfVWqn3hRQ3mSXJMlutxcUFJQJlXm9Xk3TLBZLbm7u0qVLJUkaOnTo1T/tS0/M4XAgtECDZ3RhBLOvwa081TeEXq8XjTwwJej7qampV/zu7NmzIxvBwASKouj3+69YbxdFE5iZmWkwGERRhM0DIwsixZqmPf7443Cq3G43XlBNUU3T1qxZU43fffLJJ81m8xNPPPHWW2+NHz+e47g//elPVTrCvHnzdu/evW3btkceeSSSXoUGaUAgEIDWKFt6miBgBWmP6/+b5zy/f/9+8O8JIR988EENf8VkMs2YMSMQCKALNJWjRO9DWFyO4wYNGsSeCMWePXvgUUWSKseOHdu2bVtSqpVfxn3kOA6lU+g0uWXLFqQPOY6LiYnp1q1bWlpaSkrKgAEDpk+fXot2gucRCMW+B6110NECvApqCCsunGiEhtBisdCMWigUstvtlf/ukiVLdDod2jLgHb/fD8HW2q4NGDhwoF6vz8zMhPEOBAKIGnEch0pS+H+hUOiVV16J7k+npKT861//8vl8iMSCsvztt9/Onz+/SsfBeeIRmM1mPIJnn32W47g+ffosWrSIEAJRt3re04oh6qBcA4PBEKlsqSjK119/DcVncqVG6hWgZcuWWBN9Pt8tt9yCvH6wFEajUZblEydOQHFN07TKd1JsUg8oMkf7+++/Y85eqsaiaVqbNm3oa7yALhohxO12HzlyZN++fcePH9+7d+/7778PZZb09PSon3bkCVPhGGr5MK7wJ5b0JuQR7tq1i6Y0CSEQErsiUDWPBh9mszkQCCQkJMAtu+xQiBbuu+8+6F/s2rULesRw59Hz77rrrkOSEucwevToMl9/9NFH0R4Me7FXX31127ZtVVXAQakNogdYnvR6vSzLVTrO66+/jqA0IcTj8SB4AlKrTqfbu3cvqiwgfEpTm3WYaWe4asjIyKAEBJR50aQUx3H79u2r4RQrLi6+cOFCmbrvQCBgsVgwktHp0Ol0ktLGYeyhUIAUAzc90iOEF7Fs2bLL+lKnT59GOKpnz55YOigRCS2X8XARrMYO+PDhw3gzWj5iGbl2rPnoMIwOFT6fj77f5DxCXDPSALgFHMfFx8dX/JW+ffvm5+fjOcmyvGzZssLCQrhlhJD27dvXxkWmp6d/9NFHZ86cwW4FwU9CiNVqveGGG2RZxhqBAKmiKJ988gkh5LXXXhs4cCAs3xtvvIFEsV6v5zhu5cqV+/bty8nJqTxxdOHChUjSmEymQCAAugFO4+DBg5W/loceemjnzp3hcHjx4sWvvPLKv/71rwkTJkD6HSsg9GiwRzMajTj/Pn36bN++nS1GjRu7d+/GEikIQnx8PF0x4R2C3VCT4x86dAhhjHA4/Oijj4qiKIoi9CrD4TD2sg6HA1XVhJBevXqxhwLExMT84Q9/oHuIyPwRLMeUKVMiuw+6XK4ym9ddu3bdf//9/fv379mz59ChQ9GeAp0mqUMiCEJcXBxK0URRXLp0KToERAW0toHn+cjGzpRI36BzhDUKnY0cOXL16tWUbMnzvNPprLgckG5IeZ5/9dVXExMTUZmAZ1kbctsZGRl79uyB+0XZTaIoDho0aNOmTfRjs2bNQrgyGAy++eabf/nLX0iE/AFGMFIgcA2PHz8+bdq0b775Zvny5ffee+8VTwMd5qDagB1cKBSCfG3FvbvKQySL7MMPP3z77bfffffd/fv3I9WKO4wXHMedPn16yJAhoVCodevWGzduhMQRQyMDdnIo54qLi0N/OLggVKmyksXOl8Xtt98OzRFVVUeMGIHRZbVa4Y6gofTatWtRsyHL8vr169lDIRFN2eALhsPhvXv3lvnM9u3bI6m8ZRikANU3vhSDBw/euXOnqqpOpxM/h6d88ODBPn367NmzpybnH2nnYLntdjsESCOl1ypuYNeYPcKvv/6alFaEgKKNVPxltwOI1VCF8iVLlnTo0GH//v34CpINUb+8G264YevWrTgxbLiGDBkCSlukFSSEfPnll5T+9Pzzz2P40n0WzvkPf/jD//7v/7733nvbt29v06bN8ePHExMTK6nUgBWExqkwXCAbOGXKlJpf6YMPPvjzzz9rmtaiRYsyjwB7NDDaz50717lzZ7Y2NUqUKcGWZRnBfEVRUFZBZ2v1jl9YWEjXdDTKwbSFrAys7BdffIFgD8dxVeINNNYngnYKkYTzESNGXPrUUIhS7R/KzMyETUI9G6Kp2Ant3bu35lxT6g7iiiB6jAXNZDJ5vV4osGMPFEVphRqmtK+SIYzEH/7wB1JaHY/pF/m/UHfFPlGSpAULFsTHx8fFxT3//POyLCM4gHz77bffHq1TGjBgwKZNm2g4dNSoUZqmbdmy5bIfRj8w2CecEpzXdu3aPfLII6gYXbVq1ZNPPjlp0iRCyBNPPPGnP/1pxowZlVElJYTMnj27jIAQVP7efvvtt99+u5JXBEZMbGzs3/72t/I+I0kSQmE0LKYoChhANLXAcdyQIUNqaUi9/PLLjWYhW7NmzcSJE2fOnMmsLCllSWAYgxqDkjifz4feBZIkIXZa5ypRdY5BgwZxHGcymWgFJ5yBcDh85513rly5MtLGRPF3x4wZA4tIW/uKorhly5a+fftG5fiapqWkpNhsNui98TxP+RZlrFcT8ggjkZqaun79elVVEScpUxGIsnGQbl977bVmzZrZ7XYoBlFviSqdR+uU0O4Zsho8z3///fcVu/+RpkJRlHfffVfTtNOnT1e8sj/99NOVOZmpU6eqqrpkyRKYQEKIzWYLBAIPPPBA5a/on//8JyGkpKTkhRdewM7jUpw7dw6ZA5PJpGkaWkQ999xzzZs3h2nHqM3MzNTr9RkZGVEfUlCna4i4lFI0fvz4FStWvPfee7XdILtBgKos4TUiYxzHWSwWNKDOysqCZLymaVe5Jri+Yffu3TTkYzQaEU8qKSnRNG3KlCnjx48vc1ejDsSZqKrGoUOHKrllv4LB4Plu3boh2I4dD22RAa+xKYZGy9wgOOOiKEqS5Pf76dpBmwfBVW/VqpXdbvd6vSBEwfzACp48eTInJycq54PpiqRuWlraFUcbPo+n2KFDB03TJk+eHPXbPXXqVGyiqzdikCTH/fz666+Rd4wEzVaWadcyd+5clDnjT5PJZDAYVFWlclkV24PqxTTAyI2Li2sokyEylIfzR5BAVVXQqRjoqodtFiIlfr+/uLjY4XA8//zzsIvUBjRBSJIEO2EymXQ6nSAIxcXFqampX375ZXm3NDs7O+qnsXDhQlr9DH8Atrnm63xCQoLb7UbD8MgmunTiRFYTNDlDiHjx/Pnz4YUQQn7//Xd6axAiRwjUZrPJsmwymR555BEa/A0EAqgBqKQwTcWYNm0azsfv9/9/9t48zKrqSh9+93CGO9S9VVQxy+DUKIqKgkA74awdh04+jcbPIYogiKgx+dlq4q+70/FLJ04xTiho1I5tEjUaY9SOccAIiBrFBBVUZFBmarrjGfbw/bGo01dArAIkReF6fHiuVfeeOnefc9baa613vS9JbW35/dQd9H2fMsIvVfUjuVHWrFnT1c8+/fTT06ZNI6J3KeWmXLS//OUvyQE5jrPZxoC19thjjyWxTSml4zhjx47dQjzYlihINQAaB96JbNGiRQSbQkdHhMRo/i6kHt3LWXBOt+7QoUNJo452vcaYxsbG5cuXU1GuXC5/eYX37m+EyKOdqNZ67Nix1toEHbMp4CUMwy8VvEbej0rWQoijjz56W45GcD/6jnQzOI5DNYAkI9ylS6PUpB0+fDhtQOrq6lauXIkOngtCatTX199+++2UEgVBIIRYs2YNKfnROxMys23ctN5///1BEGQyGSrU1IpCbNZrE6aOphq+7L0MnRJtFX/+85939eO33HJLgkuiFLwWPkoenHMeBMFLL7202SMkulH0refNm9d5zanObEEoeKCjVfDlzYZ+GZbL5fbdd9/ktLPZLO3qpJSrV6/elaMgoWDIA5555pmEkaGMkNjUfv7znyfDG5/Xie/ZNn78eLrnSZBo1KhR1to///nPte/ZLvXJLhmBe6m5a4zZ6Hy2YjMUhiGhEDbtESaBcNfNCOfMmUOZChXEiEGNVoRc89FHH/3rX/969913J1YeGr+l60TMh0EQbNlpbgE9vFGkoSZcuVyuq6uz1j7wwANbiIJCiHQ6nWgr74BtdSaToZJFbc+8S9bU1ET1VQDJt5syZQp1sH3f3yzHY1LztNYec8wxye71mWeeSd5z3HHHMca2urW+ZMmS5Knb6eDU48ePpy4OTcihBj+slNoWouoeYN///vfp6fA878gjj6RLTB6wsbFRKfX+++/7vp/otOxqNnbsWAIl0BZz1KhRmx1a2H///Tf6STab7aRn22pLnkQqaG9LxnbYYYfVqiYRaV/tFd9JKY75dlxrz/Pa2tpoy5AkyBRdcrnctGnTWlpastksreO9995LL3zfJ84XbK4mOXHiRJphZ4x9obwtMWukUinaBI0fP37L2g7ko40xRHuGTtMizJ49e6sXyhiToI23+jjr1q0bOXJkoij9z//8zwCmT59OlI9Ukzn22GM3+lRtzfOFF144+uijE82phBPyhRdeADB//vytY4lctWpVJpNJUt6d6Ek46qijZs2alZzzueeea6298sork+xwl216kSV9rEQojiYoiMDovffeS/ayuyC/6GGHHTZv3rxkb3rkkUd2/tEOgmC7DFB9oX8mYrxtUeACcOyxx9KAMs2E0Ia+9pg7KZ3QtgbC/v37J+VE8n00fZkgx6h+UiwWTznllMcff/yDDz4gxQnKQjjnURQNHjzYWuv7fq0m7Zw5c4gcgRJwyh233FWeN28evc113SOOOOLzaoO1uSA+C3bqTEbIOT/88MPPPvvsrc4I6cU2chG99dZbY8aMIcf91FNP3X333bTs5LUvvfTSlpYWKWXCVbipEYiXXiSNdFoWpdTs2bNPPPHErp6VEKJcLtNK0pnsFOHwqaeeopuHzvnf//3fa4FIBIDs/l8k2aon15FoX2hsicoktK3cioMnxPoXXHABtYWSESAhxBVXXEFv2LQYuCvYnDlzqCtBfqxLleG33nqLXnzZN9iCBe8mnkdKedFFF3UpiFrLOJfkYSgR1FqnUqnEZ9KEdEI084WOguqFye2a/K1CoZCIHdLRdgBme1sDIZHw0uvf//73nPMRI0YQBx3FJKqX0hd75JFHJk2a9Nhjj51xxhno0E476qijkhrp3XffvXz5ckoTDz/8cPJKDQ0NxhiCom15oisMQ/JZhxxyyGbxkBs91Um9K8G1fmEgnD59OrmSX//611t42+LFizf78/33398YQ61QCtg/+tGPOr/aGx325ptvpiXinF9xxRVU09Najxs3btiwYV/72tfOO++8hBh9Uxs+fDiNWlOXNLkRk/nfF154oavtw2RvSExDFGW7uRerr6//5je/SRV7WoFrr722duNCkKtu3uwkgFgiKFbLMko8iHRvR1FkjGlra+v8kYkCkO4Qz/MGDRpEnou4vJO9F9WEto4maee1pApF++l0Or0VhBUXXXTRAQcc8Prrrx900EEjRowYMWLE8OHDDz744H322WfffYcdcsjIr33t5Esv3dZh1mHD/uGkk06ie0BrTUSSndy7J7Qn+KzQ6UZERZ3Hi9KMIzmf2h5KsVikfk0i57BjlLy2NRC+8cYbxCjhed6vfvWr5ubmhQsX0hPiOA7JNtJzQg9MLpe77777qMFAQaihoSGdTnPO99prr+eee+75559PaqqEUmtpafE8r1QqJZxhW7BqtZpOp7fMq0lVHQqZWutDDz2UqBAYY1vIn8iIGfULL/Zm3cG999777rvvklZ4kg1ff/31nYfM7LnnnvSCsq7DDjvsrrvuSih3pZQUdeI4XrlyJed8jz32mDBhwsUXX7zZWHjvvfeio5+X7PcpCyQVDq31M8880yW6QoJcJnqwSTjstsYYa29vp6JWHMeb7j0TF9DN2YSXLFlCz50QItH2ShiZqc2JGknezjPcHnjggbQsRFLYv39/UmQlMK0Qor29PRHlOeigg3aF+Nfe3k4vKP0lvzR27Nhyudx53PuYMWOoyPzII498+OGHABYuXPjuu+8uWLDg/ffff++99xYtWrRo0YdvvTX/mWeeu/vue6jfROWrrZsAfvbZZ33fBSAl1zo+8sgvLmJPmDBRCMdattFmlxwmcVKiAw5CcgKdKTkknHN0QDJrbVtbW7VapYNQxO2k5P3fORCiY7Q2DMOWlpZzzz03maanx/LGG280xtx5550EMysUCjTPIKUsFotjxozp16/f0KFDDz/88I8++ujrX//6JZdcQl1GKkkRh1OC9U/a0Zu1sWPH+r6ftKM3Ow9HS1+pVCghC4Jg3rx5iZz36aef3snrVyvBuNlEedMfzp07l/R+CUCU8BRfc801m52Ov+tLnPypAAAgAElEQVSuu0hSdVOkWQKvnTJlCiVt6XQ60Tl78803X3755Xw+T73PPn36TJgwwXGc2jHe2qJfbUb43HPP0RKR3iTnfMGCBePGjevkzUBhlWojlGdvY0/iS7UTTjhBSklcPNbaU089ddPWDsWPhH6v2xrd7XRrfetb3yI/kpC8JGW3arVK5ESbZbP8PKNbly5lr1696Ji0y5FS1i5abTLdgy1ZvUR7SAix5SoU3W+Jgo3v+9SPIOQgseTXbrKT2euNSt9kr732GmMsm83dd98vunTmQRAJwZQynPM//3n2F7Ynly1bFscxJXDJiSVJIWkw1VbaauvzW67JkaNIKNrpdg2CgIZwkoC6Yyght+dAfeIpgiAYPHgwRfjLL78cwKWXXhrH8Y033kjdhUQId968effdd98PfvCDN954w/f9IAgS1zlw4MCTTz6ZPJHv+0qpRDKeyqebfVzvuOMOavZgc/NwSemGlpjC7YABAxJhyS9MzgYPHuz7fuLrx4wZ0xkBxTvuuEMI8dBDDyXpURzHM2fOpL8bhuGTTz45ceLEkSNHkjKi7/u+71922WUkDrWFae577rnn6aefllJWKhXCzhCy+Y033hg4cOCIESMGDRqUy+X22muvAQMGvPfeeyNGjNho65D0SglHCmDQoEGUzdMFjaJo0/0HdXNrM2/6CVWwqUKSKIt2T1/2jW9844UXXqD7imRONyu2nCiRbnkI5+9uVAuh24l4fROfRbi+BNdOu6ihQ4d26fiU840dOzafz1PyRx0QY8wTTzxB8zyu65522mm7Tl1UCOE4HsCtZWPGbGmz2NDQyJh4/vkXlDJCOEI4YRgDnHMZx5pzaQw4lwBnTDAmAK6UYUwoZeiHUrpSugCnPxdFyvfT5XL54osvPuaY4zp/ztZabazjsjCKAfzqV7/a8vv/V57e8toELlHjSZQMqBvdyYyQhvGpcZNQcibbNfIeVBHcMUxV2yEQDho0iGAatQ3Pf/u3f9v0nVdeeWXv3r2ThyrhKiTxvERwkjH2H//xH+eee25zczP56CQEJtHo8xP5CZ9Xyid3RoeiDIB+tWrVqtot2Jatf//+5BDJy7/++utXXnnlppnWRjZt2jS6e+I4zmazpBM2YcIEUtugnvAjjzwyf/582l6FYUh7QyIZ2MKJTZ48mdpXyegeVfmMMeecc84999wzceLEf/mXf7nmmmuWLVvWp0+fZMRl1KhRF154IcGpqQX70ksvNTU1jRw58p/+6Z9oOCy574UQRxxxRO3fve+++xzHOeywwxJq2enTpx922GE0Pl8rutYNMSZHHnlkOp1+4okn6DypMED0dRsZiWWGYVhXV3f88cd3Z6dME+602lR1QA3GPWkKplKpUqm0dOnSzh/5mGOOSSYIzz///ITQmbaDREO43fkRu7+dcMIJNCFNiz979udChMaPP4bGydABR6BMKGHwqI0cSYaEDgYD2r7QJHtH9HXq6upoFBvASy+91NDQBRIMa2wcW9qTVyqVLQv51hZCrLUA30iPni56bWm0M+dAzN3UL0tIuuleTQYwduQkxnZwUq+//vrAgQPpO9AF3oLjXrFiBRXiPM+rVqukopc43HPOOefEE0/s27fvvHnzfN8n2CdpFfXr12+rz3DUqFF/+ctfcrkcXbNcLpeU+MkoGe3MoYYNG/bRRx/dd999lADFcRyG4aOPPsoYGzdu3Ny5c8ePH3/cccd9//vfp/fff//9xP+SzWZLpVIqlaJHgoZSKXklJ1IulylU19fXk7QpPWDXXXfdDTfcsNmTmTFjBjooC26++ebLLrvs61//+u9+97skDr3yyiuMsVtvvZXGAI4++uh333135MiR8+fPb29vf/nllyk/FkJQAHNdd8iQIcuWLTPG5HK5QqFAKLgwDN94442TTz752Weffe6551asWEGPB505la9Hjhx5yimnvPbaa5R/JEOZjLGnnnpq3bp1uVwuk8m0trbSwUmWkurD1MrCZ3GPSQu9qalp2bJljLFXX33117/+NXGId3WYgfxLsnulaVfabRC0crObKqo3CiGKxWI351ClAT4qVybSZrRzB7B27Vp6QR2BLqWDr7zySiI1t99++5VKJbpkSRigO6darW65X9DD7PnnnxdCaG18369Wy1t4ZwIiTSBLFD8IypuAsMgT1ko31Io3JT0zrWOtoVTEGLSO6ZhtbS0/+clPunSLMs5hTMr35syZ84tf3HfhhRM+78HZKF+q5ZGRUtZ6zkSx5wvtnnvu+clPfvL++++TGC09/rSTq6Wn2WGNle0QCPv160dJQxzHrut+ofiAtfbss88mSdsgCP74xz9SXkgO13Xd+fPnG2Oo4E5Fv8MPP3yrMdlHHXUUSTYXCgV6UDeKgnQtk3t0y7b77ruTiyS+7CSCcs7nzp3LOX/55ZdnzZp1/fXX439hxxYARZpzzjknqQwkx/zpT3/66KOPvvnmmwRcbG1tJRc2evToiy66aAtA2RkzZtCuwnGcyy67DMATTzyR9HIIQcoY+853vvPBBx/cdddddFZkd91115w5c7LZrFKKSs3Tpk1rbGxcs2bNAQcc0Lt374ceeigpdFPkfv7552fMmDFo0KABAwYMHz584cKFySZGa33KKaeMGDGCADsU0ZPN72233dbQ0ECVkEGDBpEw8pNPPklTnrSGG0kIbfzQ1hQb0IEV6pIlFzdpXiZiI3ffffdmP/LAAw8kFP7dnykjQcFQ4YEeyQTU19bWlnyFZDfQ+aWj2dw4jglAm8j8Un+L4quU8svQE+2eduihh9K9IYQIgi/ek6VSXrUaGqPGjh33xhvzoiiSkitlwrAKcMAwJqzVnpcOgoq1jHNYywCqi1pjLL0GDOecMas1bROhtfY8xxhz/fXf73wgtMZKV6CjBT558uTPC4Sb3PmmFjWaeBt65xZk+DY1Ottvf/vbyRaK5lCJgCVxLDvmgm6fJzwZH6xdoy3YmjVrBg4cSNBYKeVNN900aNAgAne0t7cvXbp05syZH3/8cQJ12+qTHDt27Lx582j/5bruwQcfPHfu3E0L/QnWvKsQeUrwKaWgmJdk9xuN18yYMePb3/72dr54HXxOlIElEW7q1Km1BB+Efr7ttttqxzQBLF68+JVXXhk6dGhbWxuNFpGbW7VqFed80qRJ5P5qg4EQ4o477hgyZIi1dvHixcVikXCDTU1NQ4YM4ZwTcicp+GzaOf/lL38ZRdEhhxxy6KGHUoJOx09cNnWRE6QAbT8pBaF4SfpnW9HO0VpT0E3YEc8888zP65Hsu+++CxcupDtnzJgxW0ZpdQfbb7/9aKodwB//+MeN1v+tt95KYCxdfZoSGPDxxx9/1VVXUVOHCvJKqU8//ZRI/jzP62RZZWe3yZMn3X///XGsAYCBC6Zjs8XciwnJrWWGqHl8Nwwi13O0trrG4WTrMqVi2XFlHCnpCGNgjIYFAOk4imowkmtluABdQ2shJbPWGgPOoaKuXVnhS26Niq3j8ijYfMgR0mWM0XkKKb9/3TWrV69evnw5SdykUqkVK1YsWLCAQtqf/vSnYcOG0Sb45Zdf7sw5nHvuuRtxdtfWhAhSuwOu6XboEfbr14++See7QX379t1rr72Sjfmdd95Jk0+EQLvuuusoVyDPmIA4umTE+/f2228nVewDDzxw0yiY9MC2rpVF9Q2aQ6CCJCFdkxhPy9KnT5/tGAVr2bpJH7z2t5deemlS2ad9FqUIl156KZVSE9tzzz379+8/Z86cBQsWfPDBB2+++ebKlSsXL15cqVRaW1svuOACQhgqpe644w5CWGitp06d+uKLLxpj9t1333Hjxh166KGjR4/ee++9Hcepr6+vbRVT1rsRM9m555570UUXHXjggfvssw+9gRqcVCMlNDYx09LuKlG/C4KAaInK5TLlOl0y6jeQp/7GN75BnYnPi4KnnHIKjWxGUXTCCSd0/yi4A8zzvIMPPjiRDqXWtbU2qVF3NdHcee0Xv/hFHGspuetKa+yUKZd8QdXa5VoZzo2Q5OstgCiMtVKptAuACwAoFcsApNzA7GGtBuB6wnH5Ndd87yc//f/+779+/+qrv/ev//aDww4fxzi4AONg3DIO+t+u2gUXnAdmhYNYmeNOHL/Z95gO9KJ0nNruYNK5SPxPIlW/M5LLyO3ll8mF3XPPPZ381MKFCznn9fX1bW1tixcvJs2Kv/3tbzNnzgTQ0tKShBYi/eqSpVKpBPFIvviwww6jbfLnpf+0u9m6Fbj44otrhSDuvPPO9vb2hJK4V69e21fZlahZCRZULBYdx9mI5ua+++6bMGECZT/0L2VdkyZNmjJlyo9//OP/83/+D73zpJNO2nvvvZPxxI3swQcfpBBy2WWX3Xrrrd/5zncIFXbTTTfddNNNp59++llnndXU1ERwwfXr1yedRfpzdAk+r5n3ve99r62tLY7jYrHoui5R99JekhBlSXGVcAELFiyoVCrHHXdclxQct86ee+45mr0TQvzP//zPV1GQRgZpy5toDtD2ZeXKlYSj3hUCYXt7ez6fj2IFBqUNtAFwx8/v/oJsQzBwKG1dl0uHRXEsHIwZcyi1S6hEkclk/va3v4VhHKsIDNZCSHDOolgzBumI9kKblNJPOb16NYwde+jcuXMp3HAOCzCOrZjXvf+eX/zXgw84DtfazJu3mSRh4iUXgxlrDRiEZEptEG1NKn+JLFdSGtxJBZm3NRCuXr2avJ4x5vTTTyc8ZCft5JNPfuaZZ6jLdcMNN8ybN4+glQTcJwDS8OHDu3pKxx9/fBAElAfQOMHQoUO3EAWT1PMLp/U7aTvAUwN4+OGHKdmN4/jhhx+u/dVFF100ceJEckxBENx1112XXnophSghxNVXX3311VcnpV26dg8++OD555+/0Z+YPn365MmTyc1JKX/1q1+dffbZNEzNGPvd7343e/bs22+/nUbx6uvrS6VSoVAgEEpS3/+8gfrzzjuvez4SxF1O4KZdU0VhMzmN40RRRFlgUlimO+fVV1/dRSqiy5cvGzx4yCWTJwBIp51KJT7uuKM+/GjR3nsNo38/74Na63SaVyoGMFrDaDQ2Zb7xjdOam5tpbkdrXSgUMhlv1qy5SoFxSAnGYK2FRSbrAsZ1eSrlRVH0ySfLGpvquQDnYAZJmbSraVhLa3OvhkYuABjPQ6m4GcTvrFmzwAALIWXYcZWTOUIqkidQ4S6hRrubbWtp9KCDDkqIY5588skuffYPf/gDOUrHcWgml6Igtdz23HPPOI47z39Re/For2qMGTNmTBAE77777pYK5UI4juN53k4kL3D33XeHYRhFUTabPfXUUzd9w89+9rNknppzfs455xQKhVQqRR9JyrbJjESil1ZrRG5Aw53Tpk1ramqaOXMmJQeENGlpabngggvOPPPMlStXaq3T6fRGhEm0Q9wWjvIdb6TmQbv1r4Tpk2cEHagZAkAlzGrJkGuPJ1cbPHgIgAcffICioO+L5//4MsW/LUTByZedzwW4QCoNC0gHmTrWp2+TNrGFTqW91WtWlivFXD574EEjjIXrIZ1hrscsoA3y9V65EjGupcNb25pjFWSyPmCFgBAQElxASEgHoiOpaW1vpv82PZmHfnM3gDfengOgV0MjAMeBsZAOk5vjTfrww48YAxioTpukDUlGmOx68dk5wp0uHG5rRkjjlp2EXG62JpmArxLExNixYzfbzOuMHXPMMVSRIxfcme6O7/sJ+GLGjBm18n7d1i677DJaq3K5vKnKBIBp06b94Ac/KBQKjLHJkydba8ePH3/LLbcsXLgwUcol0ZxisUj8dpv9Q/fccw+RIUgp/+u//uucc8556aWXSqXSjBkznnrqKQIKOY5zySWXUCZK0wjU3kPHHNuWB5W2bDNnzly/fn0ul6Pe5w5YWMpvare6XxmhqIjtgXr5iXRMEATUOBwwYMCusBRamzA0jgPX3eA8W1ubNzvG98abc0aP+sdPPlkqBCoVU1/vFYuh1hDCZjLpQqE1m824rvzb3/46duyhSsX9+vWWEsR3qzUYg+chikNrkMmk4zhMp1OM2Uwms3bdaulACNDbGAPnsBat7c1v/232W397ZffB+9I5NOR7b8h4uHjxz09/42vnz1/w2vOzftteXD/qwMPeefdNx2WkmZZOy81VAngcGULo0L/JgMemGSFVmHbR0ijB5YmeamtvrM/QcRljtjoKAnjppZdc1/V9v1AodJKOb6+99lqyZAmxHE2dOnXSpEkzZszYVPy9+9jtt9/uOA5txG699dYrrrhis287++yzqeHKGHvnnXcmTpxIMX769OmVSoXcfaVSUUrts88+CTvlRnbxxRffdNNNH374oVLq0UcfPfbYY/v06dPQ0ECHIiqWOI5p9OWBBx4gwEtSZE44I7bCbrjhhhtuuIFcsDHmlltu+eijj77Uhb3llltIxCNhUPzKjjvuOFp/Y0x9fT0NGtG8E2160FED7+ZcrNvFpl42SSn4PhOSHXPs+A3BpiMKLv540Z57DAPQ1t5Sn+/10ZL3R4/6R8cVUkIbGKNcD44UsdJax9LhUvJSuRDHYblSTKfT2sS+D8ZhNMDgunAcqbVONcpKpRTFQSZdZ6GDsJLLZaWEEJwxwzgYgxDcWsuA5Svej3XpgyUbCjz9eg/tiIh9HBdP/fHBA4aPHXfoUS2ta9/62+zX33qFMet5LI4t55t5TqUj4thYSyBwC7YhI6yJlE4t1yjtkDpPvd1DAmHv3r1paCwMw83SU3XGDj/88Hnz5iVpXJfUGDa1uro6wvT7vt9J/O78+fPRwWIQx3E6nZ44cWK5XP68APN3t0cffZToeIwxWzjJAw44ILllDzrooPvuu4+EV7qK3Fm4cGFC0Pr0009feOGF1Ai8/PLLx44de91119FgAzoAU7X8F/TzdDr905/+lCYda+22224jEDaAefPm/eEPfyA9EMLXZDIZCqjU7v08QY/tZffff/93v/tdymXjOB4/fvxXURDACy+8QHea67q9e/emEZQk6ae5mh027PX3tfb2tqeeetL1ESvLBP7l6v+b/OrjJYveXTT/1JPOov+tz/cC8K0zJyxd/tGAQf2Fx+rr3FIp9NPCKu26qAZFz3NiVc1kUqecelIUhRbR2rVrpQPGwFNCKc0Yi5WCAHP5+ra1AwcOjKLI4bxYLPbq1UtICMHAwDgsBxMGFi/PfXJVyzIIABuuyOqWDU/NitUf1Dc0VKvV9z6cK6XjOv6nqxeOOfhIq29OeWlryprFm6sExE6KxVXrOIhjywVL5gg3RY2iK+oTPSoQrl+/ngiytwUve95557366qs0sqa13hb+jiOPPDLp23e1u3PEEUf8+c9/JmkIzvmVV17p+z5V/P6+9uCDD77yyisHH3zw1KlTp0+fPmXKFCJfwBcNhE2dOnXhwoX33nsvwS9nzZrVeQWyjeyMM8547LHHhBC/+c1vzjrrLGIcVkoRloSmHRKKLypxJyyXWutqtXr//fcngfC666778Y9/TK+T8USa0wBAE580u42a4U7Hce65554v74pMmDAhaXhIKbcsZtkNLWFnpshEVC+e5xG7/VY/oQnWieS1K5UKAdnI/SXgiISxtgdbPl+/YtU6Lw0uEMR27Jj/9TB77D5sj92HAViyfFFbe3NrYf2ChfNaWptPP/H8/+frZz/2xK/DMHR9+Gk3qFazKb9Ubjc2dqQjBdrbmxt65V98+YW3334rNKivB5iNSmDCMgnpuMroXz76cBSotC/GHjp6zOjR4BEXYFy7HmfM+BmnEsZRjI9W/gUSjAnAMm4YFMUtgHsptxy2GFgn5THYQBWtjj/59P28ny+Vqtms06Liq+++bGDj4GFN+5x0zGkA5vx5FhhiZV0XOobj8lgbcBbHoVIR5+ignYoBDjBSqHBdN4qCzt9vCS/8zl0a3XabNGnS5MmTyQFt43KQPCY5siFDhnTps6+88gpxTiY6w5MnT/67BEJiX6PXFPkoX0kCCQUGpdSmrOKbFlH32WcfaiiOHTt2q0/p1FNPfeKJJ8i9zp0797jjjiM+vEqlknCOoEOjbtCgQddee+2ll16aMHlGUfT2228T3QzVUnr16tXS0kJhMqFNIOrFWhAaaqgllFJf3uW4+eabEwI23/e3F354hz7JNQSVhGRJ6uckkbZ17oaKonTVpJSkX1YoFHaFQuhmtgUOuAAk3E1Qhm3tza3t6+e/++qS5e+HcbkSVnP53DOz/qt/n6GxMfnG1Pr1Va6qjEObcM0a+4sHZgTlkHNuEVvYWIMx9OmLMES1ao48evRf/jLf8/3WUhECqbSfzohKOXzrndcWffjXcqnap28+VKFSUaxhRWwF+vVBbItCeoaBcQWmODPWam4B8FK5UFfXIJlTLlfiWLuu6zpiXctSbaqNjfUhWrmF5tGKtuVHDj8KwPIlH//3Q/dLH3CgS5ASoSL1JQ1mau+0jULaznplu8NJJEoF22gJhHXcuHG1CuOdtCiKxo0bl1zdVCpF6IDdd9/9pz/96Ze9CMQhQG5r5syZNKIwbdo0OhPOOY05plKpRARq/fr1X3jYqVOnWmvjON6IVqZLdv755yezELfeemulUrniiitKpVIURcRdOW3aNLqI1trly5dPmTJl9OjR1DCgwEZNdWIbYIzRnChh8QkqlcBTKXbSVoC0t8jnbksg/0J76KGHiAUe22+KZgcbcdi6rkvYTipmJlTISf1/6xLNRK2FrnI3JFLfQbsNF4xDSLg+2tpb6IdLln8wf8HcpZ8seue9OctWvB+aCoTNZn2lAj/lNLevOGL8KOGwbI6l024+7zU01e82xKtGVQirEWXqMuDIZlk6gzhGEKBPX++QkSOyaa/QXqyvc1wBYwMhQulCGVSjCnNsc3t7pAPHt+kc81PIZGEBL2WlV3K9NtctuW5JOCXpVqUbSjfu3TfLRRibqpcWuXzK9awVEdzIb2RVtEQ67tOL+YbpUvWVOc8AGLz7Hq/MfhkCQnCtISUDwB1Z66hrKS9QIzq/y5VGt+9+tnZNt8Keeuqpzc4AdDWnrK+vJzLShMJ/6dKlP/rRj6677rqEAzc5z+141YUQP//5z5966qkXX3yRDpsMp5NrrlarQgh6PXLkyG0JbFth3/ve926++WaqPD/88MMrVqwgVkCl1O23377p/OgFF1yQXI6ko570/AhKevHFF+fz+aamJgqW1tobb7zxj3/8IzHG1RIQO46T0LR+GUYwHArqO6mPXrFiRQLmTKqUBFaq5Sns6pADOb5EKJwxVigU8vn8rsMj81k3BQswBi7Q1r7u8adnNDb2BWx7YV1bcW0Yla3QXGjGLRHZcxlz4Yz7x4Pe+eubdXknjqNKABNFzBO+J10iNfSNC0TK1tXJjGBuNY50+PjvfhPqUlMf35jI8yAlUml4KbqmlHoJzrm12jLDuPUyaC8gmxHVqASmGbNgZgM9qZWA0iZQVnPpOg7XcVANyozbTDaPXMgd8BIEt3XSYwZXTPr3OX/+n3884sTFy5dzD7CGczDBwTR3eS1nL+1iNw2EuyizzLbbIYcc8te//pUWtKsc6rXp4HY5GRKsOf744//0pz8RTEMpRdttcui1pTPG2CGHHPKXv/zFcZx0Or0RnXetjRgxYsKECZ+HbZk+ffpll11WS7DJOaccUSl13nnnHXXUUaVSiXNOOeKOtxtvvJHqh0qp3/3udwmdxMUXX7xRFCwUCrlcburUqUQskKj+ptPpH/3oR9lstm/fvoRpYoxls9kwDOfPn09kN9lsNqnCES/PXXfdtQNCfqVSIe+y845M1CJ1iRuPYNjkmxJ2+P79+3e1WkM1EqIPJE7BrlLy9pxAyKANpISQeOTJW6XDmosfG2YYM2CKOZYJw7gGrDKmqV+2UCh4qYz0mV8H11GmjFweltkoVK7LIxVD2JBXeB1yPi8UlNVIZ+BItLaVGnt7YRC4jHkuuACTsKCRPhsrm8owpWIAnEM6YBz7Ds+3F9emMh6Ytdz+b8HPWoDBKDcttVKhDoXL6rOu1qoUrmvm6DMIai1Ka+CD1+V7/du/XjhowJD9DhjlpSEkC0Pr+7DWQoAxKB0zBgsNBteVcRzSiKG1nMiyjSGi8J0sFnaLQHjOOeckY7kvvfTS1gXCLYgUboU9//zzkydPnjlzJhXuKEQlaQ3h6EjG7/333ydfT7Rqn+cj3n333auuuuq73/3uqFGjTj/99IaGhubmZinlbbfdRiTXFPyIp5S2WsOGDbvqqqu6RNbzpVomkyElKQINnnjiiU8//fSmb8vlcp8pvnNujKGq48iRI4kplPA7b7zxxg9/+ENSREKNGhQBR4UQP/7xj3dAFLz//vvpEtMX3El9dJJ2H3PMMQRkp1yQyCKIr1wIQZyxXTVCCRLEl+TMOOfY9UwIWA7PcxhXFspNOaEKGTOMG8Ys4wZcc2Yt064Q3In8DGJb8l3fcFhmM/XQFlzCcHBhFJCrJ4oyC2a8NHI5zizKBdO7D6S0jMGBEBzKqEiDS3gpSCk0bBxr6aIukwJTxsQqwjfO/KcgLFmuGNeWmZpIZADtSC9UFaY1hwZ01UYQyuaQ2xufrkaDj2xvRNViJuOPHnX4iAMPn/Xqk24WKrTMwHFkHGvH5VJ+JiNM3B1jzNqvMsJtNooQtIiLFi3qJkszffp0Up+fMmXKxx9/vHLlSnLZb775JqHG0cE/gg5KgS3cAUlt/fXXX3/rrbfIZyX9SGNMOp0mgcbRo0efc84525eetBaAs9V27rnnzpw5MwFzbjYKbmrjxo2bPXs2pRRtbW319fWLFy9OxjRpxZIpi2KxeOaZZ/7mN7/ZkRf6Bz/4gdba87xSqbSTdjjQAe8UQowbN45ayBT5kjJpUm3u/DGnTZuWaLOMHj2a0mUqk+yaGSGEcLl0nVSkC2EcpKzmjgHXYJYxy4Wx3Gif7QoAACAASURBVHIYy8GZbi2uS6VScRh4gg/e3V35aZTxoTWEgO+CMRZH1nV5aC0Nxcs00q6IolgKZFKyUo5yaS8KYtd1PSFSXEEaw6wyWgOZBhlFSsuqEPAEMjkwN+CIrDTglsF2VEdhmbHWFqrrmGTpvAeumptXthRWNzXW999nr5GV1Jw51egj9KqDZbGKg09Xvbts1fttQVtowDgcFzYygnHL4TnCGEKiGsZEwpvBGLPWCMGofvZVINzWx9ham+jFdx/bSK+OPEui3ESuM1Fk/PzugqSmGmWWQghitKHgGgTB4MGD33///S/pK2x7FLz77rtpW0Aw0aampk5+8OSTT543bx61lB5++OHHHnsMNWIridY5Y6xYLE6cOJGkPHakrVq1iii/d2oXTaR3xJJKnRvSIia9DqJOpRuvM0dbunTp0KFD33vvPdreeZ73rW99K5vNRlFULpd7vABva1vzm/Nn7zV0GID6+qa3/zp7z6HD8vkmIQTjgksRK1OJmj3te65vuQW3YNZyw5gFt4xpDZPvldGw9XV15VL1tG987b//+wlXgkWIInguGBfwRBCplO9kMimllI5DFcW+y3rvVlcqlXo3pAcNGrTsk+UQMFYZrrkLbSEYXB/gCjEyGew3fK+99hySy6fWrl6S75WLEWquOazlmllYpgBYrrJ5GeuwqiqMx01DMSTXO5txg2xpzyN2y/0DXprx4ZqFyPb2ZWTb2pq5I72sYxg8D1w6lShmjDNrmDX4X641ywW0+gxqNHmxy1GsbS8bP378iy++WKsh3n2XTMqkk9SlZsl//ud//va3v6UiMLknOtppp5124YUXnnTSSd35W19++eX0gr774Ycf3skPEpSfct/HHnsskU0nH22Mueqqq3YAKLczUWSn9t20sK7rVioV4vdpaWkhVAtFwSQv7MzRSMJ+9erV9JEwDEeMGEGo0STdrD3aTg2d36y1ta9rbW9qqG9cunxRe2HdrNcWfrz0Q8cT0vPKUXt9Iy/FKxr8JpmWbcWK5zkp34viWErm+k4YRq7vKBULIWId5Boyra2t/QZm168upSUas6gEENIqbSFZOp0J44DDcMkacnVW6zis1GfTg3cbtPzTZV5WC9+Wy8rPwM+ib//GXk35xr6Nru8IAUcCTDPbWtZrcn0Nc1ZbXgWPHVd6KUdyoREBgLBBEDjSCGmko6WjmKOM0BUn2+rqj4Pgm1MPf/b2V6uynWnj5URkdIgo24CgDVbHvu+oGCY2Gc/jnEdxABjH8TzPaykTdNZQ+YGe6y7Vnyh/SMjFElVX1mG7ViAcPXr0rFmzlFIbdZi6m02aNIkiAWEHuvTZa6655pprrtlJ/ULCF3PaaacNHz688wRA1JRKBq6JmzsIgmHDhl122WXbtwK8LSGEMTZixIid13FnMhniVKLuYBAEuVyOGjnlcjmRzv6KQLUz1lDf2FDfe/chw6ho+faC9Z+seq+uPs9dE8Ttud6pmJX3P7RPaJqL1XXzFy0IAuy1V59cPqsrsawKKXlbc1t9fX1jY6PkvBrrxkGZsakhc2a968ZgBkLCT2kD5kEoU+FaZzN+WK2WgmLKB/cRqtKa6lJbV40VjIs+fXHs8Ydlcl5bqVlIG+ui40vAWMQWkWBaSghpmKOa8lLxiPPYdWMuYIwyxlhuWRiCQwrLpBZSMWY5wFAOXZUekNFOVPJQEa2ca8Wsm8pGkeUCkgMCMOAGQkMKQdAYxpi1WojPzBHWbiW/ygi30gYOHEhrVygU5syZ021Z/9euXZvk/vvuu+8u4hfGjBmTyJT/9re/7WqYoRdJd6pSqTz77LOUAW+X5uU2Gs04aq07X+/tbnb00UdT75Yx1tTUVDt/QpeANtc0Gv9VnOuMHXfUacnr9uI61xdWhEaETMK6ZcvRsFvo1+tsnddn7/pSqeC6bca0gFlwG8emQSKbDVtaPrYWPI02g0x/OfZEvPU6ohBRGkqgEio/qyINP43V7eX8ILgG7UWkfTCDwK1WSkj5aMhj1OjBIrfutQUfeD7q67mfcixzGLNcWNfjXsrxU9zzJXdtbNqsCcCM5sxyboS11loDLyMtAwcDtwwwAP1rBFhaN1fXVH3ourL0/ajVGO5wwUnUAgwxNDNMcjicWW2SesDniRF+1SPcemtpaaE2G8HSum/BpK2NrrTv+2edddYu4hTeeOMNimS77bZbVz+biDnQoPcll1xy6623Jr/9u0fBadOmhWFIVZ3Pk+Do/jZv3jxySZ7n9enTxxhDZIEU9qj6RBl5V8cnvjIAQVz2s16p2s5dSB+K4+DDObLrm3YzbcVlu+8npehVrpbDUOXzOY/5ZV2UQhprsq1Ip920X9fc3syY3j83aJ+xXIichruutbh4yUotvLXNLV4qs4fnViql+oaciqI4DN95O3QEMvUIKzj1/x0OFjGmjt99jyAoMygLo1QEbhljzDFMBFaYSFhAS4cJAjBwy6CpIWwEYBUYh2HWwjJurVYMBlZYGBPEotx7D8i6ANWKqHKrY8FdlwECBlCwRkMo5sgNA/WUCbiuG0Vh7YYy2ft+lRFupZEwHlWK999//267XtQ1YYxVq9VE571n28EHH5xojy1fvryrH0/2jJzzM844ozYKdge7//77k8xpx+N0tpclQ4RBEKRSKXJJlAhaaxM9TsbY7bff/lVg69ret70l5WcCtc5K62aYEVZmcPC4YQ39UFSfuHU2VhWlmZMCc1GJ20oGSiOT4YWiyfVyBURJNWfzjgVrjleqlMdZEIKtjFevsvBTJd0XcapUCOHkIftppm25JTzoNJZNpcPW8r596mymOeN7QVysRkFTr3wxLDPGso7DGNOAgop1rK2KuOUMApJDMK4pELGOfzmTxoJBWsutsYwZWCO556miiJHv5R58aNqRYaWw1nEbXQUVW5fDCsQMGlZrKwQXgmmjrNWMW2stkSYmC0VkFDupHmF3AQjstttulGgbYxoaGrrten366ad0sXs8xTDZWWed9fbbb1OtY9MYlug4bsEIwR8EAef8oYce6m5fsFKp0AO8Fclut7KEMiYRqqSfWGsff/xxdLDD7Dr1/G20Jcs2zHEt/fSDalwBjOs7XDLNYSTeX/w+88MIVYMwgop0bKBdwaUL6SOdgQT3MuCwhbAaRLBAGEfcMYZVYrRV0RJy5PqiYQAbum+u3571g/epDx18vK7VbeRVgVQfEfvVpqFec1SUfrw++sRxIjcTr6uuFl4knVjpcqQrygQGmgnOpetyz2XpmEgULLcWxsAA2sDG4FAS4DDCGgkrLXMgXciU4VEBlUpL/8ENdb2El1Guq7gNHXDJN1AHwIGV4JLJ2owQG6j2Kdgm8vRfBcJtsilTptDaSSmp/Ng9jVy/MebzBPx6mD3++OMUJw477LBktn3NmjX0opPT2fTwdEM6kltvvZUxRn3Kbo7a/UJLoHeccxoFSZjVEnnqXUQvadvtRzdOeeTxW9ram5cu/6C9sB6MSdcBoC2kCzDMfweVsCwllLW+lK7LI2MqRikLYxEDrVVlOQpxDIGGdFYDQQQfPjdwgRz83ln0ybP2tXbdysLi99pSjt+/t9+QRam16DD0zjblM3ljTGM/UUCL58oY1fZQ5VKSwZQD5UiHc2nAjRUaMjBYWwmXN1e0EhyOyzyXCZfDBTwO1yF+mRg2BKp8w38ViShjuFPFulWBQTlX7zQ0+kJqa5TD4HIuHXCHQcJKWMm5FLWl0U17hOigIvoqEG69EbUK8ap02/VK0I9fKgd09zGtNdGI1FJ99u3bt0uXlUDV3XA+4YMPPqAnNgzDGTNm7LyXiYAwtB8nV5XP50nTmHSsKEbuvHQBO3o9uQXMk3+Y2VZY//GKhWDKGG2McgTPeH4+g96NkK4TWliGyKogNrBwOQSDBTiQSgnJHMGRln5RlSvVuD6TLkVVCTAYQHMLXzrcYHC/xhH79tWVUJWDfMq1FTOkb1oHVRHHGccptOgGNIQ2DmGaPLcK1VpEXcrVRisVaa0BxiHjULetx8pPUCrG1YoKtVUGkYEGCNYpGDggOPiGSikYIKAlZ/kMpILU1hGMCygVSsdCWiYMBJgA52AMnINJZjYoHdIUNduAGmUbShE77xXn3crnEmahO482k8dB55QfdnZLembGmEsvvXSrV4yyk+0iMLJ97dlnn6UI0QMuFgW5hKOgUqnkcrlk2YkgpqvQJJq+QA1xkpSS5mhJobetrY32hT0sxP7T8een/fzadUtmzf1tqEpcMs1iIXRGmpTVjsI+e6RhNGOABQMcAcGgFayCsPRDG+uYC0fBMMZTrrBQKYdzziyYMtqRMgoiz8H6Vc1xKUwJZ7emPq0roj36Ne2WbZRhsPbj0trFlZxAQRXqWNqDW9ERLHJ1LLQq0rGQ3BFMADaO0twJ2+ExLPsEMlWnjIgNBJeRggsoCw0YRtcUYLCABRQsT4n2Epoy4CXm2ayOubFK+izmFZFDLBEamxFOCjBGub4ETBhXweH6jrZKmZgJGAsA2Wy6oywhldr6h702I9ph0z7dywXEcdzN6f9p3+04TleHCHdGu+uuu+hFT8XcE20eccb2sK9GG0q6VxMBiq6yVSTbPpp0juM4juNKpZLP5+lX9CewcyLmt2C7Dx7WK98bQBAVAWuYSaU8yWCUgY5TDgsroSt8uWGpwRgEA+cbkicLaDBtEWsdax3HOo61tZozzsAEGANsrKIygiLCIuJSZdXHa8O2omdhgkhHVRmbnEBGwGOQVgiAW8spjAGAkZJpq7SOOeOSO0YxoSEBa7H8k5ZiOZIyow24RGChqX5J0e+zVgmDhga0r0JO1rU1l1vWt9fV1UUmUCyOLIQHzgFjXCElt4BRJiY3qLVat25duVy2BrDgHMTWSzfeVqPBa3dUNN27ywXCUaNGJVuA7sM4ulnvYK3tUnlwJ7UFCxZQQrDffvv1vG935513Jn589OjRPezbJbzwlCNSVtfV3JeiXUIu6vt+wgdEv6pUKkmi38NiYc0qGDAbqSg2cSrD4hixsZ+u0pUoDDoG8mA7pCEAZREDBtwKIYWXEtk6P+P60kKHkYJlAtLjbkr6dR4aMmjMolc26zFkXT/joG1tYfmH69etjOMKbATfdSQ3FjFYzHgHMAXgbAMwxVpoxcMADJAcvoe2VlTKsYOMirmPrDVw5GZCoAEA7gtPKDTkUS0HhdY230/HkfYd35VSazguI0JJKbnlYHJDukZRauXKlZVKJbnfVq1aJYQQwknes9WBkADPu2ggPO+885Ki6IQJE7rtc+G6rlJq1KhR2AWM4BUXXnhhz/tqjzzyCDrQbi+++GJP894dw0gJnCFJ77pU/6B/Hcch3C/nnLjRaeYk8YM9z4YM3pcxJERfWmvPdw466IC6PBcCpTLKlVCAcUbZGoyBslCAApRlFl57RS9fV13S0r66WA5iBQbHhVZam3IcFFQYmBgIEZZRbG6pS8HjKi3AIyBGWqJ3PQb2FZ7DBbcWMQXaDjZPxBaWA1xWqnFrW6W1tQrAWMDAddDejpa21pbmqKq00YLBgeWwG3t7BtjADGjshQBxJQoqUcbPcMtJt4tbcDAhEkIGOI6TBCfGeGtr6wb4FYO1dtGiD6vVkPZb246Mo9t1h0lAd6NAePnll7uuS1W42bNnd2f/AuD111/v2SHw6quv1lq7riuE+HuJIH6pNnv2bHrMeiSWkgZzE23CpDra1W0QtSqUUq7rFotFwt3QulFG2CNv/vr6xmQzYJmxzDBmOWfD9t2bOdYwSIlKoDg8gDNjlYEysGCGS8t9y/12Ha1uwSdrsKYFlQhWgkEIoM5BHUedj969MHgg9hyKoYMwsC9655HzKwP7YPfdsO+ebM/BzoB+Xu9eKUcazjR1IkWHv7YWsYHDXCndcjloaY4K7ZYzqRVjwMD+TTrEmtVBWytKxVCKlGQpWAfgZsN/MAAYOHidm25Z0bLHwEGz/tTer7FvUAmYZSa2MJZzGGMYhxDMWG0ZuMOTGgNpz3HOGQeAONarVq1KfrUti18re77DOmXdq0f4zW9+M47jbtt+I+K3IAio79KzA+GNN96YSqVIgq6nfsdEA7LnfTXCsCil1qxZQ4h2xlhXxauTrb3Wur6+ng4SBAF1gIiMO/FZPQwvU1/f1FFBNICRUoZxlEo71arVGl4KUYwYAmCa8jTGLXcA38K18AqVuBoBApkssnnpsoyBqCpUFQJAWwiOvCv65mX/Rtkn7wxodOo93qdeNtV5vetS+azjS8NsJGr8DOto85kN+E/XWB5GNlYwgJ/OMsaMRSrtcY5KBXGMoGIoc6y96zccC2BA1B7s2X/oay9/0iuDQnPBxiyTqdParl69VnAijIPkQmvNOTrUngEwa60QDqOOaEcCl0qlSPlkq1EF1HhKoukOY57qXoHwiCOOQA1WrbvZ/Pnzk9eJol5PNdJfBXD99df3yC+YTAf/3Wnevrxvp7VOpnIdx3n77be7dBDP85JS2CeffOL7Pr1O9kYkW90zA2G+8TPr6blScsBID64PISB5nUAGlnMOxgWEsOAxULW2rHUQ2djAWFQjtBdUWzWMDJNCupK54JKBG1hIA2aNhtUMyiIWMFqHykQc1ve8tOMzaFJ5Eh25oLZglmnF2itBS3OxWoHjwPORznhc2DjGmlUrpIDvwRGIY1Sr1SAKkogOBsthGSwDt8iK9IoPPrVlSA0TIeWlwzB2HPe9994DwDmMAZgxxkqHx3G80Ryh1toaCAHP86hyTriqrd4916qaMMa+9rWv7YqB8JNPPpFSBkGglDrhhBO61bktWrSItOnRIVXfg23YsGGFQoHkan/4wx/2vC949913U65jjBk4cGDP+4JKKa21lJKYfWgedOnSpV0NhOgYlH755ZeVUlEUZTIZ0mNCB65vI0mmnmSMMTDDGKtWQ6VUGAVCwgLFAsKAhxFnzAVnllswpsEio6phVCqHa9ahUoV0kM74jpOx1jM2xVg60k4MJzYyVkJpC8MFhMscWCvBUpCcAUYxq7k1ykYwluqYDALWMdaD8a1Nl4pYvVqtWGmKRVgOIcBkZGCzGbQXkK9H//5eU2/U5ZjjCtflYBrMgMEmGaYFrHC0++lC5Wk4Bmm3LqzGEm4c6Y8Xr4eF5NJa2uWACRHFsWF8g+KSIaIZKj84vu/TPUZpDDEMb0tGSP972mmn7YqBcI899kBHi/5Pf/pTtzq3K6+8kkJgKpU64IADenAUvPPOOz/66CMqblxwwQU98juuW7cOHSPAixcv3tm/ToK1IzgDBT+aoNda00gW55xUBjtvc+fOTbZ9JE9NqBnHcTzPC8PQ930qhXXbKs5WWz7ftGFhLbeWMYNMpi6KgrGH7hdUAOD3v1seBSKMImW1YExDM6CtLVj8UaiUoaF1a7BqRbByRXnpx+VCW2xtCjwVKObwOsvdWDHOPashwDkgYDUiyWE5lI01i4yJlTKcO9ZIZn2wrNXpthb1wcIyR11QRTqFYcP7lCtgAss+aR00xBcOdtsNTU2pujqnqVe2V33GcRHrCucmUnDZBqevLSxjRjHX+k4MhKi2w4Er4UVRXK2GroSUKJXUoIEDVKTjGK7rd+iQMxUbz/PK5TL18IQQ/fv3J+pR8hudL43SfCrdqNTJJh2xhBpiVwyEF154oVKKeoTdbYP53HPPAfB9v1qtbvV0efe3n/3sZ9deey0NjQkh7rnnnh75NQ899FDXdXckPvtLtUwmQyGQNmo08EdxMQxD+slGbiUpmXae0bB2ZDAIAtd16Sd1dXXdnAdj20ujsFzH2hGyb1PvbBaeRKkNbS0xF44BFLQxOjJBHEPFKBWU5BjQLztoQN+6jKxWEMcotFdXrm4pVqNSELWFlVhbIV0GDvBKVGUGykBZABAcglvODAQ8N2WtI0WqXDWlYrxsWWtLi4oitLRWohCFEpYtW6s0+g3wm5qwem3Q2Ii6HPd9IR3LhWZcM6YYAwNihbKGATg4YwLwC+3h3JeXZQVsgFEHDtQRCwPNmbt69dpIIazC9/iBB45M+ZlUihuDSiVQsem4kThjwhpQ2MtmswnFmrW2X79+27Kr2/HDqd1xE9c9wQtUBCea/0suuaSnBsLrr78+UTO/7bbbeurXfOmll6gD2jMKeuVymTHmum4cx+Vy2XEc6t9oravV6mZDVH19/UYvtsLoyIQd7XmlUWthLYNhMIxzYWLlSjeVFlYDGroCplJCQKMIMM7BDVIO8hlIjj675Vtby8tWl5iF5yLjoFQybe0mXhdLBwxhrg71mSDty0zKY2AMkVbWMEgBC0QWRhsGOFKuXVNMpz2lhRRea0upoUHuvVe/JUs+NQz5eqTScB1whI294KcgBVzGGJS2isFagEGT9GAuBQZEQCk0UYRcXbZSKJTXI+vCBOjXZ5COGROuMmzN2mbBUQwhGRs6aPdy+TmjLSQ3BnEcGw2AJ7VxIbnjOJlMpiaNM48++uttL0rvyEDY7cilRo0aFYYhLcH3vve9bnJWxx13XBiGFAV7tu4ERcF8Pn/ttddOnTq1p37NmTNn9phLOXHiRJpzpxSNeD2CIAjDkHM+aNAgay1VWY455pjNHqGrNPdUCDXG1NXVua5LRa2eh6P23WxHdZQxJq0R1lqtVKWIqAJXwJMNFo4BNKwE97jI57BbfzTVw6pS36a6ffZuHLZXkwQKRTCG3fesG7q7HDCIpzMwGi2tWPGJal1fLbZGUGmrBbecwwEcFSGOweC+/pdisQylxSefVpYub5Yuwli99/6n/Xbrlc0im3Uam3JDhqb9FE9nUC/TgsFAKwRabyBWAwCGSEMDZQ2tkfYa6jL9iwX+2pywPoP29ejf19WhYdxxPC9SWhmAMWsRBpoxXi7rOLYAg+VxrG2HwW6YoMAGrhlNy7WNOPMkI9yR3IeyGz7Vb775puu6YRh2FeT25dkrr7xCTRHP83ZqduYt27Rp04hRvlAoXHHFFT043re0tFAg7AGQ0Y8++ojgMKVS6eKLL+7Vq1exWKQYzxjr37+/1ppSt43Gc3//+9/n8/kjjzxyy0lhgl+ozfniOHYcZ/DgwRQFU6lUz5tCqQZl6zCAM2OgAcZgjI7ifApVAxvj02WtvQZa6zAOq6EFkJLMq2OxQSU0GY9FSsWx7tULrkSpFUuWFocMy4eRCqMyYiCECiBiwyxWqzIA14P0TGxRDcEl0n5Ul0GlDKMrQsBaOC6MRe/+8FKq/8BMJiVjFVimpRQWtqgqjgQn1jfOBJMcABSY9QQ4oBiTPMeQa20J2ltNWISuwBfYf9j+vp9VEdMxtGIMTrlsOYcBdKRTLtdKWCPCUGmt6S6gyx0EgTEmjnW5XM5kMglwdFsSwaQuuksHwkmTJl1yySWkeLAVMrBfhv3kJz+hkalsNlsqlc4777wenCdRk6larfZsDjna1mitd3bIKOVhruvSkN8ZZ5wRBIGU0nGcOI4J95vL5QqFwqYUxqeeeiq9eOeddw488MAtHL92t04vlFKZTCafzxP7dqVS6WFgGQCel6nqdhhmOTOaW2YhIKWzzz/ss2DJomLZvvX6sn8YNSDj+AaBsVYyGFgJyzjSKQ+IHMm4dHKpHGDz2Uo11uvXt5cCBCWkHaR9ziSMYibSMOAChkEZxBZGwWpE4OWykQ6MRakC18OQoSkwKyWMrWRSvgcYqa021jKHeVwqZmMLAJwzAcssg7UwFpGC4GDcjyK5esX6v7xZDiv4/9l78zCrqjNrfO29z3Dne2uAAmRUEUTEeaBARMUhxiltJk2ccAY1iWP8Or/8+ul8ncSOMSYyKI5tEo1DjG1sDdpRBEEENc6IgoAgMtR8x3POHr4/XmrnNipRKKqKat6Hh+dS3Dr33HP22e+01np1BIdjn32GplM1RvP2YpkbZuCVSuUggAMYiSCIYBytwJiQkTaaloQxhgEmDEOlWBAEhUIhHo8L4QohjNkhR9ipXNOtjrA36u7X19dTrZmm4Pa4zZ07l1AVtnnWV40QEFEUXX311X37m1LCpJRKp9O73Mk3NzdveXo5p5GQFIafe+65dgZFqVQiRlcikZg6dap1aYwxSoL//Oc/00F+/etff54X3MZu1QkghB1TPmjQoL5QKmhrtq+HD90XhvtuwhgGDaMFU0xAjBi2Z1gxOsIn61EshFuUsQ04wDUY4AIGQb5SKAf5yLS6CJXKx+Pon03ttUfd0OHJkfskBu2RyuYS8ZgnIwUNR0AwaIkogArBNJREqahTScdo9O9fM3Zs/YHjBqRSLngl5qtsTEgUmkvtjOmEE3eZp6RhmsM4xjCmBTSMYTJSShkYJD3XER6DFwaMIw2N9nZwYOSIYcOHDCsXK/l8kTOhpOacx5MJBiiFKILr+OVyKKVmTBhDS2iLxA3nXEnAmDAMy+XAmC2VA87517/+9R0J7HZnhABwzDHHPPLIIztCRulae/HFF+kGu67bhwd8X3PNNYwxAkD/8pe/7NuOkAbTd9uQly9rl1566YoVK0gUhiYoAaitraWlSCk7sSOKxWI6nc7n8zfeeOOkSZMsbD2RSBDtTyl18skn33rrrcTxAkC3mGgPAL5gDXwrLAwdwXGcY4899i9/+YvrusR92tWt9u/iashl+zHNc5n+G1vWgHGAG+0EUZhIpIsdSNZzOLrQAt2QZlLCRC5npADKgACIxeDALyAwiJSAgNMWlbSjg0oUd1LFoFhuC3UIqVCX8Srl0DAoDRgwF67DhWFRpColyRg8x9+0YUNtXdLxEfc8DVOMgoTrsbhk8Da1FstlOAy1dUnXAQPAGQAFZZgGB4dTlMaoeL7VvP1GU/tmNG1AwsPeQ4f3rxsoIw4jwnJYV9e/eVOeMX/wwD1flWt1AM5QV9efZhcyjTCU3DgAhzEwjPMtTstoTbX3zplfjOhJ250R7mKoUauL2rUqXMcff/wjjzzSe3rvNGRL0l2WugAAIABJREFUCBFF0RtvvNFXfcMtt9zymVteXzXygjuuDty1NmHChJUrV27cuNFmrpZQRa+FEOQF6dEzxuTz+VtuuYXYIEKISqVCLUNq2AghGGMzZsz44Q9/WCgU6L+qo+9Jkya98MILAFavXv1pomFjY+PLL79MF2rdunUjR44slUpWilpKedVVV02YMGHNmjW33357H1shk4867cBxE1avXb56Xd3yVS+78USpUop7GTBmQqCsHR9/ur/puv/v4GTMCwPJeMVIOD7yGpo7ZRgN6SLZjoAhtqG9EneTm9YXN2+Gz1szScgAgiGWRksQDh4Sb2ktlwtwXDgCZZr063ATaGGw/sMNENhULGoGaWCAhoFCeSKSxvPctR9VXBdBBa5najKe5+qKDhSk5lvGNhUjmXL7b9wQbvgw2LQapoyExL4jGgYP6B8WtZfM5Nvzcae23KrjvG6PhuGm/ImOXqiUoQL0q+svmBOGGprlkhnX9cOyNApKaYAGMHGttdYyCMrZbLZSqbhujIK5L0K+IvdB+R/hnB3Hoar+Pffcs2uURmnHJB3eLjynpqamWCxGPLbJkyf3hkeCkvQ+3B20X7O2tra3+Yb/VbZo0aKNGzdSz49CbAtCId46eTg7JlBrPXPmzEMOOWTvvff2fb+jo4OahUEQUN+OHqWRI0eef/75J510kp2T7Pt+Mpl0HGf+/PmMsVgsNmLEiGHDhn26HGKn+950002EFyMpdlJcC4LgsMMOszOc+5jlsnXDh4xqa2/izIkqEXcSpbLsaC+mk6jkoctABza9HzqVjCP9pEh6HgIg4miK5KpW1QT1YVhcX5JlcC+WeW95MZ1I1maRSkEIJjUiDSMgPDjxKNcPw/bEyH3jo8bUjRxTO2xEbuAeuZgPzwOnqmkFMgDXcDnWr1EfflBeuzpat64QhFAA96C01lpHMuLcJLjjAyEggaRbv3FTuOkT+f6yclREWMCB++4zZsRoFmjPSbS2FBJ+xkghK2JA/RBPpFatWBtVwA20hOv4YSjDMIo5sVQq5TkewLeQCA1LJBK0Nqg+QUuUVI2+YHZkPstIL747b/QOZYSDBw9ev3499c/mzJlzySWXdMk5ZbNZK3+1aNGi3vA8eJ5XLpe/bCull1tTU1N9PSkL4ze/+Q3Vu1paWs4+++zdDqlHjBxSpVIhsBhtE4TrobsTBEFDQ8Mll1zSv3//UqmUTCbr6upGjx791ltvZbNZIUQmkwmCwPM8ytgqlQptK0EQDBo0qKGhYc8991yzZs3ixYubm5vpnY7jSCnpI9auXeu6biwWO/TQQ59//nl7YqROvmLFClL9yOfzqVQqn897ntevX7958+adeOKJAKZMmfLss8/2vfsyfPC+m1o+Kpcq6ZqYlqHr+mPGjHln2btcooZhzRvNXmRGHdB/U+sHyRq0R4DrbCzKbE1yU7Hoefh4DZzBpcIGjNwrXSkXUnF4nmCGCxZ5DjJpwZmKx40fA2dwRCRQ9l3mprhRkTMYxiAMUSqjVEQQAhJci3giW6oEgCmXQ81lqOHHADdI+DXFoAgBxVCK4LkskumVa1rrUyP/9tJ7vgEkUknE4/F8QSrpCscLg7LHwLRQEolExmH+kiWvGYOgAsYQhspI4zDueTGjmed5QMUmcHV1dcQitXMISKj9S7X3bGO7+p/dDOfeIUe4dOnSwYMHU7Glvb29q87pvPPOIwZb75GroG3iyw747uVmvSCA6667jr5gIpH4/e9/v9sn9YgXpFtALcDf/OY3Y8aMoRpRLBYjeU9K7wCUy+VYLEb0j48++mj48OGu67a1tVGhqa2tjbI9Sh8JADVo0KBEItHQ0HDggQfut99+ixcvXrx4MdWHadtKJBKFQkFKWSgU5s2bR+dDEBja+BzHCYJACJFKpQhEXSqVWlpaHnnkEQKm9jZZxK5KCo2BEIJJISWMZpy5/fsNfPuddzetR32El577xEGsX/90tmFgMWzKes5mlI1BQRUjibY27DHUUZJ1lCO9Pp+JIR5DOukIIdJx+L6b8j2DQCACYIBAyVBLmgJoGMvl4gZGGRUrR34B+TwqZUShquQLkSRl/MiPAxyJNBJpZ3O+JZNCgrllRDEOFSQq+ViN3//ZP7/X0YyGDL761Sn5zW2ZRC4qKQ5RKkrfS7e1FlPJupifkpHhQny0qlkYSIkD9x+rFZQEg+BccO44wqterrW1tWvXrqXOEa0iIQRJsX9Bku5W1UQ7NXPvvffeZRzhgAEDrBvvQtxBMpk87LDDXn/9dWJrXnvttTfffHPP7lA0m7SmpqZPbsG33HILiSkXi8Uf//jHu31STxklf+Vy+eGHHx44cKDWuqOjI5PJ0ExBUnd0XdfzPM/zSqUSCf7F4/H29natNfHos9ks+TNiwlCWn06nBwwY8Mknn+y9996VSqW2tnbkyJFnnXXWhg0bPvjgg/fee++1114rlUq0lzmOQ49zLBYj1AOllWEYLlmy5PDDD6dzILhNNputnsrSJ80AzHhCuJVyKBymFUslc3sO32vD5nWtHUF9Fq8srtTWR/0L7oC9huajdWkXe9fwNiCTrf2w3OQ42VQy7u/Xuurd4sB+SPtIxhjnjAnHcThHpFQYKOV6cABfwAiakqS1QaSlBmccsYRwY8ZP6WIepRJKJWVCxFKCy3imJm14MZMTSThuWgBRUzHiDLnE4DffW7fg+WJtapMpoMbHiceeuGnd5kw8XSzISoeMx+KyHCXiCSVlGLCaTIob7/1lHxqNcgUMOO3Ur8ViKaUQhZHRLJlOVwusc85TqRSBuSgLtLndF5eqoBjL1v8p0WSM3XDDDbuMIyT/TyFq17YJzz///CuuuIKO/+qrr/bgM3D00UfTnY6i6PLLL++TzzkNWioWiwC6ef3tNmskIgHgzjvv7N+/P6V39fX1BPKMx+Otra2JRCKXy61atSqdTlNx0nGcRCJRqVTq6urCMOzo6NBaJ5NJ8lJKKcLOUEJJUBqtdTab9X0/lUqNGDFi4sSJxANrbm7+5JNPnnvuOepHWNg2AUTpMb/pppsee+yxIAiIR+i6bj6fpzcTbr5P3ppcpr4j35FIejCaMQ7NE4n0wQcdHqr9fvfwE4y5hY5o7pOrv/3dw1s+ak/skXPcjgjlWsSKYB742jXNmRxLJM2IUaj33CQ4A9NGMsEdprSWRitoGAUatsTUFpALDLTmCgxaCcd4nDkJ4fssGfJyWWzYWG7r2FgKwFzEUwgjVnDhaWNC9E82hEZ8uKLl4/dhiiiHKLbhgP1GF1vDXKK/ijST3HFQKRnXSQcVJBO1+Y4g6TEY/6n/+m8ZQUkYjTFjxsnIGE3wUEerv6vG2CGXnudVKhUqkFIFgmCf26ifEf+nrq4OVQK21R6k+xfSjjpC27rvWkc4bdq06dOnE+CtZ9mE8+fPpwIU6av1Pbv55psJB2iMuffee3c7pB6xgw46iDyN7/tDhgzp6OiIx+OMsba2NillKpWyjPiWlhYSgqHiZBiGUspEIlEul4vFYn19fbFYpLEApJxujKmpqSkUCvl8vqGhoVQq0dZD9VI7WG7gwIGO4wwZMmTvvfc++uij165d+9Zbb7399tukSkP0fMdxyuWyECKRSJRKJSEE9RfRCb7tqzOcDx7XyBjWfLzsg9WvVoKC1pIHxo+5iXiGu/j4k0hoJGLp5a+Xh++bhBPE+lcSqaiMIIca3+iRw2s+aWp1HNR4rg/hgClIro0QnIMBwnW44woNaYw0RgMwGoLDFTHJYjAw4AahhgTgCvA4S8adIEI+DyOQSKK2NuZDeOAON+1hKW/Einc3vfmqlBX4EkEBZ558bFBhqXjtxg0tcS8RVCKlTMJPmcgJy8r3YjrUKhRGeq8teadSgitQKUErFgbKGAjhCu4EQRRFymqKUuWA9kZSu7VuTGtNgfWn7bLLLqO9NB6P33777ZbGY/1rj0wy2dHPo4LMTmqexWKxYrG4YsWKE0444ZlnnumpuigpF9PAkb5n//zP/2wrEueff/5un9RT6aCNo5VShMmkkqaUctmyZTSkk+qTqVSqWCxSJSqXyw0fPpwaeLlcLp/PE+JGSkketFwut7W1xWKxZDLZ1tZGkqRSStd1y+Uy0Q0dxymVSrlcznVdIURdXV2xWBwzZszXvvY1rfW//uu/kpNWStFwyvb2dspQHcchRj9VTfqe3Ki14UNH/fHPd/dv6BcEgecLCBWUQ8fob5xxwm9/98zAfrlyh5z//Fvvr+JTTh8Rl05uWBasI/TaczGsfLd18FA0+K63RU/bGGUAMHClDLSG4wRhoLVmDI7jgmlJoEtHayM5gzFaKa0YwLZMJjQoZVJIJaCBVEr4cEOUS5KJyKtNDf/ow9KbS2SxFboCh+P0rx6nAxPj7qaPm7KpfoV84Hk1EmEhH7EIMG4x0L6Tdp00Z34UAgZhAGMgIwjuRaEBpOv6rutbQVHCTxHbgcIyygWJsaO1/szM4YknniiVSuQjjTGLFi1SStl59DZB7H4R4C5wvFYju2vtW9/61kMPPUQhZzWArbvbA8bQOfRJdt3MmTNtc7cPz5ro/VYqlYgFqJT66KOP+vXrxxjbtGnT6aefbrsyNv2yzF27JmfNmjV69GhiHFHNikqX1FOkgJXCSsdxisViJpOhIYUU4YVhmEgk8vk8tYqJLzFhwoSOjg5jzB/+8IdPPvkEwPDhwzOZDIl623Fpds+izLKv3qCabN2F372+vaP56Xm/jSLJFYTwWRQlWM2JEw55bt6r/RrS5TJa2/X7HwQj/H5OWno5n6v2kTXJAZkiN/BhYDQ3GgwwMAaGR1wIrZWUhgshBGeGGwOm4TAObozRcSeKoMqBdDwI5ioTuRASigOJGGCQcJxiKJmnHOm7Tmb1+xv//NKHuoJCK1gIodB4+BFcujIoKxnEnVhQCLn2wzKUcpnxYQQUZ8ZXAVMBmHJkQBkOjIbvxMJAKmUEZ4yJSqVSk821trZSc5qQE5XKFhApJYJU4RdCfCZq5NFHH42iiMK+KIpuv/12qnNYJVt60Z0Mwi1ZbJd51K5OZo866ihq9QM44ogjeuoBoN2HOJ597/G+4oorfN+nSQJXXXXVbofUU1YtTNHU1LRixYo77rjj4osvti6Q0jjKHSksq37ipk+fXigUiNsQhmGhUKCtihgX77333hlnnHHUUUedeuqps2bNisVihUKBGBqJREIp5XkeoXIymUxLS4sxpra2tqWlhVA5dXV1w4cPHzx4ML3Z0p+J7EXMRdrFeq1ST5fYiKGjhg8ZNXrPQ412tHKM5lCeh+TggXv7Dlpb8+m0X8jj9VfXmaDfxytkig8pb1LMmBrBaxzmRzLLvDjnUoIxpFwhmCmWZKiRcGOaKcAYpgEYO0eeybZSICFdDy7jxugoQKQ0JIxGrXBiDpQGl14cdbySXfTMJ68u0pUO5FvgA4jYfqMOTDi5YmukI8dIYZQxyhgFEzmIYojiJnIhXUhHK6GVq5WjNZRkQQVhAK2glHEcx3E8pZTRLJlMxuNxWoHUhLaTT2hBWlr59omw99QYky5zhNQs7UIrdxpj7MUXX+zBHQp9dPTSb37zGyr8SilvvfXW3d6oBy2Xy1kdgx//+MdPPvkk9QKo9hhFURiGtAjtC8vWisVixpj58+cT+z4ej5MqQiwWo6L3ddddVywWCdH+pz/96cQTT/zTn/5EDGDiKRYKBWoZNjU10ZlUKhVi3FOel8lkstksBfI29kcnVn7ffff1fZ9iViHEMccc02dvU7Yum+nXUDscmvsio5WbL5lstmH/A8cxjvXrg5hAcTMeu3/Bsw+vfump94ak9jctSdnhCuX5jl+qVBxwxhAp5KUKDJIJxH3kdQlcGyEN1+ASXINrcAWBdAIeYBSk1AIsGfOTIukKRwCFQDrSUwW3xh+xYZX6yyPrP16OlnXwlKNKKOUhA1OTrfOcDDNJFcZN5JmISSm1NFoyHcZ0GId0dSS0hFHMSG6k0IorCYeBmy2iteTzKJPr169fbW2tLWbawgBtlcYYShtsbPS/zhF+Wpxpxz2QDTx7NlRHZyu0jz3VV199NS3cTCazOx3sWaMBSfF4nHaQxYsXU9FSSlkulydPnkx3irYkKWVbWxuhQwFUKpVkMvnrX/+6WCySqMfmzZuphlEqlT744ANK/ohcQbTC+++//6KLLjrxxBNnzpy5YcMG3/d934+iiCSyCApojCFycBiGAcEkOucOKqUo+YuiqKam5uqrry6Xy3ZS68KFC4le7bruhAkT+tgU62MnnjZ86L6j9jr0gDGTtOHCS21u7xg5ar/G8Uekk5BluAqsiLjEwifbb/7xUl5uqE+N5rI2qHicx1sLUggv5yViDjcMhriDGgqQgIaSTCkoxZRkRgGtJQSAcOA4nlaiUlah1CpyoOKeSXKZy3hDV77d/tTD6/ObUGxCbaJm08dSVjBi2NCvnvzVRDxTLmgtfRn6MvSVdCAdJZmRwkhXR45WQmumldDKMYYbw5SEUoYzYQyk1C0tLUFFAXBdd9CgQfF4PJFIUIhG+3NdXV0mk7GlC6rM0yrdhW5rlznCN998s2vPLJFIUEvWGHPhhRf24DWiPaWPselnzJhBfSMAP/vZz3a7oh43YwwVM9FJRlJKTZ48WSn16R55NpsF0NHRQfSJYrEYRVEmk/E8L5FIxOPxKIq01gR7If9EC5iIQHaTevrpp7/zne+cdNJJV1999Zo1a5qbmz3PI5dJnA1yaWSUcdqo33VdpVQQBIMHD54xYwb9kPhUFky+ePHiOXPmeJ530kkn2ZNfvnz5Ln2nDtp/wvAh+2Yz9a6XNg4PwbgTHzFi31O+cur+I/fTeaCA0ka4ZdS6uO3nb7/w7KrmlnRZ1gpvUDa1p5Sp1oopK6ENShplwHWgAQ0oBs2wxUEyGCCV4BxeJF2NmHAyrqD0LumgvzADN63D7+5evuSFDQnHyTcj5Q8Iy3zC4Uee9a1vDNtjhFEol0LBY+WS1sqXMq6imIp8SA9SQHEoGMW14kwJrgXXDteCaQaFMFRSgpisJCjqed7QYYMJpUwhEXnH+vr6hoYGAjlTtkC0wu3LCHsKitFljrDLxQaJR0ghRk9pnVxyySVW6aCP2XXXXWeMobh+2rRpu/1Qb7ApU6YEQUDyMdQy/IcwMdqVqEAaRVGlUsnn8yQ6E4/Hm5ubc7kclaqUUgsXLqSckiqZQggC6SQSiddee+3SSy8999xzZ8yYsXnzZkoioygiAgaljOSbKQ9IpVKtra2EmomiaNy4cXfdddfo0aNpf7QTM8ivR1E0d+5c8qaO44wbNy6bzY4fP76XCCh+WavJ1h20f+PwIaMO3Lex2JHPJNICTjFfHjhg2OGHTRg1am8GqAi+y9etgQCefarjP+56/4W/rlm3Vm/YpLWscUQdQ8ZnNXGeZGCdpBPO4DA4hjlgtDPzyIhSxEoVrk2CIa1UOgoyOqx79A9rHv79iif/tKmSR3sTNq2XCT/z4YoNJ0w5ftCAAYX2ouvGZMSCQLV3FDw3ISVX0tFRQsuklnGtXK01tDEGRnOtYQwDGMCNYUrBGDAGos2AA9BBUKa4mfCitPYo/6P6QaFQIPFbesN2l9B6pATYZQiXnTGrr7a2tqOjg9QXe2TFr1692sKZxo8f32c23B/84AeWK/2LX/xitwfqJfbss89OmjRpwYIFtMuMHTv2H/4KkeUJvMc5T6fTxG52XbdQKGSz2QcffJDIEgAaGxsp6L7oootWrFjxwgsv0BZGQ6noxeOPP/74448vXLhw8+bNRECkT6GI0HK8Wltbc7kcYSVisVhbW9see+xx6623trS0FAqFjz/++Iknnli6dCmloVZDn5JFqqwuXrx4woQJACZPntyDsPDttly2bsTgfV5e4sj2oh93lONubmqOJ2IHjZ98cOPRbe2bn3z6CZFASztyA9CyAa0teP/tVfEUJh5TP2x4f825TkRMsFCFQjAJTWkJA7gBMwAzMNxwX7i+kay9Q3/04eplb+tyGxxAlaECeAJaIQwQj7P+/ZKnnXrc5s3rXBGLQjB45bKM+WklGAzT2mjlGuVDCmMYtDFaMmOgORQ3YEZvASeTzLvjMM4N3TIhYIwpF0sqCgnYTOBkyvupwFAqlZqampLJ5A7OEeypHmGvHio9efLkxx57jEouPXIChBonktaZZ57ZZzZcgsbQHLsrr7xytwfqPTZ//vwv9f7qmUrUqMtms+VymYgQ5XL5wQcf3BLXV9ldd91lXzc2Nr766qvEjEYno3HChAnTpk07/fTTk8kkVcNQJZ1FfeVCoUDVMJpOnkgk2tvba2trE4nEPvvsM3HixHK5vHLlyt/+9rdLliypPlVCKRNQlnM+b9483/cbGxt3OXc4fOioiYef8uLLT4Q6Ep7nuiKKlIKjdZip6f/1b39z9cfLlr72VsdmeHGoCsJmlFsw78mmimxKZXDAIc7APXLCS9XWZaIoAgwAZqhMpxm0AWci9vZba95+C0Ij5qJSgAlQCSEM49ptaw41ScAcMmrYsCHNm1s8JxmVJdNxBs9jQlUcKXWhXHJ52khXSw/SgTHGKGa01hpGGM0BxxgYzYxhRsNoyMhQjzAMJWe8cwSYG4ZlUimyGT8pi4ZhSLAaqjREUVQsFs8999z777//f1dGuDPshBNOeOyxxygZv+mmm7pf/Yu2D8KgX3PNNX1mt6X+jVLqhz/84W7f0weMVHmpRWd5XVTeJGAngP333/8zf5fqk4sWLZowYQKxL5LJZBAEs2bNInr+oYceevDBB3d0dFBqWCqV0uk0kfEp4aOeYhRFREasra3N5/NEKdtrr72Ij//hhx8yxpqbm//0pz8RniCVSpErJdbjvHnzdsUrn8n0l9JhzIiICS44l0GhHE94Mog8N7bvngcMHzRi5erlK1a+XygZPw0AQQDfhynh9bnyTdEkBLhoNQyMgTFw1qmvxgADxmAMHAVjUJEwBiYCFIpl078+OWrsmPr6Bt+LQ5uopI2Jm8jjiivJowhacq240b5rXEhPVrTRRoBpDcDRRqhQMbhREKXTiXIpkKGKeb6SmmiOyUQ8qihPxIwCh8u5Q2DRVCrV3t5ORHgiS9BNTCQSJL1tF96nRcHoCHTHbe8Z/7M12COdml7tCC+99NIrrriCaL/PPPNM9zvCPsmO+sEPfkDevVQq7YbJ9FUj/iu1Bukn2251NzY2WtVH4iw5jkNl1T/+8Y+nn376eeedR+Mm6Hl0HKe1tbW2trZUKimlksmkEKJQKCQSiY6ODkLu0BNERdcxY8aUy+VRo0YdeeSRhE1dunTpww8//Oqrr1pO5Bcc5dpL7KOPVg8dOnzc2COWr3x7U9PaCUec8J9z701nEp5grU3N769cViq3Kx14Me75Tl1qYF0Wnu9s2rQJxugIIdOMGS60FuBCC88BM+BGMyuzQr6B9MxgjGEaWkNJaI2wiI+LretXtSqFKEQUQSkwhagCLSEllISJoCSiEEpBScgIKoTW0IrR1D+jwZVgjEmpo0il08kZM2ZojUTCq5TDYrEcjyc9LyYlIaS0Mcx1XYq3qFpOjk0IQTxCqzhDwNFPq3FZebZe97z08tVm4W2bNm3q/k+vqamhO9eX1ITnzJljCWe7HUZfNSI5WP5rtcD/Pwz+KDukcgjnvFgsPv7449/+9reJp0HlUCllv379KPskkCrxzEqlEkk0EPeRnl8iQcViMRqg0dTU5LruIYccMmLEiNmzZ8+fP582x3fffXdXubwffLB85MhRAE44efyS1xZHEun0/w2lclxwFwZIpaEAMHg+vBhcF64H5kBrCAeuC9dljsuZgQK0RhRJAIyBcRhm0OkK+RYviC1/K2gJreE6TEoTBFt8nlLQEZSECqFCyABKgSYoSQkZQSswcCl1GADGKAWtjRCQZem6oMJ5GIZTp04FUCqFMBg4sIG6gHb92NeomhpB6yEej1vIqOW8fdoR0u9a0GkvKpL18gVHqokA3nvvveOOO66bPz0MQwsc7zNbJA0udxyHVEZ3W580G5tXb0Bf0BobG4kU7/s+Y4wktjdu3Ei7nh1BTnoX6XSamkb2zaTZppTK5XLpdNoOGabxv77vJxIJYmUkk8kLLrggHo9T2kojn3YJ2+IFvzJ5yZJX2tsAg3JJhSGI98CAjnYwjXiMORxhGcUCinkERTC9Bd5SLJj2NtXWqgvtulREFG5J7KIQMkDY+Yd+vuVF5z+jAG2tpr0VxQIqJYQBwgrKRSLRIwohI8gIUQglAQ3OWBhAKwYjiAvBOYMB04xGOGcycQCVShSGxvO4LVGS+Bk6B9DbukK1Ihrt0pQpWvdG8NHP0yHphXKVvT0jPPXUUx977DEipnS/vszy5cvtLe8bRmoyFFucfvrpux1GH3aE1LChLezLzoV47rnnAIwcOXLFihWU9rW3t48cOTKfz1ODkHAutbW1TU1N2Wz2tddeW7hw4ZFHHjl27Fji40spSZSS8sXqShphR4ngMWLECAKmUo+zd9dC1wwdOoxeHzdl0oIFCyIJxuHFAMPCwHhxBBVU2k06AwiUiiiXDARcF/EEwBGFMAacgwsiJyCZitX3y2WzmWKpnTEDAMJU10UFPKqLGmOM5lprrbjWEHBkpKPIyMgoybQ20MxoEZQUN44xxMw3SgJawIgw0IJ7WkNrCAhjTBhEUsq21paOjo5isfz3vDDQjAEMRx55pFKGoh9qQpMX9DzPSonSeVkIFb2ZgrDPxH/SAuiF4uy93REef/zx//mf/6mU2nkzLradPNEL4i/3BguCoK2t7emnn96+SRGPPPII1e7DMPwi6PzdtuuWRu2gJVRxv76UUb2LSI2ZTMbiA6lLRDOEc7ncxo0bCUo2d+7cSqWilDr11FPPP//8bDZLbyYnR8MRqaVEQFaa8QSAQPm9/JJaLzj5mIkvvrhQKbg+833zx4G4AAAgAElEQVQfAkFQUQqO5xgjc1n/kEMPOPrYozzPLZXbDLRw4bqCcaN0KBzNHcU4tJZShlwgFvPcmBOEZcYonWRg2jAYY2C4YK7RrDMc51obrcC00IoBjtFMa2a0YIYxCA53rz0OaO9oz2Xqspn6A/c7Mpet28Y3am5uvu76H7S0NGez2fvvf7DKXQHAsmXLxowZSzeoUqnQfSRQTDwer1Qq1UkhIQqllJ7nUeVzG/e0FzrC3l4avfjii+lOdD9iZcqUKTa1P/7443v2Orz11lv04rbbbjvjjDMuuOACKs1ToE2FpokTJ/77v//7to9DUl5hGH7jG9/Y7S36sFHwns/nbT/my7aEFy1aRGVPEqP58MMPlVKpVIpG+1JRYe3atVOmTPnWt75FVGsaDgXgz3/+87e+9a1rrrnmjTfeICwMiebE43FqH1L2QNo0qFLS6f0X9vAjDn7hhYUAYjEHhhU6KgcdeEhYMKps8puiwmZzy7/PfOqRly8568Yzjj9/UP+Rnhtn2g0rJihBhqxSVmEZRrouT8a9rCMSUciK7aEKuKww+luWRVQWsuJEFRaVEVW0rDD6Xx06OhQqFCriOuJQHtcxpl0duUHJFPJRLtMw6Yivrl+/4d13396qknXf/Xdf+f3Lb7jx2sunX0Y/ufGff1gulzOZbEdH/txzz556wfnDhg6JxbY09lauXGmLokopxgyFUr7vE8cGnd1fGgdmQaQWGroLzXDdBTAg9GhtJbffDfb888/TkymE6P725FbWv3//kSNHMsauu+66JUuWED86DEMqxNOutHDhwhtuuMHKIlt0Mmn02NIECVQ+/PDDu71FHzbirdP4+O1zhI2NjYTTpgSO1J2INcE5d1330UcfveqqqwibShkDAILMED5++fLlN95446mnnnrnnXfSo0StI8pWCdFqwfTolKHpzXbBBecte3c5AK1RqcjGxkajzfy//o+WzXe+cSFd8xFDRw0duPeh+x/ne+nRex42oH44M57vJI12yyVZyAelopIB15GjlWukq5Wnla+Vq5UL6ZrIgfSVFFq6SnKtXCOFkQLK00pwxLUS1C/UkQPj7tGwz+lTzpnceMqsu27+2+uvvfLaKz/612tWfPh3Nbvn5z3X3NSybt265ubNV1x1OYAgKNO9SyaTpVIpCIJBgwZVKqHvu/G4X1NTQ0OY6etQ+GJvGUVaFhdDAkbkAm2BtFQqPfHEE5++jL2w2dQFjpC+P4CNGzfupCIPXfFuVnElwi+dwGWXXdZTd2j27NmO4wwYMGDVqlU2QKvmR9umtL1QVEix2wqp382aNYu2QjujrnvMhi/bKM1dc801AwYMSCQSVoWr2pGnUin64eGHH95VQxPtFeiT+nkUtgP4xS9+Qe06zvmYMWO+7EFOO+00Qp8qpdauXWsrnBT433333XRP6UkRQhx99NFjx44liBkxGqmU+tBDD11//fVEXSV9DGojkSLJrnILHIffd9/9hUKJpLLHH3nEvOcWfN6bc9laAAePmzBi8D6TDz/1oDETDhpz1JEHnCQr0JHDlM+0D+WpQKhQ6MgxkRuWWKVgVOgyHTfSl4ETVRglfyriKmQygAygIhjJtYSOhAqZDs0RBxx/5AFTDhozfviQUbPuuqm1tSMMpdGslC/9289+TOdz8y03lctlwZnRisF0tLcBCCoVrTUM1wqCuwBaWloAhGEUReqggw5xHIcaUpYyQa5u4MCBVPm0CT1pqlkBUtqjXNd9/PHHt4rPaPHQfp5Op+kgtEuQB73vvvt2PUdYX19vh4X+x3/8x844Rdrle2T+NWlT9aCM+sCBA6+88kpabdTmIdVjCtJtrkxvcF2XBshVF5qoUQRg+vTplUqFhuncdttt3RlP0La41c9nzpxJ34Ixdvvtt3d0dFghPfqO9IDRNHb6OkuXLr322mtpSt8OmoVvdPnUlF5iRF1Yu3Yt9RQcx7n99tu34zgWK0i7Gw0iN8a88847lCUIIXzfP+aYY6644op58+a99dZbxpgjjzzS6m7TvVuxYsWUKVNKpRLJrdGLpqam9evXbxVP906bOLFRKeO6QggG4Nhjj1m0aPEXuHyAwfChowCMGDIql64/8ehzYiI9oHYvT2S1crRytXR15Bgdc3nSYQkZOqWCKhe1Ub4r0lq6JnIhPSMdrVytROcfJ+Glx4484qvHnTN88KjJjaccOHZ8Llu3ctUHYRhGoYoiFUXSBhlrPlpdnYp1Pl9gEJ+5r0opBwwYYKfJU+uXIDNElqf9p/p3a2trrSAtOhkXWz34FkRDDpUWlaVh9CBXbUeLjfvuu++iRYsoBZk7d+7111/f5ae4//77v/baaz3iCGnH7P7PnT179rRp00jpmGoRdIVjsdhZZ501ceLECy644NO/dfHFF7/88suVSqWuro78Si6X8zxv/Pjxs2bNIiGPfD5/yy23dOdkHPJqBHcCMGPGjCuvvJIQ+VTUJbGS6gKAfVwZY4VCgR48cudSyt/+9rd33nlnlxQPGWO7+iSEbdRRaNwuhZI7MlaaYn+tNSFfqB143333WUD1d7/73a2ieAJ4H3fccc899xxtmhTlnHfeedQ3mjp16sSJE5uamlpbW+vq6pqbm+14xV5ol1122cKFL1nRY9/3//u/n/siv1iTq6vJ1QGoydYBWzzi175yMYC29mYwtHU0rV67rD2/OZ9v564QwjNaG6oes1SlVAQcmgvY6cAYwGJeqlgq9kvXNzVtSsXrMum/I2J0pJli3DCtlDFb8jwARpHE9pZbtqXpw7g2ADhjVFISnDu2DPfxxx9ns9lkMkmSeMSapyNQ/ke30sasDQ0NTU1NlOtbcdrqftbll19uC6oEG6ZRmo7j2CmbAA477LBdzxHOnz+fvrNSaifRG04//fR3332XSihHH330Cy+80D1Ln6CVAA4//PDuvCW/+93vrrnmGsZYEAS2LkFDALb9i5/nHiZMmPCrX/2KUkal1Pe+971uXmQ0iyAIgsmTJy9YsMD3/VKpRA8DXeREIkE6mXboKz0wtthLZRbazR3HaWxs3MHBBaSzCmD16tXoo2bLvztIAbJFMCLFE1hm6dKlNuH7vFrWX//6V+uV6SDlcpl+68EHH7znnnu2intqa2t755VcsWIFZUUAksnkdg8YIHdYU4XkXPXR8oP2m7Dqo+WtHU012XoALe1NjLE3ly2edMRXH//L/V876bzVa5cBaG1rAjB86L6tbZtrsv32HDo6l637NChUK86Y2EJhUIDDq1sAxhCBgVul0CBU1SJnNhYRQsyePfv6668n8QRqJdILek4pHrKT8oQQmUympaXFvodubnXFxbISbQ3A932S4qumVZxxxhm7XmnUluZIpbBazLer7Ec/+pHNGBYvXtw912XJkiV0V3zf706AZSwWu/LKK+2YU8KFnnnmmTuykS1atIgkHqIomjlzZnevMM5JlpBzThoiQRBQy4FkCc8555yzzz7bJo6EqrcTaKnZYCdGASgWi++8884/xMdu204++WRbWO6TXpAijy7Bl1EUQotTa93e3m63S5KV+YJbBMEubE6AzmYSaVQyxkaPHt07LyahH2i4VddOwhkxdFQuW3fQ/o2FfP6jdR9S+TSbqvv+hf+255BR/3rt7QeNbfzaVy782lcunHrWDVPPuuHYCaed+dULj5142gcr3luxcvln1Tm0lEpJY7SAZlraVBIAg2bMMA4BTbtN/NNPq3397LPPUluX7mD1GELOOQ0grFZZs01E+puWR7VIAgWyVp+E5LmrFwkdra6ubpd0hHvssQd9jVgsRuj8nZW9Ok63kSjeeecdum3dLLdNNEF0YkwOPvhgKeWDDz64IxcNnWzlWbNm9Qjqh54u3/fJvVEAOHLkSHJ4999//xcsdVqn1dHRsYMjKg855BDbieyr6aCtIlAzZrvTweqEMgzDeDxuwYFCiC8IkScMoeXj2r4vFcZJrXT27Nm982JSv5PkcnYSYmBQw4hJR34ll607ZFzjIeMaW9uat00BPP7Y0w49uPGzLrSjJNManDuMib8vcOMwuDDcaMEgjGEAzj13qnUBdqlUP2ic8yAIiEFPaqL0HhoHbdHp9AIACcxSRkiHqs6erR+l41sBtup2ck9ZFzjCf/mXfyHHbuHaXW6ki9+d14WYCehe7ufIkSMJMGndxnYXAN955x1UCU5WKpUTTzzx8ssv7/4V1tHRkU6nAZTLZVonJ598spSSznD7LJlM0gSD7TZbhfu0HGLfMBue23B+u4+DTslfmnqfSqWeeuop2hO/VGPPGPPUU08ZY4455hjq+44ePXr48OEHHnjg8ccf/+1vf7vXXkxbrqde2s4JXDzqJm4poua2Mys67OAjOAQzXDDBGI/CzildhvMt/o8zJmA4gPGNjfQTYxi9ALbgX6SUBGuy4+arGfTUgbbFTHohhGhoaLBJvx3OvJUjtFKlnudZLBW1Iavr5N1sXVA5ufDCCy+66CLqY+2555474yxPOeWUhQsX2vmi3XFdOsX7uw1VeP31169evZp2nEmTJm3VCn3//ff32WefL360/fbb74QTTrAb0EknnfTkk0/2yArbvHlze3s7gFwu19rauuMHjMVixWJxBwOUCy+88LLLLpNSkhJm3yNRUF3U7lzbvb9Y0CmtTBKUoXmW9MPvfOc7X/xoNBmY9Nt2IaPlkUgkSqWdNSH8zjt/s/LDDz9eu14Dvu8rY7QGY4wbDnBAG6PANGBgFAyXERs0aMieI/bZCgx8yilnzH1mrtbGaKakqVS2lNA6y5gMUOS2Ph2m2DSOjLih6XSaBPqDICDfRvB1ipCM+TsAx3GcmpoaVFW/txLXJuyMpUVZT0mOkCCpPXWLu4yiTs/JTmp3k6QvSfh0z3WxwlQ/+tGPuuHj7rnnnl/96le2z/xpQNCX8oJkzz77LMVfSqmnn366p1ZY//79qUxH7nAHbb/99nvnnXdoix8+fPiOQF3sWuqTSaHruhab0FXMBNsQsklDH64tf3o3CIIA6JqAqbWt2eZ8x005+sUF87VELAYoFkpjBAyDMuCcMwkGbchBMICBATDwmHjv7TWvJN+bc8d9E44+aMG8l+hodXV1UaiSyWQUKa2RTCbPPvvsBx544MSvnPDoo48GQcS4kTpyfeeJJ5447bTTjNkyVtB1BefQWpJPsl+cVPFoLdF1oOyNJIestyNMODpr6eRHqaxVXV2wPpK6j3QokmejYrvruosWLaKAqVuT/l0lIguCgKrS3fBxRx11lJVA/EyiQpfbz3/+c9qOtdYk/N9VAcRWUV73W21tLV3MLtk0BwwYQMxOpRSRf3dkdyOq/o5QC3pzRkjjkKikuYMRpJVYMsZQj9DCcHZLFG2PI2xtuv3Om46efKTjOM//dT7X8B0an2QE4DtwGDhH3NccmpEH7JzcywBhoEOVjfFicTOHenH+Yuaw8cdNOX/aFQByudoNGzaRHh6x1wGcdtpptJVakvFTTz1FPsmmd8Rl+szntLooiiqsr0W44H92kf7hnlPNdbajfeknCxYs2IUzwp1dqARQKpW6J3gnbGp3+o8PPviAXiSTSQs63xGbOnUq9bGVUscee2wP3jtC/Fq6wg7aXnvttXjxYnJdO3hAY0yhULBFv76XxNDdxw5LWlu+M/ERKagnKj2A5ubm3Y7tS9mbb749btzYyy/7ocMAhZTvh0HAXTgODAfjAIPmcBiUhu8BgKb6KAMALml2PaJK4AMREHcTxRCLn1v8t8Wvv/e3N0aP2qumpoYID57n2VwNfy+QGiklwV8th92K/lji8jYeHOvDrGvcilxf/c5tOEJKNOkErGskCa3djvAzLJPJ0IZF6k07uyBDJcpuA6mef/75ljM+bty4LjnmggULaMPyfb9LPOuO+Jsdd1rW7rjjjjlz5lgfv0PFEM53BEXS+2NHWxrdvtETn3aEtGEVCgXqU9DBewTsvkvb9GnfX7jwr/GYkIHiDFEY1Nbg+BO88RP2Hjd2uBC8WFKhKjmJgu/7USkG4wPSiICxCgyDynGVFEg++PvH//BQHgYqLLmAghuW9MuLFy95eWG/fv323HPPurq6+vp6yz3bChdKK9+OTELn6K7q3XWrtK/6n+Qv6Xerh/F+KSMAjj0xAnL3SL1913CE55577rRp00g1sRsuE/VUuscLzp49+6GHHrJQ/h3kiVtbsWIF5QHdP7tqKyPIKEnJdNUx6avtYMpOroJI4n1vt9VaF4tFEtirFp7dvkNZ2CSFa7Y+tturfemognmAk/L7lSubBYfnQDi46FJ+zHGD05kC1JJSMUjEauoznsTH5XI5ERsInYJxDJOMFwEDvYkbB+DnXjBo6mX+K6+t+/9/1BIEqASRhpZQxqC5ubm9vT2Xy02aNOn73/++9WoWsVkN6SRfiE7Bjc8MZKvdFf1t/ail2FeDSL/IokInFKvaxfYUXmbXcITJZPKQQw559dVX0Ynn3tlJjB1BufM+pampqb6+nqRE4/F4uVzu2h05Ho8XCoVJkyb14I277bbbbrzxRgClUunLTj/YRoJCil/bzRafM2fOhg0bqApEcifjxo2zyr/0WH5eutm/f/9zzjnnwgsv7O0bLuebN2+2geP++++/IzEHCQCRI6RZdLsd4ZfLAqdfPmvW7Y5gHMZ3TBhsdhh8D3ff19jQr5xMdeQLqyC14EgnmVGq1F5SDL4Ppj8BiwG+YWAoAxLcYQYA18wIzvcdLR57/NA1a5KXXvwC40pzUawoYuZt3Ljx0Ucf5ZwT9qS6n2d3Ueu9qAaWz+e3UUivPkJ1abS6tmkPu+3cjn6RupLVP++psb3OrrKS/va3v1FBphtChu6Zi1ZfXz9w4EDi+ZXL5cbGxq6SI6ChUURl3WuvvTZu3Ej8nu63l19+mVJS8vRdcsxJkybNmzePnpkZM2ZUD5n6TPvlL3/5+OOPv/jii9VPOJ0PCaOEYfjOO+9sxaD4vKfxww8/fOGFFy666CJ6YrXWI0aMOPHEE3sbGZwx1tzcbMvj26c/MHXqVLvrnXXWWVtpIvfVwR07w2bNul0IxpjhgFYynca0K4Yef2JdPr+4tq62tbmpNpULK0FQKQuBmO8IkQJCX+hAS/AKTMUAzBBsJuQGRgkFpipBbU28EL6zx4g9Zt7ROG36okq4hZxOfXTP82jsms23KJOzHD50gjnpRm/atOnz/Fa1YLdtTHyeI/yCsRoVY7eStuiRdcV3lZW0//7705YaRdHdd9+9Uz+LghSrNbrzbMOGDbbK14WiPO+++y4lN77vjx07NpfL9dRdGz9+PKW55XK5q3LT559/3j5ynwkc/frXv05DLagEdMMNN5AKbrWWN60lmh1KjyLpZWwJDx3HfI6R0AY9/ESKWrVq1Zw5cxhjY8aM6R6M8RexKIrCMKSShpRy1KhR23GQNWvW0JVRSpHvN8bQiF37nh3E7v5vMNcV8bivlNEaiRRcD7fddtiUKbmYt2aPBt2+uSmbYEGhwxU8mYi5DgdCzjQkqxSlAATAAWHADbiBMAQfVZ6DRNIt5MvcCbmIhgwZohQcB1prUrOjIUoWiIfOPlw1dd1GNlQdaW1t3YYf+nT7sLpYuh1FC9psq2uqPdUj3GUcoR2+wzl/5JFHdt4HNTY2WhLhAQccsPM+aL/99rPhTxcGQffee++GDRtIfCCKoquvvroaNtb927F9QrrwNLYq71ibPXu27/t//OMf7YdS24OwSFuFtDZBtI0KC5yxLyyyvPqZJw4+vSCXQIHtsmXLfve73xEQ/Pjjj+++qo7j0NXwPI8UsUm2o1Ao0DLY7grHhg0bqqtYtEotzpb+2VXwrr5qjDEpt+RnfgzfPhcP/+fgQcNWxvzVQlZUh5Pzk1HBeI5WuhiZiuYqMhXFS8wLXOrMGECDmThHmhkfBlojFkehKAHtOL6RA95+Izz1Kw+ZCEYCQKlUsvPjbG+ehr04jkNMQVrYV1xxhW3K2IYfOhXbLUHQcZxUKkUtCUr+CHFNGmyO49CUGPtg2hyxGoxmWw/0ZIVhGIvFiEFolxk1PnY7ws+16dOn01xsrfWSJUt23getWrWKFoHjODtPmfOkk05auXIl3f4pU6Z01WGPPfbYqVOnxmIxWk87qEzdJV7ZihRTwbYLTWs9aNAg+89+/fpNmzbNioFRRYjkMKzw9/jx42fPnk0+j/pn2zbClNt/aq1vvfVW2hFINpMmE9meoh0M+d///d/dk4iTW6KtjXp4dHpBEBxwwAFUIuuTaKBdpY5FL1KpFIBTTz1k/GGNqUTa90pGdWRiDlMI8qq+poEBXIC7ED6ED86hgUhDa2gDY1iktJRSa4DBcVEO4HiIojgwKCyPuOHaT5SCghtp3q9fP5Lpp7xw26CKxsbGRCJBLScLHyVyLdHhKY6UUjY1NVVjJraCz5AQKz0jZPSGarh4b6A1f+5ztAutKhpEQMGIbfB+Xi5FMTvFIBTyZ7PZYcOGvfHGG9v+lAMPPPAvf/kLoRx3niOcP39+EASUtD377LNddVhqnlHgBqA75cI/00gRVAjhOM4NN9zQVYcdNmzYxx9/3L9//4suuoh+UlNT09bWFo/H7dSFsWPHfu1rX2OMZTKZLryP3/ve9z49x+r//J//c/PNN5MABw0q8jyvvb09Fos1NjbuVEUxq+tIGRuNrKJ43C71rh2YsJUNHjx4t8P7PHv77bdTqVQYVtraOgA8+firTz2EYyfjx/93P8Peyec7anLJpo2Vls1NJgalYBiYAmOAATcOMxxMMU4z4KPOUUrMaK6U0kgYPaCtpeb2O16MIjAPKoxczyHf9k//9E9BEGQymX9YaXRdt1gsWk18m7SR5lm1PtFWQNPqI9uCwVY+kkYIVK/VHhQU7SOO0NayoyiiAaHWI37eBlHd5Gtvb3///ffpdtr0fCs62rhx4zZu3Dh+/Pj29vb9999/5syZpVIpn8+n0+koiurq6qZMmbLXXnt9wROeMWMGldEKhQJxP9DZl7L9TiHEAQccUCqV6uvrKXpqaGjYa6+95syZsx2XiIbUFwqFeDz+y1/+ssdvGZUfSaCyCw/7wAMPbCXClM/nHcchPM4BBxzw+uuvd+fX/OlPf/rTn/707LPPfvDBByuVihAiDMPa2tqWlpbnn39+p360La3TxC5jTHt7O1FWZs2aZaWxd1LRD8DQoUN3O7zPtK9//esAisWiMcZ1hda6ErAkkvPm5a8uJHLZTL69I5dUyVRcM23ckhHQBtoAGpxGcxo3ihg440IxrpmAMTDKRFKBwXUTUZh49OGlz/4F2kAaGI6DDjqotraWmDOJRKJQKFiwzOcZPaHUI7fOjJCJYRi+8sorll9oCamUKVYPS6fYi6ovdtz8VkFYdfGzt+WFu5IjPO+88+69914bgNghn9vwmrYbRNk96ebRTbVpk9XpV0q99dZbvu+/9NJLAJYvX/7QQw9RWYMQmLStH3TQQW+99dbnbS50Sp8JQab/cl2XCrx2I6O0ac2aNdRIWLZs2aJFi+66664jjzzyS9EK0+l0GIbk+88666wemTXx6Wdsq3CkS4y84D333LNhw4af/OQn9LDF43Ep5cSJE3tEoonc8wMPPECvPc+zKJLJkydTpr7zqqO0cnin0b5GjaIoiqgut9u62R599FFq1gZBEEVKCGaYrph8zEOgEpUolcxEG5rKgwcOWLd+Q6IG2kBrKAOmXBgtEXITGiSVYjARF+ACjIMBzIC7iKIOxQY9+hiEAx05TEgTGgBTp06tq6tbv359KpUipb1/GEvRoAnbFyQ0GSFL586dS7tZPp+3gGFbAkUnAMfOI6zGzmxVCLWNw15YIOW70MK6++67tdbf/OY3adejsOLzjNI+ehFFEUnE2ljGOkjySWEYWsFJ2+ahGWkAbN6plHJdd/ny5dsIse07hRCxWIyAhfS31aYirTj6IUVbyWTS7mUURjHGXnnlFYt+/CJmZ+IceuihY8eO7fH79bOf/cy+3hkyby+++OLNN99M2r4AyuXyzJkze8oLbmWHHHIIAGrWEmZ1J5ldV7S0SGGSVrtFtdTX1++Mj/5fori9g5fIiqeMHz9eG0RASeHMr7+w/hOXiZrauvS69Rtq65NSwigYxhzH8914zEn6wvMcLx6P+zHXccEYjIbRMAYaCEJIlQgrOcFRiaAQU5170oQJE9asWZPJZIIgoFt/7bXXbvskqapPDfXq25pIJOz0pepKGElmV/cI7UjCatjnZ5J9e2eb0Nnl1tZDDz1Eidp22Jw5cwgfTB1g8oJNTU2bN2/+wx/+UF2upJtaLpeJcEbvpBIftZE/r9ZH7GPakmxSWM22odzUQjDoUDSnlOJ3KlDYgAtVJNNtaGU5jkOJEed86dKlveFOvfnmm3S2Wusul3k7+OCDV69eTXOdiJZ78cUXT5s2rZes0pdeeunSSy+l+ralW3T5pxDPj448fvx4+1optX79eqpBua67u3rZG2zBgoX1/Rqam/ISZcfDg79fc9X0EZGzKVfnV2RZuHHAKFOJolBJ4+q4q1Oc82K5yPzI8RRn0EpoxcEiBieTGLBmlfvHP7walmDgJmLp7158Dn3QhRdeOHfuXEpGN2/e3NDQsG3mEqloUdo3cODAdevWkQMLw5C2PorRJ06cSPG9/a1qUqn1gpSB2Mxvq6CNjmDxpbsdYc/YJZdc8nn/dd999/3DX7/11lt/8IMfEBriH0aCnud997vf3Q7K4x133DF79uw333zTBlx2g9uG6AOVHxOJxIgRI3rJ1ab++U6K/t5//33q8FPGP2PGjOnTp2/1nu985zu2VmmfzOrwYhtPo33+yY4++ugzzzzzyiuv/OJneOCBB6ITJk4loy5/+NesWYNOTZAzzzyTIjCC6rz//vvE7oii6LDDDtsZmejujPDLWtPmjcxJQ/NiUf/X0+jfsOqsb41oLnV4rp4JdbwAACAASURBVK/CdKmi2gv5Yr4UlsGV8BAXglUgUzWJujonmXC5gUaZ8SLnsU1N4s9/XvXoH6GBhJ8eNW707b+ZVb16S6VSIpHIZDJNTU2doyc+pyrIeRiGqVQqDMOhQ4euW7fO0h4++ugjSgyMMQMGDLBlz2pR0OrZvBYXahXXqltXVpv082Zc9B1H2FcljMm+//3vW+G+nWeXXnrppZdeCuDnP//522+/HYvFhgwZQrXT6ojs05mo7/u5XM4SLnvcRo8ebUUJurZPZqsxSqlbbrnlM/3TwoULH3jgAc/zKDW3LpAwLOhs2dqknLYPyyasHpzGGFuwYMELL7xw1VVXzZw58wvmnZdffvnll19+yimn/Nd//RdFMDQBrguvsP0iYRgefPDBBGGniujs2bNtxHbzzTdv3/Gt/6bLSGUuu+UBuPvuu3u/2lzvMl0A4DosCs1d9+ODj1bdcMMpCu5f//rmL29eCQVyEIwBaNUMGmAcDsO+++C6aw4YMgIaa6IIzBt8/8NrIkACwnS89PJz//MBEUJsGUgZS8TvvveeCy+YqsyWEYCcO0EQCPb3OqfrugQ0GzZs2KJFi+xDMX36dFq66XS6pqampaWF1Cfoh1bSncRsKRGk0hSJOWyF4aAQzaIoKpVKPB633UR0as3swhJrVsI1k8nsXupdZT/84Q936fP/yU9+8m//9m+0Ly9YsGCrHGv77PLLL7/rrrso5NRaT548+dNe8JJLLrnzzjt937fzP9FJMLAYFuuhiRFcnQLayjbtBfRzY0wymSwWi9dcc8306dMvuOCCb37zmyeddNI/POEnn3zS8zx6zs8555wumU5Mduyxx77++ut0eS0VjIBdruvm8/kdR+panDPNmrDbn4UFLlu2bPdz+qXsqIkTFi58qVQBmPEMFi3Gr3794ty/tDEJwSEV4vF0oVxkXDDBoyhirmOisDbB3l9uLr34ja+civMvGpfJZT9Y6YUaigHMD6JP32gN6C1zm+xe7zgqoo6M4hxcbEvEg54O2tVjsVg+n6daK4BisUhjDgmoEUUR/dyKAMdiMfIIlUqlmsNKbo8cp51Wv1VPET3Ue+4aR0iZilLq5Zdf3r3Wd5u1888//9577yVf0iXqOU899ZSUMhaLSSmnTJnyzDPP2P/65je/WS05RG6Atm/XdSk3+ulPf0pwylgsRvGy1jqVSgkhvve97zmOY0Pja665ZsiQIfl8funSpU8//fT/Y++646Oq0vZ7bpk7c2cmkw4JEJCOgHQUkGZFRUBRXCwgvStiYV3rt7vfKh+CyiJSpOraXSkKKAIKBJTepAhRihDSM5Ppt31/PObsGEioiq7z/sEvJHfunblzz3nb8z6PpmmBQADRrt1unz9/PgDMLVq0kCRp2LBhSOLPaPCvkiT5fL5LeG/Xrl3rdDqBq+rRoweKUfBYfJKEyps3F1P/5GR1iBKCwSCfirm0n+iPYOvWbRg2dOxbixZGNL8RpVCUViwplSRiFkU1sjsoEC2zJDIskzSyKc5oNEBEvoDolmVdC63+hFYs2f3GwkFPPDSfNLIsybKs3Xt2VLiKRVFiJgmCZRKjn2pIqqpqWsQ0NbKYIFomVbUeuTeCkiiCIRCvezweyLaAFCY2geMgGiyuCs8eXsJpntA75/VSHmD9vinWEHd/8skn8Wc9btzmzZunKApiRlmWKwz/XYAdO3bM7XaHw2Fd12O94JAhQ1asWIHEDhU8zAxgdcELXnfddY0aNWrevHn79u2bNGlyzTXXtG3btnPnznXq1Pn000+pfCYHJ2nYsGHDhg1bt249ceLEZcuWzZ07t1mzZrquK4qCCg8uceDAgW3bto0cOdLhcNx2221nfM+AKsAld+vW7RJmhIFAANIl3bt3x84SCATsdjtvJHPh7wvcHQQB+5TNZkMOXUGXLs67fb62Y/veFyf9rV37ti6nC/u9SKqmO6Kmwhhd1aJJfmFhYUHhoYMHLMua8fpMYjKT7JKgBjXBJCUYJWbR0IHzy3xkWWSXPSaJgUCw6mgGP8yc8TqWRjkLkvXQw5VOWPGhi7KyMpvNdsMNNyCyVBQlGAzm5+dbluVwOAD9EwRBVVWER3ywlaeMOM/IkSN5/RNBld1uj/WjsSOJv1dHmJGRge3D5/PNnDkz/rjHjVs4HAYCTdO0r7/++mJO1bVrV1RpqHw+ATZ79uwFCxagJKhpmq7rDoejVatWr7zyyvLly/ls05YtW7A4eZUPuh8LFy784osveA0Hnvv555+nckCdrusZGRmTJk1atWrV+++/jyQPxAWY00LGuXz58jNKTd19992ct2HdunWX6sauXr0auxWQzNiPEHCAxqECOOgCDKI8uARgzKFQSFVVvtl16NAh/oSfl7Vq3ezTJavWbVjbqEkdIrLbZRJMQSCTDHdScvamfUmJKUmJKfXrNfrgw5W1atW1jKgZDYUMb6NG9QzSZEkMmxSxSDOIMTmoRVS7+5qrO56WzykWSUQSkUCWkJaSFrPhSxZJRHbTtGlapexryPbw7Q8ZMuSGG25AOojAC+wNiC/5ootGo+FwOBQKYSQRZQmOaUCIibExgPYVRYkdgaOY6cPfqyPcvn07uJ2I6IJnG+L232p8ms2yrCpKiOdQVlrH1969997Lfw8eWvT2GjRoMGfOnDfffPMvf/nLVVddpSgK+hmKopSVlTmdTp/PhykUzKG/8sorS5YsEQQhHA737t37rrvuQnckNzfX7Xa73e5QKGSaptPpdLvdmI159dVXORYUfUSsfLhDm812xx13xL7tsWPHolx5yZn1sVsZhlFaWgpoDHiLgFzgWIYLPn9eXh7X5UAnEv/lWWYcKXO+tnP73gGD+xFRp04dbA4WjGhRU9dM3abIRUVFRPTppytx5A3Xd7jphv94uF0HdoUsI2IYBpFukkFkWDqRHgjlnek6IlkSWQJjjJheWJT/n5VoCWRJgiAzsjmdCVWnksDRGIZRVFQEF1hQUPD9998fOXIEyCwsJfAZcdYRPpYdy7mP7DASiYAXHrSLOIz7v9Opvn5njrB69ep8bfyiJBpx+z3a66+/zhgrLCxUVfXIkSMXfB4smISEBKhq4Jdz5szBXCbKPlOmTGnQoEFaWposy4C6cJ8BCInT6ZQkCcNMU6dOXbt2LdjvevfuPWrUqG7dunGyqLy8PBDzgyMfnu/f//73ww8/jJAWSAEiAgMf8jPTNBcvXnz66F4FSqqLN6SwmEytVq0a1AbAx3up4Olcy6JDhw7YE0VR/Prrr1EZZozNmTMn/nifl7Vs/RPTxSuvzA4GzRYt21gkKop6y20/Aa9uK/8hKcnDX7Vl68bDOQeJyG9a9Ro2UBw22cHIZg0ZdveZL2MJRETMJNIZaTt3fV3uCMNMsBhjZAmGJZJVFR+3LMv333//n//85xo1aiQkJLhcrrKystLS0lWrVn322WeapiUnJ1O5BoumaQcOHMjJyREEATwkjDFVVTVNe/DBB4no1ltvxVLik2C8pU3lZXZOovl7dYSINeKQ0bid0UaOHImsIhgMgjrgAmzYsGGQffH5fLF0FZipJ6JgMDhz5kzgR1A+tdlshYWFbrebc/qoqhoKhSRJ2r9/f7du3VavXg3dvltvvXX8+PGMsby8PJfLhRJQZmYmH4UEIdGUKVPmzJkDNwDYm2marVu3/tvf/rZmzZr09HQqJ/vPy/tZnA7PhETt4u/n8OHDoQ+AKpNpmjVr1gQCyGaz2e12lKE49+PFXAuf/eabb2aMhcNhwzCWLFmCvFwUxZSUlPjjfQG2cuXS8lra1uLivHC49OOP/n36Ya/NmbRl60Yiate2Y/16jYho/fqN3x78zheMBIOmFrHmzF709ntnmlRm5k/AUWYwwSAqdy2WzpjBmGWRYZiaL1BWxfceiURatmyJJx/0yH6/v6SkpH79+ldffXVCQkJBQQGwZpFIJBgMrl69evHixcePHwf9CJ4WTdO+++6766+/fvHixWlpaXXq1ElISOBrCnhs+nm/+XcvzAsI2a+gIB+3353xMYbzYk+Nte+++w6rhdOX/7S0y6d6bTZbVlYWWGYcDge48xMSEuAUkRqKovj9999fd911TzzxBDwlEfXu3Xv06NEoBAELgOofyGwxXHzo0KGbb745Fp6Ds40YMeKFF15o2rRpJBKZMmUKwKgVoHQ8yI2tFJ3RevXqlZmZ2bRp06Kiouuvvx7nURSF4zaBOJ87dy7eLT5sq1atVFW12WyhUAjbFvB4FfiJLtgAw0Hh1263g4kX4yiXlkv9j2M9evxnnPSLVZti/9TumhaYAhQYGzf8z+3bdbLJKmNyp2u7E1GzZk3XrP7ZCrr3njNUpyNRnyDqhh6RJYFZZBk/hV8OVQmH/HaHEAqX2h2WaYUqlFtiv3RZlgsLC51OJ2cT5bRZ6KMrigLiLYfDkZubiyV24sSJVatWFRUV2e123oMoKSnZsGFDKBRCWinLco0aNRCucVgy1g48yIABA37HjjBucavM6tatywexY3lH9+7de45n2LFjB1AwkACMXbGqqgLVAsemKAoWJ7jrXC4XSjcOh2PXrl1jxoyBz0C9tE+fPoMHDwYxI6hB+ZwTqqnhcNjtdj/88MMc6haNRqdPn75q1apFixbdfffdTqcThVmn0/nss88i7YtEItOnTz+vW9SiRYtVq1bl5ubu27cvJSVlzZo1uGPYHWJVDzmPLjLC++67D1rkiYmJaMPg/qB5czF6yIgDqHxETJblkpISzqZ7VlmDuJ2L3d3vP9OoDw6+e9+evSKRaDKRyGmzqZLd1HWbqG7M/sbpTOnSvcd113fcvuMsq0aWRbuiCIKohS1Dl+67t5xkw5AEQQ74/S6XSmZUoEr5TzAIyGck7HY7au+RCNqU5Ha7BUFAr6FRo0bp6emcM5JXI/DMFBcXY+VmZ2d/9NFHWIn0c+apyy5VKMUfxLj9CpaTk8MYg0pUrDLRuZODY6Q3FAoxxrgICUqjSAoxt24YBkSvkNilpaXxHn4oFHr88cepfFhYUZRZs2YlJydXr1791KlT4JTh3g60F0T09ttvx14uHA7PnTu3bt264XA4IyMjGAwGg0G0FSORyPXXX//000/jcrxme452+PBhIGyR7yLx5QT/PAnGXL+iKICzvvjiizfeeOOhQ4dUVYU/5pKEALjzgcILq4vyhB65OEq+yJh79ux5RpRs3C7MunZvv/7LLSJJTkEVmBk1NDMalRgZRIahMRKCodD+Q5uJqHWrs60aU4yGBT0syYIiCNK7i5alJlev36iuaCYkuhJCkVAgEBDFqib24O0wsMsb8NzDaZpWu3Zt4JPT0tIyMzNVVXU6nZs3b+Zxkt/vVxSlRYsW27ZtO3HiBMiJLMsC9SDCUI4aje0Rxh1h3P6bDYNomqZ5PJ4qSFPPaB07dkSuBj9x//338z81bdoUe300GsVcuaZpgwcPbtOmzcmTJzEjj858KBTCRVVV7dGjx1VXXZWTk3Pq1KlDhw41bdoURPso76AHZhiG1+uFF/R4PF6vt3379gMHDrziiit8Pl9iYmJZWRmcDSpFpmmiawJXcTrvfhV25ZVXBoNBfMYJEyasW7du8uTJ8+fP379/Py8/wgUGAgFVVZ966qkuXbrAO+bm5kqSlJKSkpeXB9g6NiNkxhcTZQMThHuL8/h8Pk4m2b9//zjd6KWyT5cv3frNTkWwWWbUMH0WUYMrKL+QojoZUVIkMpgViJKhnaHQXVrqTUz09O9/X35hbn5+oa7rx344EQlFiASZbDoZRMKiuQtDWkgnDcKFoiT2uaPn7T37VPZ+QFEEesJYsjSe81WvXr1WrVqCICBqDAQCdevWzcnJyc3NTU1NdTgciYmJ7dq1q1mzZvXq1Xft2rVnzx44Tsz2cF0ODuxC9fVyTabGHWHcfiV74YUXHn30UUEQvF4vyJbOcRtdunTptm3bMIyo63oFVSNBEBwOB3IpUKMR0bx58+bNm8fVRIHthIo9EQWDwWXLln388cdwe9FoFFMQbdq0qVmzJge2TJw4cdu2bXCcXq93xowZ9evXxxhGUlJSUVFRcnIyeGrKysoQEZeUlGBfAJ3bud8ccJVhF+jRo0dpaelVV1313HPPeTweDGPZ7fZgMGgYRnp6en5+vtPp9Pv9uq4DMpOUlOT3+zFDAnQrlTPaIGnbuHHjhbEZ4DvCkCIXVAHMoWbNmt9++238wb4kdmev/qYhiGQ4BBIEeuWfXRo2pqhRGIpaPm/ywAeyo4YlimTo0vZde1u3aJbz/bF6dX9CJicmerpc2/Xb/fuKi0tFQTJMgxERWSIZAlkC6YxYUAtaRBIJOpkmMV03VIdn8b8/6XX7mclvUUeB/nlZWdmJEyeCwaDP5wsEAgiDVFUFKAaIGIfDEQgEUB3p2bNn48aNQfmt63qtWrV0Xd+xYwcq7YFAwOl0opdBMUzcl/f+x3uEcfuVbMKECenp6aiwhUIhRVEkSerUqdPZ94g77+SCw3a7vcJL7r///jp16vD+GbZ+ZGMOh4MHmHa7HUVU/FXTNHT7kOvgsG3btmGmEA3Cffv2wZkFg8FFixZBjw2k/n6/PyUlRdO0vLw8t9vt8Xh0XTcMIykpiSdw55UtSZKEuLtRo0bYfaLRKHp+wIICpC5JEthkJElyOByyLKenpycmJkYikbKyMoQX4B1t164dx/6MGDHigjl98CkwqlHhE/l8vrPKsMTtdCspqcg3O2z4SM1gdsEmkm5a9MjjmXXr+2TlW8m2X3WeyMoSMquTTSBGApHUukUzIuJeELZ16+aS4lIihuddFEyXyhRJ1ynMSBclzaHqjHSLooqiC6QJTD9+9JgsVxqrCYLg8XjKysq8Xm9ubu7Ro0dPnjwJtBSvN2DmD5TcGKXHekHNMzExEY9Hfn4+qgtYfaqqIiPEgC+Vq8tdXj2TeEYYt1/P8vLy0tPTCwoKMOSHTOWxxx6rQh4BSwWpm6ZpZ4ST7du3b+bMmUVFRaqqHjhwACqAkiQhqoX6NtYkCqRopKGgigQOIS0SLCBO0VPE+f/0pz+lpaUBJseJvLHyMzMzvV4vSq9oK2Ix82Hhc/c38PQjRoxA40TX9XA4HIlE3G438EEYE0SGyt1hWVlZNBq12+2JiYm6rgcCAbfbbbPZBgwYsGPHDtzk2bNnz5o163y/rM6dO3Ou0ZSUFAAfYpU1o9HoxXPm/QEtdkAQdvTIEYFMwwxIjB56pEafvvU07UDAV5SWpgZCapnXzD9JpkkGmcR+Fnls27axTZuORBSOhAVSZMUeiQQZaZZFwYghMpJVskxiAoUNIoVcKpWVERPIsMydu79p3KRBFZGZ1+udPHkyd06xtC+iKLrdbrAYmqapqiqwM8gIOdSZK9e7XC4sK6/Xi1orSjW8ZmOz2QABizvCuP0hLD8/f/bs2eCXART75Zdfzs/PP3HihM/nAyIGKoMlJSXAm3Cn8qc//amyDX3kyJH85/Pd9GfMmPHmm2+C/g3U2CgDol6KWi7ak1jVfr8/PT0dGZjf7+dDDqAqxavOlyCDS2SUlJQAI6OqKt4DeirwQxjPkiSJZ5Dwmrwd6HQ6y8rKXC5X06ZNwU4OVm4Ags7rtmzatImPpiQlJRmGgbeEwQlw5Zw71ilup9vm7Rvbt+5IRCdPnRCZhf349j5t8vPXJiWWJSWQrzgSNuw7d5+yTLJJckTXfq4nQW3adHz3X3P/dN8QgchuEyMRr00km0KpKSTL1Lo13X57txq1ksIRnyAIguAqKZYHDnxf14gJVFLqtajShB6jPnj8qByoXF6JTUxNTU1MTIQDA/3eiRMnXC4XmtbgIC0tLcWIIcYngsEgKhx8korKZc64mAnvSccdYdz++2348OEYCeedp3feeYfv2vRzUVwcgJ/feeedX+L9jB49GhKDs2bNGjlyJJcnjEQigAysWLHi888/Nwxj1qxZV1xxhaqq+fn56Dii2kPlAiw//PADn3CoMGwOIEBlMW9KSkpRUZFpml6vt6CgYObMmRs3bmzSpMm4ceNq1arlcrm44q4sy8jGkCNyhg5ZljlBNrqeDzzwwHvvvYebCYfdrl27zZs3n8s9GTlyJL/tbdu2dTgcLpcLg8I8M6hMGjNu52jwgkRkSaZGEZORYidv2YnEBFELkd0mO+TMQyfdf/6fPSYjQtHztMfnT/cN6dCqhUjErGDHq52PjG/uTsh1OiRZlMgQTPMEoyNu1QrpYUmuJiRkiSZZRJpB7a7JIrkstiZRoUSB2SFM5UJyJD093ePxuFwuSZJOnDhRu3ZtTOuiUgrlFkSKjDHQLWH+FWSEfr8fMZxpmhh2wqguAKUVrv4rfxfxHmHcLo/dfffdaOxxpUDkLtjfsdtizViWlZSUNG3atF/6LY0YMQIjgBgopHLIAPQcJEkaMWJETk4OfhMMBp1Op8fjiQWaLliwAP81DGPUqFGne8HKAt6ioiLwEX/wwQeTJ0/euHGjJEkHDx4cPXp03759u3fv3qNHjz59+tx8883Tp0/H8DInGeeVVa7BBLmo++67b+bMmajoAuOwe/fu2NS5CsPHRFeyb9++TqcTo5lI4nFMvEFYmf3z1blEtGzFUv6b778/RkTDhw25+447N26sSD0fDoYsi5FF0QidyiNZrq26agaCyaX+pMlT9ugGWRJppmWzsS6d2/JXLZr//qGDh4lo1849ApGukVMNJXlOuV1HVSXHJh9ShKOKcMLGciV2ymErEFmhXQ4JRLJAAlH37p2ZUFX1XtO03r17X3fddR07duzateu1115br169atWqJScn2+12VVVR/8Q0BXxbVlbWjTfeiPY/Mr9Y2frYn7kuW6yeSXyOMG5/IANs7P333x80aNB7772HqBBJDGjs4QuRIGKvh5rur2M8Gl24cOHJkyeXLVsGLhXYI4888txzz3Xt2tXn83FyYbRMGGNAmTqdztNR4FUvdaSeRJSbm5ubmwt1G4QCHM4D8MuyZcuWLFnSoEGDefPmQSgOyCDsLFa5KYpis9kSEhKmT58OXlY4y3MUhykoKOD1sfbt26NayzH0mH65LJyQv0HbtXdHi2atiGj58qW33tqLiMY9PISIbr/lP4DMnrfeceDgt7IoCpLw4eJllvUzD5SZVuPowVN2xiQzOGbYttlv3Op0JqSnuXN+KNy/jyydDEuSJfnBwffMfP0/I60DBvX7z9NFJIn0wxHToSqyzAhjeWQSkSVYxAwSSNc1wzSt8hfYbCr5o1V/tHHjxp08ebK0tJQxlpqaCn0JFGmcTmf16tWj0SjYtEHDBgwafFswGARPBed/4D4PQ7exQ4S4XNwRxu0PZJyRhMvbnm7AnsAfNG7c+Bd6Jzk5OcCCntEGDhxIRE8++SQRzZgxY8yYMfDNTz/9NGOsYcOGI0aMaNq0Kbx4JBKZOXMmODjAshh7Kvy3inUOL8i7kvA3GNLy+/3AFKAEilmRQ4cOcfgPF4gA7gDXAjlkRkZGQkLC0qVL9+7d+9hjj2HEEMxzL730UhXaESiF4Z2DjtXlcgFkCzobipGs+4Pb52s+nzdv9pZvNkfCwf955nk9ogqCELV8+7/bheTZJpGmkUiyYZBmGcSoWfNWe2PUdCc+/ue+G+6OmoZmkiLToKHLJYUsk0yTyCJRVERLade+bawXjDWTkUBkmFRYQCYJpmlBc5dZBhNEi0zLgiv6ic/TMsli9MmylR07XVtpqVAQTNM8ePBgXl4eFx0Dc68oijVq1DAMo7CwEP5MEITk5ORoNOp2u8HlhEyRj59yR8izQKyRWAAOiiWXCy8Td4Rxu2wGMb/Tf1+/fn0qH8CfMGHClClTfqE38OSTT/773/8GsLvqI0ePHr158+aFCxciGWKM7du3b/z48XghMAXwHMCaDh48uOJKKy8WnfH8w4YNmzdvHnqTwKDjPG3atDlw4EAoFKpbt67H49m+fTu0v+12+44dOxo1asS3G/QOcX7gegzD8Pl8kGCsWbMm7if8dFlZ2ahRo+bOnVsZ9SvEd+A1MbmByD0W3XdesNj/Ytu7+/tF8xa4VXsw4BMZkeUUSNTJZxHZRCJGpkE2mSRdi1qyYZLicn67b2fsGXr2uu2atm227/haJwroJCnkDxMTyDJIJMm0TCJjQ/bq0y894dFhU6fMMSzLIoGR6VTJNJgpELOIMWLMYswiZlhkWRahVycIFNGJEe3ccfyajnJlHwou6vHHHw8Gg3geAJXy+/1Op/O2225DHQJa0C6XC+wToOQG5y1ofvHkVAgBMdoL1Ch3k5f3S4w7wrhdNjujFwThC/bZWbNmDR8+/KcC1K5dW7duPXnyJEg14Q84uZrH47kApcNPPvnEMAyPx/Pyyy8/8sgjVR+8YMGCBQsWNGvWbP/+/bFJGOeeRv5qt9vvvPPOuXMragJUzX89e/bsp59+unbt2oqixPbeUGvl1rlz5w0bNiQmJpaWlj7xxBN33HHHuHHjeHEJHh37Dka1cJOLioqQAj700EM4Od7/119/XRkHGzqduMMYf/Z6vXa7vXr16rxGesstt8Sf4etv7rHhq2yyxGDAJ4pkl0nQA2RR2CDVRYEQESOHSlqUiEggTZBYJFgm/5yZbs/2vV9tWS8zZjBS3XLArxHJkiNFK/MbpKl2myTbz3j1qVPmEBEjGyPmsJlaVGNMFAQmWBZjxCxGZGKRGBaR9ROwxTLJJJJspEUrfSABEoakiaZpmHxAVVxRFIz0BAIBm82GcoWu616vd/fu3XXr1kW5HhRImETiYxKYF6wMNRYfn4hb3H7yB4cPH8Y4uWma3AsS0YABA/bs2UMx0xQ80sR+PWrUKEEQ2rZtW79+/ffee0/X9bNmk/ABXq+XyxaePfzfu7dLly7r16/HRdHJQ5oFPxcOh//1r3+dHl/jrxi9OqNlZWVZlvXYY4/l5eVVxuG5fv16xhj4cYho8eLFqBa7QQAAIABJREFUAwcOdDqdvL3K5TL4+IemaSkpKZZlZWRkrFy58vjx4+PGjQP3DSpU8OgdO3b86quv+IUCgYAoihw3GAgE4FkhNYXb3qlTp+zs7D/4E7tm1WdkkUSyy0FRiyxGikrhANlspOuUlESdu9E1HZIaNWoS8TpemLR6216LSczQ6YOP5959xxC0FZu3bkZEmmUR0aiHRuzYu7uk1GsxwTKSUp2ukcNGDHyw0iL2N19vZGRziPZItDAzk0RmMcYYWURkQX2JkSAQM8mwDN0yjZ98nyBLEmNVPfZg6wWXAn+GgcYCUAsezuPxFBcXAztTWloaDoczMzNBwIRIEUciEERxPrZTwHvnfGg17gjj9ke37OxsnqDEatAT0e7du3lqxePH2BASGNRvvvlm586dUJGdOnXqK6+8MmLEiBkzZpzxchjs1TSNE2S/+OKLTz755L333nu6M+O2bt06/jOfQQT2tU2bNu+9916F4+fOnYv3mZiYWKdOnarvQBXcArCEhASMMaBXd/To0Vq1amHOD7MT4ApAMIFxw9LSUlmWq1WrVlZWlpmZOX369FdeeWXv3r28lGqaZnZ29o033njq1KmMjIyxY8ei1or0UdO0SCRSvXr14uJi4Gm5otYFM7f915hAJAnETCPJQ3Pfuk11FvvyxaSEalHDb1EwpPnsTi0hgU6e3Fcto+ZttyTv2V8c1U2TUb+7h1r6EIBrYu31aRWnYA8dOljZ1f/y5GOTX5ziltJDeqHAqGVrMq2QZfxH2Y8xEkRiItlkimqiFrUYI1Eg05KDgUj9uo2q+Giqqo4ZMyYpKSknJ+f48eMgkRAEoXbt2m3btk1JSQFYDIsOVVNQVei6HgwGMWsLRUxEUbHzgrEOj6/iy+gI4+MTcfsN2bvvvkvlhF6nuyKUUjHJwKNUvmhR0AMgDU0IdOyrmK/HYQ6Hg8/8QTvi/fffP0d05ejRozF4jhnzrVu3no6+gQtHHL1jx46LvEVer7dRo0ZULsz08MMPY2AL9SjDMAC7xQA+boXH40H6C87SrKysKVOmLFu27KabbuIiw5ZlrVmzZu/evatWrbrrrrtycnIwuY+/2u12wCJM0+RVX0mS7r777j/CY1kFbaxARCaJZHqcRPS9bu5wOL+zaLckHpKlI27nCVk4GvLvT0rw2sQjN95YT2IkWuSUiRl0dYe2VVwUkrxE1KDBmd1Vty63/d+L09xKYkj3imTaHNTrjgaCGEChhDESBKRZZBikGxQ1dMOwbDIZJpkWI5Jyvv8htmhR4fwAvwSDwaysrKysLEQ/SO8wZaTrOgZs8NRxKlHwAgLSjEBKFEVM1uMp5eREFDOQGjtN/+u7w3hGGLffitWsWRO4j3A4vGLFioo7jiCAsaVfv34PPvggBhDBi+ZwOIqKioqKiqZMmQKBQ7S+kO0R0e23375s2bLTrzh06NCFCxd6PB4M1FM5vBOd/0vyod54441p06bx6YhLYgcOHMBdOmvV94cffmjcuHFBQUE0Gi0qKopGo6qq1qtXz+l0ulyu8ePHK4ry6aefcr0nTmXH+bvB8sO7jw6HIykpCZoeoVDofNlqfqeGFPyMZlkkMiKLAn5S5JBLDVuCqUd8jIlEJrGIRSam4AXmN4XCcaNrTXvtuB4ml13a/PW2Tl27MMlo0LjR/NfmVThzu7aVptrORDXit5mG4ZbFSKRUJHK76OEnXDWzIgILlHu2iq9y2NVo0IpEiDEyLOZJTNSrVHqAe0MkhDgPU6TI6jhsCtpq0Wg0GAzir9BjwTNTVlaGrFGWZUzfgqrmN5jZxy1ul99cLteJEyeICOFhjx49Ts/e7Ha7ZVnvvfceNuKEhAQQ3hcWFiqKUrNmzcmTJ69YsWLWrFngG0NCo6rqJ5980rVr19Mv+vrrrweDwdzcXP4bt9uNKJXr/12kIR+FRGJiYuKl8q/NmzcXBKGK1qbH44Fu+O233z58+PDBgwc/++yzTz311IQJE/r27btv3778/HxFUYYPH75y5crXX38dtVA0GnmuTESRSAT4CJAehEIhj8fz8MMPh0Ih5N+/vpj4hdm1117rcrnO+Bic1VBvqMzsikMmRVEoEjZ8peRQDFMPyxQSSRNNkgxBNJhoiKIhSlbk6jbVZSLVTlpYT/U4N63Lzv5q81sL3mOys0Pnm4iIMbfMVIXZ9+7Yc/q1OnbpykQW9IVMIypRJKqFZRvZbdT/PnvHTsmC8CNjISLrZ17Q+omPJhrVEzxJJsNsBaHvW9mHip35491B1N6DwWBOTs6xY8fKysqQFwJTEwgEEIOqqhoKhQKBAAoSsdAYtAnjjjBucTuDjRgxAiBsxKHXX3/96cf07t0bOZDT6ZwwYUIoFIL4kd1uT05ORh8CpNh16tQBPfQVV1yRnJwM/Pe6devOhYO0rKwMBdikpKRL8tG2bt0K7x6NRktKSlClvHjjI/aVHQCRpt27d2PGETkieqKCIIwbNy49PR3gUtM069atu2LFinnz5rVt2xaBP6pYRHTLLbcAdAOCN3xB3bp144nCBx988Cs/Lddccw0yknr16l111VXNmjVr3rx5q3Jr3rx5gwYNMjMzU1NTU1JSsrKyWrdu3aRJk+zs7EAgsGHDBlaloXBXgR6vCjSjSVQWDkUoUlBIiQlZskChkCEKRMwUSBfIEogESxAsgYgEFqqdRbNmteh5K9lECvoCLpspGroRDJIe/XrDOpE5PQ4HEQnEmrVqfvrlNq3fQhbZZMmpyIw0RSUS6OHxyYMHd1aEfFUxWUXReUZEJiNRECJhIxQKCwxlbVHXNSKz8kz3JwwLlHghgQKev/z8/P3793/33XcnT54sLCwsLS31+Xy5ubng+SspKSktLRUEISkpyeVywfNxcDVE036DW1C8NBq3y2yzZs2CXgSaBKZpfvHFF6cftnjxYh5p7tmz55577nn//fehWFRYWMgYO3LkyMGDB0VRnD59Ojbxo0eP2u126NkS0fjx4/v06VOtWrWqXfKCBQvq1avHi6UX77GALrm0bMJwgVVwu0iSVFxc/Nlnn/HDIIvKZ/Y7d+48efLkxo0bo2Blt9vr16//1FNPQeB38uTJmzdvttlsI0eO5AhSv9/PeUOGDx/+xhtvgMvtuuuuW7NmzaX6aJMmTfrss8++/PLLyjZotH4Nw/j+++952ZzHBBUA+pqmHT9+HLm+3+/nsx+VdaHw+wpMRlU4QiaTbpDbLvnDemGhlJhYI6qfSEqmkB+pmGWSZQlEAHCSLxja36hRzeqZTfrcwcaN3RfwU5JCUY0ipm6RbpIUCGkCMZ2iRPTZyqU39/gZmkaxeTTN0LWoafkkRitXDQoFdyQ6WCi4xyFroTKSlZ97QUsgZpFlMSbKihIq00yTLEaaromKZFhnUcEFBAySTGlpaUVFRZyG9+jRoz/++GMwGDRNc/PmzYhEdV3Pzs4uLi6uVq1arVq1wL7EGEO7EaFbNBoFN33cEcYtbj/Zq6++On78eOxNUDWKxWRWsGAwWK1atfz8fHDe/+Mf/xg+fHhiYuLatWtfe+01iBOB+d40TbTlotHowIEDFy5cCFbrKqYXYDNnzjxHmMw5GjIwSZK4TmGsdevWbdeuXWCBOeup4MNcLlcwGGzWrFksNfnpZrPZ8vPz+Xy9ruvbtm1r3rx58+bNgRfVdf3pp59+6aWX6tat63Q6fT4fUDbhcDglJeXvf/+7LMvBYBCIGwgu4rOYpul0Ovv27Tt79mx4lHXr1t1zzz3AUNjtdkx32O12u91+OnNQ69atd+7cid4Sp52MfduxAliVWWwEgAgDkA2U72K9GkD8pmmWlZXxGIIjb083XddBofmzulnlQYxpkk0VfH49UaURQ756/4POoeCpMsEQGBEjssgiZrHyWqVlON0hw/zebrMyMxKXL+tUlK/s2pX3vy98KwjkcFMgqIcjZBAZRENH9p/8wvTYa7089Q2naisu1RWRLINcLvKVHUhKLAiWFbkUi5lGSoLgD5smIyJiFpElmEwgyyTGNMO0TJaZWRPvmZFlaBFJEqqO4ahck9npdGZmZjocjuLiYsze4DsCSvmKK6744YcfcHxZWdmhQ4eWL1+OMcTi4mKo+GIOFVUEp9N5qVoPcUcYt9+9/fWvf33uuefgsSRJuuuuu86qLzFx4sTnn38ejBXffPPNvn37eOkPPQ/IDVqWBXDK2LFju3fvvmjRoqKiIkEQhg4d+gtJWFS9a2OvP3bsWFbWz/RUjxw5wocC4Rgqq3aCXw3BOBevqeKioVAIfKG4vW63u3nz5kT06aefZmVl2e12lKrGjBmzYMECl8uVlJSEoTHLspBAi6IIF+JyuUKhkK7rHo/HsiygT7lTtNvtoVDIMAxUxoqLi202m6qqhYWFmzZtysjIyMrKSk1NrV69umEYR44cycnJQYIV24gFkQ3SBSrnMj3j54pN/mKTY/7LCtyVuIrNZgOoqkaNGuh0VvgiYr+sjIyMmjVrnn6JM1qn627KXrPW5UzwB0q1IK1e8WPvO5t7/TtlGwlEZNlMRhaLwikSI4dsBAKGXSFDKzAiempyUu/eye2uyYqwaKFXPHTYPmlSjj9Iguz8/kRxUtJ/KrSHcw4+MmFo/Qbp/fr1Jo0kRqEgmWaJYeWrTo2ZZBdZSZFpU38Ok7EEYgJZZBimZbENmzYKEpFOoiBKTrXnLbdWHcPx4rkkSW632263p6am5ufnR6PRkydPomVIRBkZGbm5uWAchUgFFiAvioJ3FF8xGhyXS24p7gjj9tuyoUOHLlq0CByG2EzP5VUTJkyYMGFCr169li1bJssyD/PRgYcskWmarVq1evDBB5s2bRqNRp1OZ1paWnFxMRpapzvCqhlHL0kZEwig0zdf0K7CV50jYxkO4+T9VRS1IAWO28sTILyHrl27fv755zjs8ccf/+ijjzA9jW/B6XRqmubz+ZKSkjCSD3cYiUQCgUBycrKmaXl5ecgAOC2cZVl79uzJycmBe+MJa3FxMfjnYt08n6rGhBmOhBxP1XTepml269Zt7dq1VXz2oqKiRx99FG+M+1Tkuzjg+eefxwjKOVoVglMbPv+MSao/EFKYzEh78f9+yC2kex/I0umUwDTGBEY/YVUEi4hRMEKWSHYHhS0yjBJZCRQUfZ+YZIsKUdHuuqJ2+//9W45AZEaNwoLS2AvVr9fom80bb7+9VyRCgkUmkUTkdCRb5nHD0kSTggEr0W0P6xHLsn5yhcwgIouRxQRmSQ7V88Rj+w2dJJHCutn2qvZnxYgAkAX4KEDa6PChX1hQUAAeCUVROnToYJrm0aNHjx49CjYiMHSD7Q+YmlAopKoq56r9r3WEXCAtvsvHrWqbNm3awoULsaGjHHdeL1+6dCmWIjr5AG2DGnjgwIE33XQTchcQnmmaNnbs2Oeff76yOPQX9YLQC6xsXXz77bcDBgwoKSkpKCjgSveVOQCE29WqVWvQoMG6det46sPFvmOTIUEQ9uzZA8dzOk7vs88+Q8RARCUlJV26dJk+fXrjxo3BG6JpmmVZqMHitdjLiEhVVXxZlmXVqlXr6NGjuPTixYvhRHE8NIQr3PA6deowxvx+f+PGjfPy8iDlCBIcfiRQMHa7/WI4a1JSUp588skXXngBs4+xoRJ3hG63G53pcwxlqvjrko/f7d3rLt0SQiTZRH3ev6hNZ7lWnWS77GXMZJrmdqh6NBwOmImpslfXiFFZiBgj5qCIGbXbJV0jUyC3krJvV75NJ4lRyNTT3O4KF7q6fUci6tXrjiVLlhCZxGjK1I3DR9TISJXtYjQc0YyIoBsWE4kEsiySVKugUE9NV0sDUUtQoiHJMokMkm1yRJcz02uTKeDLxaQ8H3VHLogVhI4spEug5+V0OhEzQWsCcUy1atXS09NbtWqFCXrIXuLZAA4OjLVoVPP5VBzMr3IZHeQlc4Twgpz+Km5xq8z+/Oc/T5o0CT9jAul0Zs6z2ksvvfTss89COx5Tg/h3zpw58+fPR2ODz8ah8XORA0zz5s07fvy4LMtbtmxZunQpl8Aloi5duvTv39/hcECwokKpjX/MM3KSLVq06ALeTIsWLc5YJ4xNHJcvX46fzzjCmJycXFhYSOWtoLFjx3722WcOhwNz0JBgVFW1spuWmpr64IMPPv/888Ai4f5HIpEKVG2Xyxo1arRgwQIi6t+//xkP8Pv9jz322Fl5fM7Fet3ey7KisuAmSwzrul2mZ57JeWlq8+QkOSVBj5oFwWDQIYuJbub3aUwli4hMG5EpMJ1ZRJbEiAlE4VB49YpsZhIjYqTff++Z33mHjtd+/c3W/Lzjikyrv6QetxjVkjwl/hNOUTbIFEWBBFOUSJApHKWUdCryBlU1PRyptnzpQUsn06RoWKuVWc9ms6F4DifEoyj8gJ08HA5jqOnKK6+E3ASotznXmiAI2PA5KBQKvfCdiJ/sdntmZmZKSgo/Mxq3dFl1lyrmvpew/lN1DSFuf3D74IMPHnjgAUEQJk2ahHltIvrLX/5iWdbpWg1ntYceeggC8ZMmTcKzh/EApF8Uw0SKfBE1nLOy+k6cOPGKK66IRdIzxlRVZYwNGTLkb3/721NPPbV06VKcBzEyEa1bt+6hhx7i3j3WJk+eDAEHItq8eXOXLl0uyc0EALKKTEVRFK/Xi9LWGSe3CgoKOnbsiAKm3W6XJOnmm2/esWMHPiw2uCrq1ZZl1ahRw+l0IkFUFCUUCoGqjTF2YeN6l9weffTRyv6k63pubm6sePJF2rf7dxgUVFWyolRwnIY/sOeHA4mlpTbBJosq6aLh1yyHk0SLZIMkQ5G0BFFzi5pbNFQiQZSIWOTbg8QE0ogsokGDzswvOvGJCW3atLEsIRIhy6BFC09pWrLdnhw2Q5YYNizT6XT4g+QPkMUoGCU1QQxHHce/rzHj5agiEyNyOGxNmmbJir55yyaK0UiiGHws3NumTZveeeedtWvXLl26dPPmzbt3787Ly4NoDHI74EIVRcFvZFnGz1iGvBwN2BrKP1TO2xA7tUKXlXH70jtC1Ivjm37cKtjAgQP79ev31ltv4aEHotqyrOeee+4iz/zEE0+Ew+HbbruNYoASaGxAn5YTXquqCoGn02327Nnt2rVjjP3f//0fz5N4oQbj+aDSQEURsTAvGMJt/Pjjj6ef+bHHHsO4Okom2dnZl0S0we12g1Wg0oVdPkXAGKuM4BTpKSpjiB4QoyQlJfn9fsZYFWvZ6XRmZWX99a9/BZ8WkDIwIlq/fj30dy7jI5ednX3y5MnK/ooIoLS0dOTIkRd/rU+WrmzYqL5uWd6ApRlEFkVD9Nj4PQV5iaZZPRAhX4QcHvIGiRHJJkmmKZqCYMjMEohpAkVMiwTBFg2TKJJ1to150cK5is0hSiQQ7d5JxcWOYERNSEmIEjGJfIGQ002inSSHI6w5vN7qW77Rx4xaqROVhUgjCoai1TKTBGZY1k9MszxGjK2uK4qyZcsWQF1UVS0qKgqHw7t3796/f//hw4cLCgpsNltKSgq+/UAgEI1G0U1EaR0DFbGLHakkgFe4xOkKTb/70ijFyALELW7cpk2b9vjjj1dAAyqK8ve///0SXuWTTz7BD6+99lpJSQk6iKjDhEIhsHGmpaVVNs+ek5OzdetWzCeABQY8iuAkg0otPgJ8qqZp1157bc+ePTdv3rxixQpkThy5U8GGDx++fv36t956C3dg5cqVXbp0qWJK5FyMU8BUZsiPI5EINHVPP2DPnj3NmzfHh8JmJAhCQUFBMBjMy8vLzMwMBAJIps94/tLSUrfb3bJly+XLl+/Zs2fJkiWQNkTUz9+boijdunXDOOOvY0VFRRs2bCAilK8rQyfyppTP5xs5cuRFzsz07NWDiI4ePVa7dpZBDocsRzQfaTR29K7pM1qnZwaTkn15xaFUD5lhEiwSKESCRmQS002BLIF0nUQhocybH9ZIYg6SqtKFSElJbn91x/XrV5tRUxLpnbc3DR3aush3wiaTwGTGWH5JVHGSXZYlqUG/Ptv0CAWjJIrMMCRJlO685xavr8Tjrs5MG5X3mGP9FnyhJEldu3Zdvnx5IBDYsmULRmgcDgdjrKSkZOfOnYqi1K5dG7oTdrvd7Xa7XC4+FcPLrWB+xwRq7BDnbycdvJSOkMfdcYsbt7lz5z788MNUPhug67qqqpMnT75U4+qn25gxYy7gVcnJyRj1w+qFe0BUFwqFmjdvPnz48KuuuiocDufm5r7xxhuCIDzwwAO1atVq3br1DTfcMHbsWNQGFy5ceHqbkIjefPPNN998k1M1rl+//pKsuCpCT8z/Ya8/IxYJ0xQVMiTTNEtKStxud0lJCVhGK2t2qKqKLFDX9e7duzdt2lSSpMOHD7/44ounTp3CIDYCi88//xyQJfjFK6+88plnnundu/fF34GRI0eGw2EkItigMcWB7lTVqQawG0jlS0tLR4wYcS7EQ1Vb7dpZRKRbQYnZRZIUSff7aMig7e8t7mILFcn2U8W+ogSZBCJTMImiRESMTJEMRpZJNiktGjlskaJbUjR6FtjIunWfy7Lb0DXJiny82Opzh5KakWB3+sMBIxzWqmUmBkLyqVx104YTvlIySDbIMEi6+55+4WgoqhkuZ6Kum7MWvlZZaZSIAoFAq1atfD5fdnZ2JBLx+XyCIFSrVo3rc2HMJi0tLSMjIxwOh8NhFEhxKi5Gj9nBcDgMRRQiQqBZISO8vL7wkjlCronToUOHuAOIG0+G8LhrmpaQkNCzZ88q5I0uo02cOHHs2LE7d+585ZVXPvzwQyqHtwwaNGjAgAGCIBQWFsKpzJ49e/PmzcC5PfPMM4IgpKamOp1OpIPHjh2r4ipdunT58ssv3W43OKg6duyI3OUCDLWsKlB2KFFikOusZ2vTps22bduANtqzZ09ycnLLli3RXKysTQixVpBvYVZaEISGDRvOmzcvEAjccccdOBvgNpwuIBQK7dix45577vF4PLNnzz6rO8zOzi4sLFy+fDlSW46SjY0GkGcHAgGuSMzF7aoeVkMahK+1rKxs1KhRr7/++iV5nHQrLDEW0okRpSfTXb3XjR5bs+edLVXnj3r0BxKiROCdsRGZlqUbxIh5TpwMRQ0ikkyKKrazN5huvvW2lUs/t8gyjOgHH24ZOqpJMHzKpmgSo6LiBElo9OB9nwdDJCkUiVii5I7qYTXBJkYMIypHQobAIsuWLb399l5cLxdlBg4x0zQtKSmpe/funTt3Pnr0qM/nO3ny5Pbt20GbAHxpMBg8ePDgwYMHa9SokZubm5mZWbdu3cTERK4+iAqBzWaTZdnj8aCnyJm7/9tKo0D9gUGjb9++cQcQtxtvvBFMacCPzZkzZ8iQIb/lN+x0Ojt16tSpU6c//elPH330UTQatdlsb7311urVq//5z3+mpaVBXA2iS0T01VdfPfXUU4ZhpKamlpWVoYlY9ar+4osvatWq9eOPP6J4uHnz5gvWtoWfq6IGg8kHeCCurVrFZ8eYuSAIr7766qhRoxDyw69Ulo8mJSWVlpbC1QFiCtyNqqpffvlldnb2s88+C6JXnIQ7nkgkkp+fv2zZssLCQv5UPProo2AkB/8AQPkcmgjHj6HD2NyFA/1BEYDDkBrGJjqnG7JVwzDAjQIF9uHDh5/7TMXZfKElMeZQpBN5ukj0z2k/vjbzxzvvpFFD2husmIQAMU2wBGKayQIGEw3NvWXboXCUTDIdinTlVVee9RJ39On56dLPTFO2UXTJMs3h3t2vX1OXM2Lq8hercl595agokK5TSCcSTckmPfP0X/cf2E5EMhNlWZBl+mzlJ/v374euGW44Bwmj+F9UVOR0OiORSGpqKqiCPB6PKIper/f48eOcFQiAYa/Xm5CQgNgI4xZo0mMwFFgqLqn9W1v+7JIkpGdUWYzbH9aaNWu2f/9+NANsNtvLL798CeF5v4ItWLBg0KBB/9lx7rhj9OjRcAw9e/aEa6ldu/a0adOADrvuuuuQWPz1r3995plnzrpYsKGfnt8UFRUdPHjwXKRuU1JSOB9m48aNx4wZ06RJE5vNxl2yKIrdu3fHAfXq1Tt8+DB/7Zw5c9avXx+NRpEHBINBv9//5ZdfolqFD7JmzRqUiPEBMbLJZXf4hBkGy0RRdDqdwWAQJ0RVzel0mqZ58uTJgwcPrlu3bteuXZjigN8SRfHOO++8+eab4QiHDh0aDAY5I2tsbRPuTSg3ML1RTIeJN7TMcuMusIoNl485cs1Yfh5gQGInK5o3b75v3z48z+fVAFJEZpjESLYxQydTYKQKlFGDJjzRpmmLFM3I18wCSfFbJApU69Ybd1GQmOAMG4HIue2inbvetnHdV4wCIiObjVq2on/8o+8//v7Rlk2kaxTSySSSXWIoaDzzP/+ja2LO4WOmbohCyLLCkkhpaWkFBV4gcxD5ffLJJwAkE9H//u//Iu3TNA2wT1CmlZSUgGIU4BfELqFQqFq1an6//8iRI6qqNmzYEFR5ONLlcjVq1Mhut0PaHlSIwWDQ4XDAAfOxfTxsiqJc2FjR5S+NYv3cddddcTfwB7eOHTt+++23PCr63XlBIoLe4dChQ51OZygU+vjjjz/++OPYals4HG7ZsuXWrVtTUlKQ0qFKmZCQcNaTW5YFxlS+mw8YMABJFWg4XnvtNVzIbrcPHjy4Cr+I+u0PP/wwbty466677rnnngOUVBRF0IRiq6pZs+acOXO++eYbnp9h0+eajjab7aabblq3bh3Aoujw4a/wJcicfD5fSkrK1q1bx48fT0Qej8fr9Y4dO7ZXr15FRUUOhwP5hCzLycnJSBZr1qxZp06dVq1aBYPBnTt3zpw5Ew1LnPyLL75Yv349KnJwfjx3jO0hIf1FnwlbJw8j4MDgmJFuIi/nTrEyX4iRf+zmPDqB78eOf99993EhjhMnTpzOD3AuFjGstq3b7N1zMKLrROTlz6MAAAAgAElEQVR0OAPBsmM/ahOf2hYMExOpbz/qc1fT5KSUsjJVlneFiEwj0Lp13XM8//qvPmXM5rR7ImGvwGj7ZurV4yNGFIkSY2QS6YxuvuGm5i2uskgzhXIXzkyyDFCxWZZlWWYsWJTHGby7jDuPiMRms4EGAbx6POCoU6eO2+3GnS8oKABpH6r3kPHCaTn9Bcdweb3e5OTkcDgciUQSExM5XcPvrzTKlczcbvevr8kSt9+IzZkzZ+TIkVg/INyy2+0vvfQS2oS/OxsyZAhjbOjQofBJWMA8k7Db7R999NGHH37IhR3QMKtauI4b+Mk4v8aiRYv69++fkpJy6tQp7A7wBNFodNq0aTNmzEDtLjExkTexMjIyQF1GRJhZXrt27Zo1a2RZvuOOO95//33OD2Kz2Q4ePLhlyxZOlgaQCPcQWL9paWnI2GK5CFCWhDQVmEgDgcDbb7+NF6KS+dprr33xxRcIGqpXrw5eN86So2laYWFhVlYWMKi83Ir9Eb+kmJnu8q3ZQkUdhg0XPj72eDhO/kFkWT6vwuawYcPAbIfz4EKACMFwuwRBQABxYTW9rdu3jX1oyIx/zmOUVBpkRFLU0IJecjgpHKR3F9EH735LFtXOokAZSLrp6s5NN2Z/KstJ7dqfvTYwcMgDC+cusjF7OBxlZIajJBEZRBaR4hQTVVe19CxZcplmVKAoY34SDCKLMZHfajgdHgrwM3u9XgRG8IiIKmRZBn0aUj18a/jGg8GgrututzsQCOTk5EiSxHuETZo0UVW1evXqhYWFp06dcjgchmHk5eW53W6n01lcXAylaK/Xi0fu16+dXmxptHr16ljVwJr7/X7QJ8btj2Z4dtF6QXlg2rRp48aN+11/qBkzZowZM4bHeSg8cr5pTp+GXKFevXrffffduZ8ckEu0WEKhUM+ePT0eD4qQsSU7tFgg6guSa5fLdezYsU2bNgGlwkGhiLvRV4N8IPo0NputX79+pmnCZeK0vHIIpytJ0rvvvsvP9vnnn3M/BMeJyN2yrG7duoFNho9JADqhaVrPnj0BhHG73YqiFBYWIt1EfygYDN511108+YCiLyIJXCiWiRTvHxBEfpXevXunpqaiGowfLtIGDRqEii4qq2D/4uh/lH9N03z//fdxvCAIjzzyyIXx0Xz80cqXXpqxcctq2WZqoSgjSWIOmyKFw0XEiFkkCiRJoiAazVpkXH9D97/9rSpYWVFRERdNvPGmHqtXfemSEjXdEEiOUkiRI2Et1KFT++oZNWWbWr9RQ4sipmnkfH/I1EyJ2SzLEpiZnJxcVOw1TUJoYrfbly5d6vP58EUMGjQoEAjwSjieWNyQ4uJiTNbj2UC4oOt6enq6x+M5duwYZDiRAnIamquvvrp9+/ZlZWWlpaUoRaAeGwqFnE5nQUFBQkICMkVZli8exPvrZYQej8fv9+NGRKPRmTNnxr3gH9Nee+21n2pBkQgWVWyAlZeXV7UK4G/WRo8ePXr06Llz577wwgs5OTnYxOEXuRuw2WwNGjTYu3fv+Z4cNSIoZjgcjh07dnTu3BmXgPPDX2VZttlsSL+ATCkpKalWrVqvXr14HwVKEYDGcAgDj0g4/TEG5Hlvkv/ApyQ5Bw3cJM93A4EAZxklIuDmQaDKC2iKoqxYsSIrK+u2224D9iQlJQVkWpFIJDk5GdsofzDw9mK1y7ncAeRbHQ7HBXDvnZfNnz9/8ODB4XAY7UlFUXjOGpuh8uNN0zx16tR54UuLiotSklOI6MrmdbM3LSWiwSOGfPft0ezsbzSLmRHdJEkWRUOXdJPpUSIKFxWagwc/W/VpY6WDV32+kogk5mYkWRQ1yejb7z7T1KO6ZrPJkmwKLGKaJiSCLcsiJjFGJkX0n0tW8Zl3/gUhcec1YdRF+J1B6safIjx1Ho+nRo0aBw4cQPQTKwS2ceNG9BFSUlJuvvnmUCgUjUZRbwDMCitr6NCh59Im/604woSEBN46liRpxowZw4YNi7uEP6A9+OCDCxcuTExMLC0tRWmuZcuWL7zwAsIjh8MBfsKSkhJEfHCWbrdbEITbb7/9F+W8vlRl0l8I8rpz585WrVqBwvjEiRO8qszhG3wyHaN42KfgrsLh8KBBgyD4B6+JDQUThDxpQ9+RUxvzoiIv/SmK4nA4ZFlWVZWzknKgkyAIpaWlNpsNlStw4wFTallWu3btduzYgTK4z+djjM2cOfPqq692uVxutxtD/RBlhSPnmj7oQaIMi/2Uw2T4dlxWVjZgwICpU6dekuSvMps3b969994bDocRTEAzL5a7vAK4CfzU544vhRckokYNG/50xVlzX58x981F866om3Vdt9vWfrU8qusC2RTJHdbDRFarFp2uuKLRhIdHTn31PMb8desnPof+9w40mOEP+D0ej2HopmEYEV2SbJbJREsyyqUpLFM0dMuymGWZeN5Qjed+kWOU4A7RI+TKxhzQxCFOKAPouu5yuWrVqmWapt/vBz2FZVllZWUoooTD4aKiorfffltV1Z49eyYmJjLGioqKEhISUOH49b3gRTlCVPxxC6ZNmxb3gn9Yg7BRaWkpcpEPP/wQpSSkIMgekM0Eg0FOVI3fLFiwYOfOnX/YW9eiRYv09PSSkhLck8TEROgm8gYYr09C6Rt1KiKCalIsuQx+P2nSpI8++igxMfGqq6565ZVXkCPeeuutlmWpqsohl1Qui8EYczqdKENlZ2fv37+fA4LgOOFZwVwqimJycjLgJNgrGzRoIEnShg0bQDiJYfaBAwfabLbJkydfeeWVVM7gpSgKpxpB6uB2u7lSY2xPCJsszhYKhR5++GG73X777bf36dPnF/oW+vXrt2TJEsy3ca1HDvSIrdnizhiGwbuG52U5PxxctWrxyOETR43+Ka5a8+Wnf3l6+D/+PpuIxo6aYOjMJGvWnKlEVLUXXLpkZWpacseO7fHff06f1KZlx47XdiYinUKGaSWmKuFgUTSs1aieJTMXM0QiQTRVZoYtwRAEMsnSTSu2r4HQhP8XPi/2PnCfh0iF3xxEZh6PB98aahgoMicnJ+MhzMjIKCwszM3N5R8hGAwuWbJEVdWuXbt6PB4opl0uVpYL5BpF1Imbdd999/3uYIFxu4RWt25dvhcjoMYsEVgKeVEFuydn9MBK2LVr1x/87p06dQrOyeVyvfXWW2iqIdDmA858aAGAF3gU3mKMtYkTJ27evPnzzz9/6aWX4PYsy/r000/vv/9+wPwQ4OO7cLlcr776Km/G4E/IDDjhlmmaHo8Ho/GmaR4/fhzIWGxzhmHUrl3b7XajkoYNEb2f8ePH//DDD16vl6sMciwoNO2aNGkCX4vEN1aPCfkHIKCWZfl8vn/9619Dhw79hb6CPn36zJ8//1//+hcGLnlpFMl0rJPGbxAlnOPJjx75D8dCvSsatW3TucIBosg+/GguEU1/ferrc6bAC57VevXuwb0gEY0bO1GQRCIaNWakzSaZphGJhGSbKNtEb2mZLCmMiQz6TDFhk2kQr0Xji+DgWDw5/Je4IbFPRSzKVBCEjIyMatWqJSQkoIoAAUIwyKiqirJnUlJSo0aNWrRokZGRAc59kJQuXrx469atJ06cqILS77eYEfbp04cXCm644YZfeeAjbr81279//9SpU//9739//fXXKDFxbVW+WvBfbCLYynlE9fLLLz/yyCN/5BuIrAgI9TVr1nTu3BlwOzCH2Wy24uJih8OBPQhDEXBaRDR06NA33njj7Ptmr169evU6y17wc5EK4Evx3XFAREJCgs/n4709VVVFUezdu7fX6129ejXyJBTNDMMYM2ZMVlbW66+/Hou7gagFBIGJaNOmTW+88QZKskAMxrap+GwfEQUCgf79+5+uq3wJbdGiRffffz+vPENCFt4Rd4DPnp/LnAysdp2fqTG3bVOx7ve3/7k0qJBrrulIRKZuaWHNJimmbuimJQh2S7CiZsi0SFGUkOY3yVBEGQUGQ49ypRHIQ1ZYrXjY8MtoNAr+oEgkAkfIqwWIfXnWCOQRHhuEdNFotGXLlvgTlOudTmdhYWFpaSlispycnH379uHxcLlcF0n9+mtkhBkZGUuWLOFN1FWrVhUWFubl5cX9wR/ZJkyYsGHDBqQgPBGJ7XXxYS9+DHeKv0GaiV/ZZsyYwZOM3NzcxMTESCTCGEtPTwcFdlpaWtVO9JIYMLEI/GPVFgE9RfZmGEbHjh0R6ACkOnPmzDfffHPp0qU7duzYuHEjNkrsnpqm5eTkrFy5Ei9Ejov5Cr69dujQYe7cuampqSBr9Xq9XLj1jNa/f/9fjqLoH//4BzwuNn3MLAIKxGlX3377bdM0LxUBzS9hzBKYJTAmkiURCRYji5kmaVE9ZDFdkgR4OHj0srIyjFSikY9gCz1jy7ICgQBQxxzKhHgIMiOcjIZn9jyh51UNcDLgC0WFIzk5uXnz5g0aNEhOTuacR6gv4mGeP38+Y6xevXqXRBjkl8oIwaiLx/qhhx4iol+0lR23/0rLycnhfaDKRBv+OAZKszFjxsAHrF27tkOHDoZhFBUVuVwuVVVLSkoqU1yqwmecd1Bc3v5BJoQEjpNGIkXQdb1v374QmtB1/cCBA/zlDRs2xMtVVQ2FQqgiGoYxderUVatWEVGtWrWoXOugwqWBOp4/f/6XX34JHu3KRtc1TQsGgw8++KDNZhswYMC11157jp+usLBw4sSJfJgyluuSQ0IA9MDV+cw4knIwHjDG3G73e++99+677/5GveBpfDqIQcGCBncFoBN+Tk1NLS0tdTqdvMyAeQYqh3oiAkDmwwc6XS4XlHg5KBQVUY4glSQJsDgAlVFhxvMDNCkYeuvWrfvNN98EAgE4V7wxDPN8//33s2bNmj17dr169bp06fJL44el810qHDXOGHv11Vfje3rcLsBq1qwJTKkoijt27IjfkKFDhw4bNgx7zeHDh1u1asUFvgEHrQxEcElkHGBOpxMlWWQMgUAgMTERbgOuEYe1aNECnkOSJGBBK1gwGOzSpcv69euxtwqCsG/fPsMwDh48yFm8z1gGGDRoUK9evf785z9jWPuMbxIBQTgcDgaD06ZNe+2114CM5X1NURTr1q3bpUsXzBree++9vCzBQbOo3cV2ubiuOLCv6E0CIsuxlBgkRdwGUO5vNyn8uaQDvAtHxvK5HdM0S0tLkfgGg8GMjAywBeG1qqrCKfIxIYQIQACAWZvXrmMp7sCphqgOXg3Tq7xkijQxISFBUZSkpCQASjmdLO9TAoly+PDh48ePz5s3r2HDhkuXLm3UqNHld4SxeO42bdrE96+4XZgpigIWLsMwPv744w4dOmzatOmPdhNAyMn/O3v27OHDh6NNsmzZsl69esXijCqTQyooKLiEpVHsktjCIGdIMdPu+AGBP6rcHABcwaC2OHjw4AULFsSKnuNnRVEqe2FKSkqvXr0+/PDDyg7gzpUTDsSKTMHV7d69e8+ePbHpUSz+liti8s2X/5JnTqFQCJ9UlmWoUcqyDBfocDhQ4mOMXXvttZdEUetXMHCY4WeOiYWnVxQFH+2dd97h46qYhQCzAcWQm6MWiGoB8jykjNDj5d9CWloaHpJgMIgBeSqfPJEkCSRtGKPq1KlTu3bt+HD9jz/+uH379lAopGkaf8Oow3/33XeNGzcmogYNGnTv3v3STtyfK7PM8uXLP/nkk7fffjsajWI8aNq0aSNGjIjv6XE7X5s3b96ECROw5DB4xGfAf182depU7IwXhpouLCw8ceJEixYt+G9uueWWNWvWcB/wwAMPhEIhjo6pLENCS2bChAkXGSxDLhEh+YoVKyAXhUYgHyrAzEbPnj2xA7Zq1Wr79u1VnBMiJMh0edJARNdcc01loc+oUaM4uUlluc7puxYPFGL/VKEMG8vEzSE5nNCLS/WiP5qenl6BQebOO+9csWJFrN+VZdntdvft2/e30zIc+f/tXX9MlPUff47juOc4Hu4ODo0TsQZJjIPoj5CfHYbij4VbpmwhiqZwjNrKsoLV5sZyzHJJfyTLBBWs1aQ2xYytsGYhCOQf1hSY1KJT49fg4LgDJ/D94/Xl3afnuBPhQKHn9RfVdT+e5/O8f77er3d+PnRb2JGP8PBwtANv3ryJy4JDJQiCzWYbHh6uq6tDpk6N4fXr169YsQKqabjpJHpHihnIm2k+lRaD4JWUlaLFiOgBXwxUUmzygiyRv78/5q9QoBYEoaOj49atW11dXVBEogCaxk+x1+natWustsCcO0JIqdGZY9nDv/32m9FolOy7hGkWbVjRJme1X8JDq0dTVVUFeTBYDVgBDANs2LDh8OHDs3nz9PT0uro6hOp2ux163KSx6apIg6sKsdMZR8pkuTQazWeffSYIwsjICCwmKyCCL4lXGo1G5F7uUVBQcPToUfjCu3fv6nQ6Wp3R0NDQ2toKQXD8RiLou3L8Y5PgJqkZaOk5/xDKBamIR4qaNBVOiQ4coY+Pz6FDh1zZ1vj4+KamJpqgwJugTOrl5ZWamlpXV/dgD6fZbB4YGEDMQeY6PDxcJpMNDQ1ZLBY4MJlMNjAwAHVo/BAqfcNFZWVl0QJIdpoCAOWNSp0084q7g3BKFIgg24b4H2qzIOygDC4IAuqlEPmDvwRD2Gw2f/vttxaLhUoUdBoxQQTf/PTTTzc2NnIc19nZGRoaOieO8KmnnsLUM5rnpaWlr7zyyjwUjvbv39/Y2Giz2XQ6Hc/zo6OjgiCEhoZiOZZWq5VS0gWEkydPdnV1FRYWIpmAwCZr4mUy2cqVK1n+xUPry2l+gKgEMPGwiUql0mw2z7iDHhUVde3aNZiktWvX6nS6wcFBzF05g0buOI6j9d9yuXwGQ03gQYyNjaWnpxcWFlqtVrVaDW49N7mxCOz2lJQUuJOwsLC2trYZ/MaGhobS0lI0kGhqgq27uioFs6VRHCTkcCi+sd6aPB9Zc9R7tVrt5s2be3t7r1+/rtfrMaff29s7/Xw6Li7uypUrNFUCNyCKVCIjIw0GQ1hY2DxrZpIjhGsnRwhJF4vFgszMYrE0NzeTTC6RhHGYfX19N23a5HA4IAWFGRKEC2xGCN4p/B+iMZVKNT4+DqoUvRjPCw4n/BYG5+12O/S7aRcm6tUYyed5HqpJ7E87f/481nlSTZvjOBLIxU/Iyck5ceKE5x2hXq+32+24HBzHnThxIicnZ+5u5IEDBw4cOOBwOOjnkWwrmz3ghuHvZ599NiMjA6thJHgKR44cuXr1akxMTEFBgfuXVVZWXr58mQJ5dkUcx4we09oBekF2drbRaCwsLIQXwTmmuO9hdoTcpFAOPYdEIqOTqVAoXnvttffff3/GH4F3Tk5ODgkJodIT6VrR7ll6KESMQXIqELT79NNP3X8o7ItMJvv6669BDBEEgSJ67Iqz2+2CIJhMJvze1atXX7hwgX2Tmpqa2tpadKTQFBStBqS/2c0SzusDXWWEpHVOjT14OFwNUivl/lmt8M96XmTMnipj5ufnHzt2jEw863RxceiEEEwm048//uipcwiVVLTc4G4PHjzY3NwMj4KL7+Xl5evru2zZsvHx8cHBwe7ubplMVlNTY7fbibZNBtZoNAYFBel0OogQTfmhVKIXKday20I4J7YOe3/xWThp7LtRrgm1PzfHdefOnfX19eyKTVxwikhmsEnCnSNEhAjqmpeX19q1a2traz1rU8rKysbHx2/evPnNN99cvXoVTWncXfSN6DAhgWDLxGQpWBkklEpI7HX2oKAPXwzloI0bNx48eHARe8Ha2toNGzY4xxxTHhLEhjgnbL2CXoNSDP4rW4RxrmWRRbtn8+lBobKykg0EX3zxxXPnzhGzjqI30cl89dVXS0tLp/8pH3/88d69e2lDUEFBQX9/P9UDyQCx/S3yLux+WtwXzH7FxMS8/fbb7j+3oqJi6dKln3zySU1NzaFDh4xGI9giIBbi09vb29944w1sTz19+nRGRsbx48dBgkccw34BVrXkn5U/zB1HEgBZGTzCxO10VRql9+eYliFODrlGWklIXhMfjXV6OTk5HhG0BDmWCv4knSMyIDBKOP/I1x0Ox5o1a/7444/g4OA333zznloHzsDeDIyx37lzx9fXV6lU2mw2WvhH7F+lUrlkyZIbN25A8fWrr75iY01aWqlWq5OSkpYsWcJNiglM+bnsnkjn8MVZKo9tFrLtD5GmLgXKwcHBubm508/OQ0ND//rrL3BtSAcADjUiIiI2NjYrK2s6l9elIwRpm2qyCQkJEA73CPbs2VNeXk4BFEtPotITm7bTN6HghfVMcwqq3YmuNaphdL/ZlsOCdoF0KGmXGOpXriJEcl2itA8PmGgJO0QjaakNG1wfPXqUXkZV0yeeeKK1tVUmk0VHR7/wwgtFRUUP9uIcPnz49ddf1+v1vb29HMcFBQWtW7dubGxsdHTUz8/Py8uro6NDRCPEUcECNqQORUVFGNy+Z1JIAfvLL788MDCAoS5RBE3WhA0EaccsdqKOjo5i62lFRcU9P/f48eNmsxmiIWfOnAHNHUPTSqXSy8vLZDKR+9m+fbtMJoMuDFj1ZDFElpH1W2Q9kdqSlyKfgal8V4aYNOcwu0ZhMXWqqG9EFWw2O8SnPPLIIzPbpuQKubm5V65cuX79OgqD2Mbu5+eH7e3c5IYy9n/BDPvo6KiPj09aWtr58+en/3Hbtm2Dvqu3tzcGOaBuSIYUGzw4jhsaGkLvc3x8HOOPtDWP5/k7d+7ExMRERkaigYd4i/bouqpVTGnlqExNGnVw0iTMxt5lPAtkbfAN5XL5dGSSnJGcnFxfX0+yR/gJWDqGq5GUlPTzzz/fnyOEjyWTNDExkZKSUl1dPX1VIfcwGAy3b9/Gmk1MUIoyXEr+UlJSwMN25U1ra2vBgxKFYDDinvUNFMhgxMoNf2Ghg1JAnU7X398PH+/KwdPhpm4Z/SMVTPB3YGBgSEgIK7FttVo1Go3IreL1uLwUKrEkbz8/v+jo6E2bNmm12vnUnoDlIpq4t7d3UlKSIAg6nQ79f3x5bNuorq6GLhpOMq6Mv78/aHgUXpSVlbmS0DSbzRUVFTDxmZmZ5C1QLKE4msoVuNQk2klbk3Al7969GxgYeM/qKMdxW7ZsOXPmDApNNTU1cG+0+KKyshIUBoVCodfrU1NTqVGEBUbYtSQqnYkKpGxqSDqWVO3E9ye5L+fAC5+SkJAAiZm+vr6SkpJbt265OZ9shEqhQ2Bg4JxKealUKlwTbHfCTYe7AsGEVl+xoeSaNWuGhoYmJibeeecdN6lMfn6+1WplI04cAFD64WJJ4lWj0UCuhXrJNOG+efNmWEssgMQ9chP4imhTrG0kdVb8QBKPBSmGqqDySXAcp1arg4KCUlJSPLVxAo8YFU5IlRc3AhtUpuUIoQqBi+vj4zMyMrJ06dK///7bU0HTsWPHwJhn62O02FMmk8XHx0dGRt6XjkBeXl5nZ2dfXx/UGqk74sHSKOKLP//801l1nnjA+CEPeX9rmt0pSC7Z7fZVq1b19PQEBQUNDg66Kk189NFHHplyPXv27NatW2EdKM6YMuDATYGhmZiYeOaZZ3bt2rVz506PX43h4eGCgoILFy5YLBbWCvj5+TkcDjjjgYEBnU7ncDhg76gsr9Vqe3p6mpqa8PiINvrS+UcgrNFotm/fzjYUi4uL9+/fjydxz549GDqmHiF1WcgekTFlVR8pT1IoFCLqgSskJSX98ssvYAxWVlYaDAabzcbzvFwub29vLywstNls+CHPPfccpqFHRkZ0Oh27WcI5+SPmIZVA8cWwomTfvn2zP0J5eXlDQ0MwXOCRItlyblPhe/I8/+67787RgPaUx/vDDz+8fft2e3s7rhUbJiIlYuljeABhEiHlM2V1FBL21DPGgngSQuvq6mpqagJ9hrWNExMT2dnZcrncZrNB/IWKCsSCcWMfnNvSrKQiBTdyufzUqVNzelWnnFkwmUwNDQ2IfuhAUm3mySefFI3udHZ2ih2hn58fu3ua47gjR47McrlEVlbWl19+yQqZ44qnpaV9//33C9Rh5OXlNTY2gjuO59nVCPBCRGJiogcr4dNEWVkZnTS2Ms8ughetxWH9Ijep/THlm3/wwQeiSBZ/OByO1tbWoaGhsLCw0NBQq9Xa0dHR3d2NdUh2ux2sSJVKBatBn7V161ZYLhq/8/HxsdlsWq0W5TuYJ61WS0tcly9fbrFYkCYi26axLZg/tVqNDR5RUVG//vqr1WpFDTArKwuTWGz4SJMAZIDwHdAD++mnnyIjIyMiIvr6+u4r3N6xY8epU6fwVvDusbGxGzdu7OjoABMVBtrb23vLli0IR1C/Bf2dZW+yhpLdRI+CrUql2rt3r2f9UF9f31tvvYWWrej6cP8mE6H6qlKp5n9ngMlkamxsTExM/OGHHyhKgIoKRUvcpOg5rUASpWgslxBen2VOsdQq1LTxKIEPpdfr169fjxVpJAKM2imUdNiU3blcxCoJi8qkFIrxPL979+4HslmQxapVq5qbm/F98PDiwmZmZhYXF7Nn71+OMCAgoL+/n5vUMSorK5ulvm1paekXX3xx+fJl9uYhXkPJSIKE6SA/P7+9vf3GjRs9PT1Yegd3QkpXgiCMjo5iqu+e9W0WZCPY6Ua2EKdWq6mcAvsSFRXl6+v7+OOPY+wJSxatVuuyZcsGBwdpz9TIyAjP86tXr57yIcIsM31/8q/cpPAKfWFUrnJzc1HhFLVj4Zk8XuIj9gcSLHhrYq7FxsY++uijgYGBPT09giCgHgtzwzo8NvKAThs6C+Hh4fek7czytCBtBXPEVaUHHEB/f/+Z9aU8iH379l26dKmhoQHqbjiQrNqZKKpgA0EkXjRDQkwFdk6XsvPHHnvMYDAYDAbymrR2GFwbEmBzpW3rzFKmuUy9Xu/ZtqunQON/CNoQc/A8z/qgfzlC/H7qzaxbt27lyroAUCwAAAQTSURBVJUYam5tbdVoNHq9HvNMohINLIhKpbLb7VCRR2ZZUlKCm0rNEjZAkyBhNkAZn+UguOltuK9+g7UBd0g0ExoUI3+5bds2+AYsZPf39+/v79dqtWBLQsgfzHXY/YmJCfdrgxISEhobG2kwn2MWD+GHwFPO//MSHx/f0tJCY+Y0DAD7uGvXruHhYXxDMp3QEaV9v8Tl4SYXVfI8P5/rdXJzcwcGBshMc06iM3TfMQA3HSbRnCI9Pf27774DrQP2kyVgi4bH4MNELXnnGgl7jAVByMjIQFsK3HvKEWG9h4eHwepCE3rKL8nzPI6ERqMpKiryiKrL/AAiR2yZFJclOztbrVaLHSFFf66kjGYAtVqNsZW0tLQ53aIi4T+L5OTk5uZmUNREbfwpc8QpDzZ75lnjolAogoODw8LCgoODSdzZeSSAFrujnKVSqe7L9JvN5nPnznV3d5Mvx+MaHBzsigkyp0hNTb148SI6Rqg0wucZDIbi4mKSUBHVx2ici1hOkZGRc5r/ucfu3buhnorSMatUhwYS8tTh4WFfX9+TJ08+nGe7qanJ29vbYDCAvQhXZLVae3t7QdkVyfGwpzckJGT58uUrVqyY8s3pPFNKQ3u4qNmMqI7n+dnL+D1wEBWI2iiIccWOUPT37IcBwLiJi4ujAqkECR7H2bNnq6qqsAzd+eg6FyHoNTTPRH1+lmcvGtymBgnyQrwMjDi0CWFEQHwoKSnxSLx86dKlB95rcUZ5eXlTUxPosogVeJ6Pi4t7mMPcl156Cek17RWC21YoFOj1fv7554vmiWhra3vvvfcwTqBWq90PyFNBFb1b6movVqAxQfrp3qKpyYCAAHBPqVky+4wQsYbHJ/ElSGDR09NDoxeiOV/RVC/bMsEMnGg6GMRuMg20tYcW2cBHot2VmJg416b/IfSCyLQWXGknICAAhCOQU1BaRATD87wgCIvpiYiIiKiqqkJr2XlJIRsRUgUFMcGi94Icx0VHR7e0tKBbB6rRvzLCsLCw33//Hami1MaTsLCwY8cO6lFxTiJP9NiL2N6YS6NXUkYI8ieNZiPtk8lkHic6SnggyMvL4zgOSt9KpVKpVE5nyFLCYoLJZKqvr0e95/+O0GQytbS0gKvGTndKkLBQUF5e3tDQgBiOrXDCz6EXQpO8VAhVKBQKhUKn0z2chDcJEiTMA2TIE2ke7vnnn6+urpaui4QFira2tra2tosXL4JAj1OtVqslPydBggSXjpAVFM3MzIQYnQQJEiRIkLAo4SzuKB8bG8NSY5PJdPr0aekaSZAgQYKERQye50X/Ro4ZmoSEhMVEHZYgQYIECRKmCW+j0RgbG3tfItcSJEiQIEHCooFMIohKkCBBgoT/MrykSyBBggQJEv7L+B+uKQd5p9ct5wAAAABJRU5ErkJggg==
0.1.1.3 Experimente mit verzögerter Entscheidung (delayed-choice-Experimente)
0.1.1.3.1 ...mittels eines Mach–Zehnder-Interferometers [12]

Gegeben sei ein Mach–Zehnder-Interferometer (nach Ernst Mach und Ludwig Zehnder; [13, S. 275]) und eine Lichtquelle, die nur jeweils ein Photon pro Puls aussendet.

.cache/cad3f6cd03252a669b934bd274550c44.png
Size: 378x287
Scaled to: 378x287

Trifft ein Photon am ersten Strahlteiler ein, dominieren die Welleneigenschaften – wie beim Doppelspaltexperiment, nimmt es "beide Wege zugleich", genauer: Befindet es sich in einem Über­la­ge­rungs­zu­stand (Photon nimmt oberen Weg vs. Photon nimmt rechten Weg).

Trifft es am zweiten Strahlteiler ein, wird der Über­la­ge­rungs­zu­stand aufgehoben und das Photon wird entweder am Detektor AA oder am Detektor BB gemessen.

Soweit gibt es keine Interpretationsprobleme.

Betrachten wir nun ein leicht verändertes Szenario, in dem vor dem zweiten Strahlteiler in beiden Ästen jeweils ein Detektor platziert wird. Trifft in diesem veränderten Aufbau ein Photon am ersten Strahlteiler ein, dominieren die Teilcheneigenschaften (genauer: Ergibt es keinen Sinn, die Welleneigenschaften heranzuziehen) – das Photon nimmt entweder den oberen Ast und wird somit am Detektor A'A festgestellt, oder nimmt den rechten Ast und wird an B'B gemessen.

.cache/f23ae384f206052dc3fc0ac7173104c7.png
Size: 378x287
Scaled to: 378x287

Abgesehen vom Welle–Teilchen-Dualismus gibt es auch im ver­än­der­ten Versuchsschema keine Interpretationsprobleme.

Problematisch wird es nun, wenn wir das Szenerio erneut modifizieren: Sobald das Photon den ersten Strahlteiler passiert, aber noch bevor es die beiden vorgeschalteten Detektoren erreicht hat, entfernen wir A'A und B'B aus dem Versuchsaufbau (experimentell ist das durchaus möglich). Gemessen wird das Photon schlussendlich entweder an Detektor AA oder an Detektor BB.

Hat sich das Photon nun als Welle (Überlagerungszustand zwischen den beiden Ästen) oder als Teilchen verhalten?

Folgen wir unserem zweiten Versuch, muss sich das Photon wohl als Teilchen verhalten haben – schließlich befanden sich A'A und B'B zu dem Zeitpunkt, als das Photon den ersten Strahlteiler passiert hat, noch im Versuchsaufbau.

Folgen wir allerdings dem ersten Versuch, so muss sich das Photon in einem Überlagerungszustand beider Äste befunden haben – schließlich wurden die Detektoren A'A und B'B entfernt und somit nicht in einem der Äste gemessen und aufgehalten. Diesen Konflikt [14] nennt man Wheeler's delayed choice experiment, nach John Wheeler, der es 1983 als Gedankenexperiment vorschlug.

Es gibt im Rahmen der konventionellen Quantenmechanik nun zwei Möglichkeiten, dieses Problem zu lösen [15]. Man könnte vermuten, dass das Photon zu dem Zeitpunkt, als es den ersten Strahlteiler passierte, schon "gewusst" hat, dass die beiden vorgeschalteten Detektoren entfernt werden würden, und somit in den Über­la­ge­rungs­zu­stand überging.

Äußerst problematisch bei dieser Interpretation ist, dass das allgemein zugrundegesetztes Axiom der Kausalität verletzt ist: Ein Ereignis aus der Zukunft – die Entfernung der beiden Strahlteiler – würde ein Ereignis aus der Vergangenheit – das Eintreffen des Photons am ersten Strahlteiler – beeinflussen!1

Alternativ – und das ist die bevorzugte Interpretation – könnte man das Problem ignorieren und stattdessen die Fragestellung Welchen Weg hat das Photon genommen? als nicht sinnvoll verwerfen. (Ähnlich zu Wo ist mein Geld, wenn ich es von Bank zu einer anderen überweise, es bei der Zielbank noch nicht eingetroffen, am Quellkonto jedoch schon abgebucht ist? oder Was passiert mit Elementarteilchen bei 10^{10^{10}} \,^\circ\mathrm{C}?101010 C?)

0.1.1.3.2 ...mittels Gravitationslinsen [17]

Ein drastischeres Beispiel soll die Konsequenzen der zuerst aufgeführten Interpretation – der Verletzung der Kausalität – unterstreichen.

Ein weit entfernter Stern sendet ein Photon aus. Auf seinem Weg zur Erde passiert es eine Gravitationslinse – typischerweise einen Sternenhaufen, der durch seine große Gravitation das Licht krümmt. Ähnlich wie beim Doppelspalt gibt es Fälle, bei denen es mehrere mögliche Wege gibt; für eine genauere Beschreibung siehe [18].

Je nach Wahl der Detektoranordnung können wir damit Teilchen- bzw. Welleneigenschaften des Photons erzwingen.

Salopp ausgedrückt, können wir heute, in der Gegenwart, entscheiden, ob ein Photon, das vor Millionen von Jahren ausgesendet wurde, sich die ganze Zeit über wie eine Welle oder wie ein Teilchen verhielt!

0.1.2 Auflösung der Konflikte unter der Interpretation nach Bohm

Die BOHMsche Mechanik ist eine deterministische Interpretation der Quantenmechanik; der in der konventionellen Interpretation fundamentale Vorgang des Messens verliert in der BOHMschen Mechanik an Bedeutung. Die BOHMsche Mechanik reproduziert alle Vorhersagen der konventionellen Quantenmechanik [3, 4]; somit gestattet sie eine alternative, möglicherweise angenehmere Interpretation, ohne aber die Sicherheit der erprobten Quantenmechanik zu verlassen.

base64
iVBORw0KGgoAAAANSUhEUgAAAOkAAAFYCAAAAACTvYRbAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAO/3pUWHRSYXcgcHJvZmlsZSB0eXBlIGlwdGMAAHjanXlLzjCpjuU8VnGX4LfxcvyUalaD3r968OWf+WfeqttSg0KBAw6YAw4MfP/13/+nv3/961//4hfw8ROSkAHegT8DAoDJbwL+U/4LdwwA8P2R+eAf4c+CAgl/b+HPPHL8M+MDgPxV4LdAv7Uov9VDAKx/VUq/emHf7639BvbfPjcAwP0/wve7ALzvH916/+jVXwn6Q9E/3t8/gPEnbrX/XoPa3+hEEACAR784WgEAfACAd/Pu9qdUikmIAQACAQLI+3kA7m4ByMUsrE0J3D8nCxcXU1sCIw8CQRM7I1MCBXt2LnbO9uwc8hGw0DIA3O0CwAp+vyAAJn8SgndTAE8AoOHBgwcBDxoCAhoRChIKERUOGhruQ8WHjIyKjIwPEfqv+HfpP8Xv3z4hDBQUDCwMAiwsAgosLCzKrxQsyu/NfIj/vzr8m0Z3DQCI8H6GVg0YkAgACBEQGBHwbgYABADsrgWQ749poICAH+Af8R+m9sewCygYODwISKg/DFj/RP2J/P42cQn4n1D8NfkQGAgECBQcDB4oMDTzD/JDBAYhRGIEFVQ0RCZyfMgEhhKYWChETIKq1GjEzOL0aFAYnDToUz5YPDR2ZkVLKnpMJhKsYiLalOzChj6kumR6VPykedh1+ViM/AtJeVoS2jKycpJa2jq6eqpm5vYsLK2sbWztjF1c3dz9eXh6efs3vn6OPwzRHwTLb1w5GCjrDxOIwISMSCA/NDgSIYN+TA8DUX7x0Kg0eMBMYrTo9ChIWBnV2JnlkBTsFwngZKxN39APG8noJqKqbC6mS//OxH+i4fvfeCD/n5i4mwSABv6rq4gAfB/ASY230ngrp1FQWPBSlvkpNW3UWyfnPFse4uNojyNj8YpOD4/P3zx9Y6amk5OMG7ZbNB7PSuBOz/JwL7dOg+qyeRQ0XlUbGJcwfYEGk+t4fRWjt+bXmJJe2HWH6UOZBczomNPPgkx7eaP9eflMlX8kfYdxqs+tOEXX+k0DVhaw3Z7t07UeU9/oh2wlHda+Ftd3q17xSZbraJVrVLISDmjD2x0XkvRhnVsGHWI7WdgwKCgfPw+QsFaZ++RO4kStFm7MNi5U1a7SESb3ZGITI7s6Jidv3K4w7wBWJgo9dD8+5XxgRWtFk5HghUNbgHgiygbOOBuldV1qjkViMurMOL38zoG/zeHcuK7rnTuAi0NS3tZ8gyyhfT66l4OyNjsbHCLs+YqezZuR+E4xwWt6h61o7HbtzotPXiWEhGQwBelakKTfDZy04lOWgaBY8Pva6lSLXmPrBms8Wwt2XRemzlc+lHel7nUHsCXVg1EpOK7bHE/na7833pZ6Y5dels63E4EKxg95G4buJNMZ6+pqZk8HjX3U9l1R5WfbZvomDV8HnrhZ8B2A+EZKeldWZrs9TCnBXYKt6wgdcJnLmtHPSd68ZViAF6AJeCv15NbyRPIST8b48RtkbGQytDfUSXlWmJhI+vGaj/K17imb0na2kk2JVw+BIKZcud06rRUyHTkwUZNG2SDhaH1PvN4V7Jr3eJXnayJ+2unjeln8biTfTaICTFcCzi6m52vgfXE93+xcj5Ok902MMmlF6CmnwJWq3ew88GcxuWZvp4pn9nSbh52p+r6NexelN9DPwEFXjJNrSqBjmrB0D7CSXwSM776wcssN37wD0Ff8Ja8oahRMDBfJQ1fF6+HsN+GF6fv8mu5SJeT8KMgn3W0uSILi7hs8GekgQVJuv/FuMJ3R2lxTtM3pQdUnzsVTAXMHwDia0239UuAjaHS4FHIFU6gtXKycYmRm57LFVz5vkGn92TN9jbehOaeYrWs1nxTXFiqHrRurhr7TgluvyYPFi4Rx9cGJ61fUEnLZl6ENb1GaI75D7fDRK88wv9HzU/Rwdb96TOVAxIPrznIVs1njzOLjswlM09Nf8oaCuQMyDQ143boPSsjl06cJ7njb+mbcCZfTV8DeI3xL7f4Q+BONOPXaghXzRc6lzW0ah2DlpwGwr08xuDb8DiBlTrNuhH3NZft7gJUayo+NC3H5Rv1JyMVbONXCKMdZqaznEOABiydyR9o5LnFln6tt3sP35Iop10YEgEStuXZ552Yyq8aYIy9jlxaEq/AFk09WxX2Hjg/f4yyfdKJrN1NVqahXT6uxHyzxcNn6CO/zfTVytjd3AKnn36UF6YnPXOrMpBl3kBxmShDe3dBJKUGCdDooKQtn73hRpLY091fRi/MesDXX9WnfuywfijI7m/GH/drZkZrkbiHuAB5Rxek4bbd+LUlrTnMKQRwPCyqc7gBUj+lKx05v05Y2zzji2ZBp6NZusfm6fnlvavcSgmKnjB09vShyoqxgJsdexOPOtcvnQtWt86NRXx5h+jcceGJ6ehv23I/mTVHeSZZsXvY96sTcrorsXHbOpQUA7J2bdZ5vrrI1cJS3aNWYI0Yc8C0Pv/fKXj2Ec9jz0ap9XOdWd/CC4i3c6Fc1ZTdp12onUy3PVgwnx+fJcenT0NIqvKsImLLynEsmeelDtcOfd/lFEyZpihfuTm2M7fRcn91NqVJf42WfrBT7OKw9rIr3ILfYPs0reQgDvkt7fsUXtD/za61yllxuYx55ztTzLYTNw6cwA8Kvyr+ZuvMItTsA0TuADdXc4EGH7X6XpeHDmlo6bBOGzqd+aT/uTdq3eDFXd12aHvPqTcxbTzep6Mkcq1fCIBVriTXdOe0nP75Abmntl2vIGQ1p7UOMiw9LhjuM+YVzHccZyXM1JKUnQcp3wycR8gj1fD58o1hH1qYo5VHUDlZ+vS60xvljEE0bJXHCqQVrs8tA6486xd9XdcM65Re8cQfQRpLWN64GbmwUtAjaZxzBGVaP3bnsdq/UEXX4ixp20N3UXTeo3i7KedZTwBPObrfB5mtT1+vXmnljvoVmOiOF9+Uz5TdVOmWNCHMyw1oTWnzsVjx34zpq7BuXvtdO4+/BPAKRxx2f3WmQVAPrvRITqMhN6pNpA961neGZE1zQ1z+Lo93UOGeZLUfLlwXAjYazx2D1Hl7s2tXM7iWMFnn6Ss3iGFOVwQ35eHvj6FXo2HdygE/37E3vyKY8vg6zm9mRkKMbZNB7JytYbIHGuBTbmsvb746/2KpIeUiTLRoGZjGvHqD6zWlWWDl2MWtSOTgDv1rxV7135qeE9oWRq/PTESuf12gzhXuZQVI+CS/nzO7c63RCU9LzWjbetDhH6LxPTzjamnWCzqGwzdqLxvHWtu9EL+IWRheKHHgLTqb7YfXyxO3bb96P2ZE1bjuNwg6Jgz/uJwGdSDL0h69+I+uecQq9vQUzUc67n1vtepDxZVTtuzOEAisv7S25IXtvXNbjLil2OB1hhncPb1bNcb7CtwQQBcG7wcDHSlIxY/hEpUkeCQI2X43LDTAVMXsi1KXH3Ih/4DYY8YYAK94gPg/VvgN4foKxT6Pu4g5A+IaoYQul3rIEwYPFow8nMnxUNo1TTietS9poBflN6AK+49IwvzHbCfNT9pR0wzqdo8Mvd8IHLAsr+XHbONwWqxT51sNuwNfTW9YEdphgvVH45mZ18LQuv6w3I8CRZ17PHpzjjTgtc+aii+zDwDO1OZ8bsQzXdGzGpOS0bv+KprDXPKv8om9g4mc3k3xZNVjszCQTxh1TWXNIk+vHfmE7yfu+hBubk4Pb8gWjkZ6Q8QdjxReiZ9pbfNnnHK54yp7lops8OKUnX8zpTRBW8DtHsLWauUU7Z5+yyyt3dS+euIhLvrVw5lumB3Z6Gx8aEPDMO4Pg6yitIr9eJ3niVmUyyQKNtARIrtd7m1nzdLzIUQ8/nacPE+SR6fPu0vYryTSurgd01v2es7iv317mW2HfLuvgTQWTwm/mlE900ocl6Kz7cpRFH4489BKgJuiCPvfb9X13APKClnmUqCY/eARHxIJTrSQhdwB3oyt7tLD2wDfsDYFgkA/fdo6mgNcNGWCBfCwQ2+BDdwBJRTT2fN4aPwGaSa2f5XhCk4djwiaT5rwkplTT1T9u8Tq/U61b5GsiCfMRenTNBS8AGOrFGwmAnbuUwiN7sAWyORX54TDOgi2MDuqD2lcgyNsuZ4ADPrWr70ydX/ekIIwxNcx7vHCXut9IyCW56Bb7+o1OY8XD2cRo7e20OFfabE+jM+bj6TuAwTq/e6xfw43DBqpL9rajPuZQeWXDTDgGQ11YdwD49rzCJU6huEcjQoclvhtcHd8agR8vPmvKym8rhOsOAFgfnx5MXDlGvS4Zwm5EAJYg4i/c9py1g7DiFByKeeSmeGjaurO53mDcE3lA01qY1DB574a89Ew//Tk4GVHJ83u9hWHmLteRbzenXo8X3gF0+KQf+2Xm83sFvW5885m6YfAlb+LbM3Gbk9tC5bru04mb0qxbpg2szXkAr81hufEqMuiLvHfGT6H9jaBt9tGtbF2HKmdcVr15+1C5xPhBgImvA17NRWe7fOZYnj5u4JZild0YuJJu6pz2Fg0ACieB5np++S8B3c+iuUCqPgci6be87/hOlFQmBfr5YG4eTAz5/jooGFtleIUXulEtpY298HGhs9qoLGhhIidOEwuIvXl4o5dQQOGQR/S8G2ABm9+DvcE7ANRv4EE7CyBIxE5vlXaQkrHU5FqJLejTxMGMez8bMIPS2Rh8YYwDn8jYvsf9ziqmauoiK6EF5vSV1ixbvPF3Sat9NuRp3OjABVfgPvjNibQPSchcU+1uXISuqpPeC2PswaXhrAi8mMr0mpfh41BTdjr1wXtDmY1TS+5TU8dl+lo0p23Sql4w+IlpMYLBvB6+kJ4t5mylze9YqoPWZgfO+J2/G6yom5gXFHWntHviW3YS3i0rz+ROJ+/nqPW+rbwfuw5jWVMXHD/1IH4jFYM3eZYLnKxNb0uH88hANfztkffTLzt05Mahi8PHj2Pbuygd2628QXXbuW5n6CaD8Pnoq+ZLVyOD0W+H+CZLbL1MH/bATjV37+O6quPIwtrMetb9UuSxVjcgk/lbtNb6dPdhvZ3rZeyHF3XrdxQk1R2ZnPHMBgvHbaZuaqqUxN04eCRewycbIe5c1fbzY6vk898Xpvjt1tR+u/Hy3+5c8QME+P4v3KJlGnuAqikAAAAJdnBBZwAAAOkAAAFYAFc5SigAAIAASURBVHjarP3XkmxZliCGLbH3PsplqKtvyqru6kaxp0dgBjAAHJjR+EDjI834wt8giQG+g7/ABz7wgUYBkEaAmJ4BpjHdjerp0qkzrw7l6qi991qLDx5x9c2bWY19Lc3Dwz1OnnWW1phhf65fARARAeXqnT5/RUR88f762NU/d/VeXv3o+cmAgIDw+tHnX37+3sDArt+//hf82vf59ftEQAR84zrsNlc/+avXCC/fHzyHQPcXwDch3V/x+vfF1Wu6+n3x4k5eAfRNmN/6gN7y6fe/x+e/21/n+vN0DQikq1cyQwUzfu33dnWjb1z5ClR67fsIhoYvaEVfwym+9mov37r9cEj1zesZgALZNRqu/s65F7gEAIBwhQt6jRrtHUjA/bOza5oYr2nE0NDepIEfgCN7HfC3fZ/eiVMzMLuC+GXqza89k3FPZZhe4wOyd0G6hyi9dgdpz77PqR9ewym9ydcvM/57z9uo9urP99z52nXMvc75r1OZvASpgb3BX3h1SXwNAraXHugPuGN8lXgN3wMRvIP67YoqXr9Ofk69+QX14st3nF8w5DVVvM4nr+DOXoM0v4L+N+/U3gr6ux8RvuMJvcAMviSWXtwvOn3j/2hm9kLCPKdeMHj5969rmfwaToc9oEavSDSEH3B+EPW+G6fwAlZ78bl3b+NwxDefuakpEJK+VfbhCyoWBQJVQPSEIr25EoYIzgob67Az50ANMXszNnUGrBHAvMYmD7WWW59QywjEbVmtwQGAoffjOyB7nc/5+nZfkKKpGRBe/OCnZ2/Vgvoadh0AIZgKWhZj1qSgUDYX1rhdLjAZ+oA5B0oSTFxoXTAYiuwtKNmwbQoM65K7MOmSG+ttcCZmyq9h5IfKdDQwMwN0PxxOfIXu33U6RDA10BC8xYytgvW7zMU5Lgs3nVRZNMkwHDQB3W4tk8epcPy4muZtTMX5xn/c4d3z6e1tmjtCaZOzbO5ldv9xR68pzuEP/AshIFB4/mzfdRyCGQK6/uxy02cr2t40ZnSPt1VZ3rh1Qb6sKk/fzmhon5zq9Nmaq6Ov/M+//lKtebBb/NlvLv79Vf2PH/Y3Tm7cLjxT7rUKZPD3OASgDv4nPqWpqJnmPrkG1rvTL7/Y+qoMt5ROn6yX93+FXFST2kuZL05XVou/pNm/d0r/8PzLO5UP5WXsv7273k2Hs2/G5n/2859oRgBJ733C7xVaPxintCcEet/3OjNEjQk2lwPycvbX2wjWnsXVIgxpffqQcxRkQh9CXOXK2o+2RahvQEHDDBLG2H+ydYvLx2VZjX73N7/+k2rWFATuD8UpXbHsD+dTfIdEeoMvFAnTevOL1LfdmHW1SxW33S6vva9vbXCHPgCzW3ezcmbYNcvTZUPWX8qgKw6wvPyzR+tb5cOfSdodTD3+rji6PQVXuT8Y0r3V9MMhJQUFAnqfzGti7HePv3z8S7Kxp0njYHcaI7h1AqwMZ21VSD9wOFgJliXJokrTZdjturJZ6NGHp3Z6/3dffzJ7vFuGvj/NeLAT3uUwv/X3IF0DM3xOFUZIoC+k+esQZQRCfOuVDAwgVknckBs6++xy/ftHhZPYXnZ+6lISc0QhKYH3u8Pu/pOLw23bhK759HOa+dNZpcvPH05vLAZJyy9uD8MsnYeDv/mT238k7dG/zScPLgt/98FZdW/ZpsL0B0O413pyZUB495K38718iK+qqTdOjSHBVLa/+fqrzArx6yJk8rYLErMgADASWrSmFMTMSZp8Upcff3fUFd209fbrP7OHoOvH/HjSLGTwh7cn54uT2z/5m52ly4sHNy/56R/f4hj0D8StvCSR3seH+G7XDQAgO2jp8nerVcqr754iMiH7OGQVNTJDJiSQ7Hx2RQ7jsAhH7P/oyWGk9exZqM+r279n/u2D5fjV/TnqQXepZ2nzqPynlxcXfLz5d1h80/2HB1lee/I/HFL+z3F/yEANkV62H18H9PuunkXj+slnv3er08dffdf5Q45dVMCsCkgISIgcHFaFsWo95lCctN0f/+aou4BIhQt0/Ph8eSHHizNOTbzB2UvyS1/cvjfTaHIG20t/oxnoR0L63Mr9EbL3+7FO1g7dg+/sf3x4lkS9rLo+I4dCkAwQTAmNK059YeVEnZN0vOn4NJ5Jd69tCmt+99H91dDkzc++e9DMe6wd6pDu3H48hI+mv7T2aNiuqrt/GuQPxCm5l3BI8D3mJF55fO+EdFhtLr/42v9iC4Wqxm4URhNBRAAzEweA3sFlIE8k6IvigsMTftboNC+4/Wj9b2/euzz5V90tvXRMl3hw9rR49ujjf775Tfrk04vV8Ve9PPjV0Un7h8pg/s9e/IyIBu/ygK8jNO+C1M4fPfz66+8eoZLtomfxReEJTQAJAUA8gws6tGiWY0x6lM9nqnLphjIt5udH7vM4HW49iZIzT7qLxQROg57L4azpn42Lw1UfLcfmpr5GlT+UeoH/j9d3ikhooO+Oz1wpo3dB+vjhgwdtOof1SK6knThn4BjGffTUJLCxS7uEoDmOGm+fr046hpXLbebb549v03eoB5882VROfFq16f52g53oORe5jcvPCxyGYXKv+IMhfS6REMwA6eotvqBqRCIihf0Pz20h259EZEi5/wZ/+2V1+bt+w4FM1DODjJ14LQY3TsdY2jhNu8mQkD3b2JuzKvkS2xv2OEN77zP9pyfPutUH7sEYJNlSvzq7c/+j+e8Ws/ZZOeueTD6ru7OGj+4kqEK2kO1VCttzCYAB0d7JuJYfV/fL/+LtuHtvXPW5B0+mgDI++e4iDI+3IAiqhhzQhOrFnGlEKYTLIrFIyHIV0UrzlJ1BptxX1bqtdvH49u2D6v4H0mk/yLNFv1tf7MqPv15ttkORv7kRWMY0m991BWZgJ/hqEANfAxlfsyDgDUhfh2QfT7R3fu5AFXHs8rlc/NWX4+DQVI2YzYwnDaPE4LzYrBkFEqlJViAAW+w6SsolU8m7Xqe/+SbfvxP7u8384xtVeekXc9c/jrdlk/IwoS9pkYYebuhB3eSRnOme9N7AECIA2MtxnKv4zw/QMob2PTaDgSFZ7J70w+9/6RdJCADANAMB4Nj66CqvQ+LSjQ4GAMvAqFa72Hqkqiq6bfho9eDenfZv1n+2qD63xYLrg/4sPn7iND3xy0X89ouffvo7CzlN+cnfualmZ5G+x755GcV2HS18A6dvWgxvl7kv5VGQZLc5ffLgt+3cICERAhihM61ojeJdCZpDMSZWSaxGBJJD2WppTMKVB09xOP4AVtt2Vw5wdjpctje687Y+0G+pZ6c2PXnaznRTY98uTzw4TPienMAb553U+0J24fdGLwURNHfd4u9+e+bogo0ZAQA8+yyzqq98GFm9ZsqiCKMzJAQDo1wWxrF4NB6UMWPI69NnT548OXts6unB47NYuow2VuuVP2pkbJ75MhNPz5bHNQKyvpbWeCnebK/w79UjIQfvwSki2Pfau2BZkvF3v3qS+qqqBgIzIMrBSybWOeGjRAWOW9DsQ5cRLbN3qdMim+vc5drNg4sWcaZnfZerbeWTg6dH/Ox0LA/HueVTN/WL5dODMk6mD58+CEGLRvdm+BtaD0ENgPD1ePD7/VN8hx3x4klozhn8v/pyrk9D2NRoqsC8dcGiDetPSjxFs5T7oNF7UgID4gIHcQOF+PnBzfVnN39+9DW7sna9XuKTqKvGTy52eLc/b12h5+uDOfkP/7u8SMUol0/mlUzqHxqDwCss4ZtaZm+8PbcgVNXsVe1jpmbqWcyRFr1hzM/++v8D2y6YcVJTYF8Ies45HMjH8HVYPi4icyihN8acuZS1K9KOnR2W43hwtPny9HiwAqK/0dy4tyimi+ObQDpMZn0Op7z46uGRTvRxOTkviouT/rf/5jO8mXyB3ovDvW6/1g9mgHj1Zu+5mBoS61uody+63xtPFVJRRy3rGIrH/1VMWZEQGUFUM0IaA/m6ePbg8PZ52+QZgBl4N3oXdUTCZkm0udgcYjyncj51cHmqWCnrxVjePKCzZy16ndUPj+9vrP/8CR8sbkwnLt1f8e+/3sIX9U+bHSgU6T0Bf7t2TtxbCRLxeZbxXfxLCp4NKIh3uy9/dTkksSsTCgnQwjgiqJXz7vadR8NsCCIK7HhEcikjrGA+a8oirhyPRjIeGg4ahs4lbPWpS3diw5tHchOe3Cvqf28H45NNLG9uPvPEo9yMj//23sJcHnz+gTmQt/KpwQ9IjDgFwJwxkT37q//+92sRBQDbax1i8iKiEWG5G7nY5ELMzEAJRIFNNV22m+VkyYWmMZpzD6cVjnm9vWmLj6u+TQ/9omiG1H70q6+LmwcfXFTDOvVQbGUcpfxk+eybX0sdVHtF+l5Qn+MU12+zBeztmZ2XlDE4FVUDnJz/1f/zrzqKIYsRgpEBEiEWXS6so9kJst891VkENMlZMzGbCBQxk68CYsRCRm7KgwUbWj59tubKuXAepVoWOf3HF9+Md4+f/fpPmtRtDk6+4vi/LM/c5ReT6c/+4S1SHJCJvkePPs89vE2fmpnZ+3yFDGDFJMDm//1//ouLqtrbSmhaIABYTmhGTpINYWPzYSejoQuhKAYuAmZ0kBHi2K/7nRY0tMPTs9PzdRfzR7cX8Ww1jq7UdtfT7Dcn8aKoaUjBV5frZXnnSdE9uWiRv7ooPLApERF+jw23txnfHgVF/B6L/jmuVTDAl7/8V//qm+lEN2NjQHRNEGBqIVMBBrsym9S2izlLUXgewBdqiaIEBlfKZMy9r2uEvB5nctH/7Y2TEz7rokzYj104+O2Xi2KX+aTvtodlL3XOWODlLm/WT8tJUdQtIqG9PyeNb5W9iIDxPX8Z0mh8/v/4vzyVE1q5eZFsb2VENXII4MqkDpOOmwLHya1HZyJ9jKWfDcCFaZ7GAOYK2TnMYWK7eZeqg/JiVX/37cl8Wdo49PPF6RP7+TfHxxfop7faM19KDvNbJ9g9eJbSrPvucpfN7V1Me7fVfuXOvMXuNVNVeZtAftl5QJPU/8X/6cIHgNKLZlUgNKsIkJ1zGckS2OCHCLPh2Z2lj5k8iXG26A4zJmkOQxI2JRzXm0w+Pjujw3VddJuE0hP2Y1X1s3V3sG7vn8/undqdzXB4sNiMl18OjhGoPJz2R1usci6KK/flORVf+8985Xf/+AzU9cPLqJ//y3/XN/kK+CAChkyqIskxBQbNSE1mTGvZPTqYFm2rvjbOPoL3vuLC0q5fJnVZbNIKgQ3to0XPRW7DfIvEOqL5O21xd7NJl4c3hqo5bdwqM82sOu8h/vLezeK7PC/Aw0hXOfh3iuE/DFIEgJwv/9svarnCM7p90I0ATDUjO1ViMT+gDmlW69dVIYDExaSoux12HTus5zf6uO4BAKmQbOSctQQ4P+hWtaqliHR6shpvWj+59J98UxxvZtvt/HKYDzIZXfz263//xuOyMGNEe18FyR8CKYIhFGeXRticNVdyTwHQBKxw3idzTgasy5jy0vIuxtDKrgulh2G75UaLm8ffxa7lmRuhvkgEKVWaxZDIZOzz8UHVDcnIIz8q/WlTdDcfpwmtwn06h+XXmxIvgGf+/N/9JCCDAJqL76uPeL9/+trRK0WEm/Xwu9MgDsDMAKMhgIk6Ysa9aPIegByGir0fLUbzrPHES1ptoTvxeRDU2EwaRO+wU3RsY8fCPq7xECEpMgqWt57tmvU0+Qhn7f2wo/nnyruoWM19m1w5Jgykdl1Zwu/SFT8aUtu7cdZm1t88sOLavk6AoKomqgYmwmYi5sOo4IBK7J0nyRg2ESaOGytdERwAjtXMpciNWBZAlYECSexXBx6TWBomePN8t4jN0cjHq/7jaZT4YNGOs0OAxRLBfQiCFcsVRPhuSH809RKYgZrlXff40qGA2VXYEFSNKGVmBjRgy8AWK8tjK2Oclz73Vk42udNuSOpdWO42A4PMm9QOtOh3oxBXRn3vG908OKyHkQPo8NTjzvVLOwrFbJx0vtXmm1hqa3XQ+O3qkFOn13729zjSPxqnBGZmCuXnv/nLfwOhd7ZX24ygAs6bKZIjNFAoyryOmiQqRzFQ47LcKjWWeFhtRpAhY3EZ58XlZdokZDTiHGlSipani9nYgkPCbha2bsTyw7PTpqWvD9PT5Ve9nK3quoVi55sJmFG4qtZD+tHUy7Q/hi80qYEZYsccWcKv/+LfjL7daytTNTVkBuOkjgUK8ECwSccWsk54oNriOAy7y1RP4+Caw2Zo0VtM22Zcze7Kw33lkCmiqSEqd7mkDE5LnxdjOjx89vMvnhy1d86Kr5cPY03yk59MTf2cPrt3eAqhNtXn9t3LXieqZjHDd8ved+E2F56MA/zlX/56VTUpvVoBCZCZbFASyiPUNdiCQy4ykQbOQ6aQ+6EfYUt/NEuOJ8U41i614m6sQVSwarqcDQDA64DkJWs2i4nTN/KrR7brN+uJ48XE13PZPXw8HlZxsRuLbpqvVMLbJCgBgOI7cWrX5zUqkFJiN8Qn/+0vn6nPLdO1qYz7oHIXSodMKkTFrJJOUoIQyklM/SCgyechE1vyAEkcIxQWh1Fr896ZkHO4l6NOk3pM2RAsdFC5yWZXD328KDeXQ25RtoMhhLBZ5unBAOwRAV5y4OwV6/b7Kq/ebUiaGmy/bCMHSjTtXjwGBABsfB6h4GSI0vnUZjQaGXmaxmzEZANWrFpe1sGAgx0UNkvkQhJ0ue27GkwBEIxy9KAIghAT5WX9ndcLXpXb9Wnj1125HXncbYc+tM2t2QUWgcTgeaDsBWau6qjoB0P6nDCSlYX2ZxUMQ4HSvUK8CJCRCs+7iyOxflM6VkONQJbrqbQjeGFfSmtVjaH0lgWxmihCnipVRTy7uCqjxxi8jAAOBCwJ6Hb13cl4Mbu4c/bsosA4Hq533pFzw2P/xU8+eNgIkACS/Hgb6V35GRZ1cff48y++6xGBSF6qr0cARMOq8VWVqWgiopXqYFBKuyxFhf1uHupaCqzrjhd+2+ZWC0+Fbu6hQoVBNbqoKirgLRERZLMsoOMqpm3HFi56F7TZcgmFz6mdRHv2xZ0QMyAqvonT53VU79Wnb8aPSFePv/7mi12J+Lzi91oaIJx0/WacH336VR/KlOMwWiiYfGLgUE7b1jWzkkl15KoGpbqYLhwdFqthii16aP3Ydf2gQooI5LJXtZg0hzy1iLsjy+HopD+8fJYS+MZkzJ1/3M6/vYNvjzw8r6N6L07fhNxT7hIVbaSmBBF4Vfh2EiA9G+Pdb9ZbQUY2xyYYm8LrGqrlbl5DKPvL5KeTnqaLDbOqm/OXNyaFFLYphi2jjMqKgJ56J4QgIru+HjJ3i9OztNRxmpd9m9l23ajrwzEuHvyDd8je6zoqc4qI8FI05dqaer0y+fkZnbPq108m5UXCPllQNTAACZgxYFpVNJpvN0eDWkEZEq7UuAzb6CU7lyauRzvfFZMj1xY/m8+/3tC9YNL8s8vJybPh2A+xYl/gaGTo1GpxEIi1k15r2U2enuW6GXcPn9WlttllsxL42a9/ni9uxFybXlfgwz4pooaADACK781WvH5KUHTtqgVNOZthviKO4AxM0TiDEaisqXCoRsE7GUQyAgbPDk6QNTf3ecJjczjjcO+CFebH9TiGk+qJzi56cs1GRCSJAV3Z2UgJ0aiqyEg7UpDzumpQBzE7Q3pEjy9bT6zPm1+uwH2RMYYfDWmXk4fTxyugCBEMMxICIDAaGQBRNkdm7qIonSqRLypnAqiKofRMLnuMs/ko6qfHhfrbq102X5bhiKpa+4k5RRyqpe6ygBIZkhkQKVkUDx04a8ko9T17QkQ2oXL75dM+sWWlF9V+pviyw2rvhPRdfBpCFxoNyyeEkM0MkMD2fTEOyAgIC41UzkATcAjrYahLJ2my2tJ0Nqt642pSpr5fLBZhgHo57XY2xb44GraTpedjh4GGVLDLoICcCdUYEUhTwmHrvY5ccL4NhKnr86zV9ll9455zHEcJ9Aok9vfxxBExpzUGBkYBVGICMSRGYs3ZABglOzoYOyHCPDWUEUUw3J2VQEEDh6mMxfxgVopyIU0zczWJlLorQgnLcqLD4XeXZDnEZA72Nf1mgIYEEpwYeGcPffCubuyhLGdtKikKMos8lzdXUTR8N07xPdpmXVi6fLh+VmTCDJwR0QydDwoEksEDCHrKTxV8cCoLAslQOAHKOzq6ua6NKIejWaEpLMJMkDEEcwS+KaEqgpSBDsJ3bTNBGFKuNAoSZjMOVrEoGgAxH8q4VefoiE7wu/Nnq4tt4AAvMmf4eu+E+6EWw3OJ5HGz6ypP2UB578MBF6WJgqJ3k5iwKWJrVV05UBsdAVBRnhsWjJpnpVNrpvPgRq0nvhSHRikHb3XpEfxQBoSDD6rHrtxdSEshR3FkGQydAhVJI5KiTzhrvCofDpvT03Rwc+x3Ho2fQ0amBkjPu83sR0NaaH/63WU1axVRGUERDTkUuyQOnauW7YaWs+24qGvoBuUpgSoXYToW8wkGXtAEh+mB8SSnSQNEgSikWPVlPVrNA9XQDu72cX2w2j3hFUY1AwQhMNRBEmlCFvTtuBs4Yv2kavNRfLgooAP1tc8vK/eXSz7cvnobUZhMjPi6A+71fIxTQLQsZuNwvv1mmn3OJCORAvLxCZ85GNvR4jeK9Ojixj/ut2leb2BWbqVkq+ZFOZ9aDLPaxC1ns8oDIDlHGZgEK54CVGDZgVhgEffxpovn89+d3r5QrwMFpWpT+AxOAYy3YcfdenJjiq6QU572D63680kkic7F5MRqAQLTpNedhS8sfHyNR9+CW0MAwPHZd2scLot9msrIRzu5UQ23HfTr7WCqfjqtp2G2EE8zV1Xb6Gx0fMeXHmbTuVPDUBcOkZgIwTtGwxdF0g7MEEnLcoiV8rNtWTlLauYCJnDVo4qcxZgvyqrAvmxOtscfrc5mi6829s8PV+0yIbKnJHuRhPQmn+6jtngF2dvkkqEZGD374kwdu7wH3LQY+NbdRBUamku26wTL2SQsyZQ8Q5pyRaOFVAZ000VNBuRC4YwcM5iViGDA9NITNhYxq/zI6Ba/G0eCkCQjgzCGW/EilZRbLGawvYxLlYW1Vj961v+6vL08kAxJA4vuoz4vU+/LFUp47d+9pffXDAzBIO6++/3po+R7QEQwUKGD+0e7yVFsd1wZ8q7FSVP7oiyQWSNHpZTiMKkbLmYVCLIPwTMQMSFYAWqG9AqkYGCDYy4PzK+s7Y39vk4Ecl8tDobNlhOMQ1WKxo7PwR0enpX43frmP5oEoZycRwQwhZeqAl/glGzfh/Bun2aP0/qTb//it8bPE1TUhw8+KLBKSlXFjgOIABNu+qoKCiwpGhTT8nBSU6go9eRD8I68ASIxOt0XHLwc/zEA8M5QS3Qx7La9oho6L5rz7t4RPdvmPowCtRf1sZvPB/2oOlu5p385/nnhNWeCffrtFUifV7GYXTe8I+CbXclwhdM8++hn3flO+arr1O+OPj4SKETBFR40VkGiqN7vE+befPBFOZnNaiUw9oiB2DETOjO7qrjcq+RrSPH6yRsSFLNPi348TzFqCCFmAdilINMGYBezUuzytNrGcqgOvFTx893qn/pC0fa5+Vc6JF7iU7siHXyud9/Gp5dpd/JBe47ORA0Bwd+957SRSrGsA4gWlJRQQm8Va5j0xMyMWEZhNnAlIhHhPrSAoKCA9IrG38sLTcogWJbaw6P1RQYADkwoOo5xOiu+DA5iCLz2d0+7O+Hh0Y18GfXhyv3JXYdmoK+PKnhV9qK90/69fr9Y9a1ND/MgCmCIubh1GHPdTaOQrxk8SaSSkgSqMALO+CoplaAu1RwAIhJhJiIENVDgV2owEdCUjBQ8GnJb34z+mcakSQscEmWaHVf64GJRpewnXh8dLYz6M/QGDW2HvwqThTcAJUR8uQKH/4uraK7A3p3bo9zsKtz7ot53H2HjVN6fPIkH/rEBAkiOH/+HjgLUVajr0jkOkimEso5lSejLAAiISDypK4fsXeGdIwJkJiJi55hM9blbfMVaiIkdGqJ5RpBE0z5jHipH1QXfaIbTdeVSY9vpEZ2W93TwKZLKQXEZ3Wlx27qiikhkKpmRiMDU+D//gd7adU9wAY7K47B6bArsQtBP/qSqvEBwRVl457JRUVWFc2VwzodCiIid94z7iujrVNE+jm2KZmCI8Er8HOCqi1WNvccUzfk0W/L2QgSXc8voh7o+rCLifOCD2jduPa0FLPldlDANWfaqwYABwczA/fDeiiv9k3ryd8vVOIujIKjN7k2gpOzAlQURswdyjkQ8GgIgBAMi50gBAAkpw378wf6KCGT2ql67Knx0V6Hm5ELd1CFOSJvZwYP2srbzHpo6lVbMJaWDD5/u5ux5Ml1uN1DXD4YvJ4f3TPF5AlT3wesfjlNEAEQgC17a8/WpKSBIvvmPj8eq1AqLgs2IHTOTSQZkIgRkQiR2fFXkjopX+ZMXitpelpIvzXPYO7+Qcx77MUvJs/tTPv7oJrYJoYK2WJZetFgNuTnZHM0PiratDscxkZ/N6NpquK5O0R+DUwQDVC4sPrsMW1UkQJosHTsXvLFlQcBs6AI5EgpsomBqpoKKQIj72k18HgnHF1MJXlbcYABy1ddSD1KcOFdvSlivVZb+KJSuTWIQqmayOt18PDtL9++ez1M61JQ6b271137eKFwp1L0Rjz8iq7gPvZlpGp/88m/PFZ2Zqs0mrnbk0TswANOgZgJgCRlAZW9caSbCK6PqJb4nvJoEo6/2BhqAKVzdqCqXHqv271bjxXdDveQQax/hvDq+NXHxjGC2oulkie3l4vbu8dO69vL0i08+eE6GeyJG/tF8Oomp363OzjxBHoX4zpQ4YsHATIiEhSoyqqJlUQNUQCREy8j79o0ryaaIBLRXbHuj5YWtBmCAth/fMyoRULWYfLVBT7sVcRUWjuu/Kw4nOiMctqAzeRoCXF7enD7blQdDT09/4W7vHXFEw73E+xE43UuSOLaXHRbN2pECl+Xtpk89TsqOODCaRiQfyFQJFI14u9dVEAmupOAeVEECAHo+twVfpV8gNTBDcCVqFCqKnxx8zRM8req6KHPWO9EN6f704CKPkc9OJ38669YNFLFbXK4PTv96evsl9QwAKPQSxSAxu2s9+rYIEhHzMC899LrxRezJ724c08zPlpzE16yShottTMOojk1ETfO0qTyZanCMpqpVYA6FJ2Im1DSKqEqO4ziOMStgUiRADsi+CJ5QUwYwv9Cw/KhJx7eOD3x18g/pwe2xruNv608mevzR+ePbXyx/1fRy+LOLpItuPVv87usqlm50lrIRMxO713yW91alVd23X19gAgNTBQhTzFw6ULRsBjkaAKJlva5wy/vJEVYjAoGBI1LLqiCm+HySESKqGrJjBTQDgEiMJKaoZqIAy7xLB5TSetL4vg/sDmO4YY/GUcizQPXrgzB50vhD67PTrkynH2EGEHkp5wav+EvvPRn82RffPlZRBRCoZ2CFN6VJFUJRlcF77x2D7LUnIuC+aK3r+2GMKW67JFnAOUYwYM5ZxMyAUHPOOYuK5JxzTHIlmCSLAcUc22RjTplgSJN04Z+ck/tSSueqSVnMf7mw+O1F/gB0eps2bvH1lrKhyF4CmOlrOH0/qOY/+PIXG2k6Q6KE00KxgIEqhwbOoZYuODK0q557pH0xO4xXkndgh2rEVxEturaJUAFNQPYJWiLdTyOiq5pVKkopqhEPOukDwdzWR2g69R+v3UDEFFYijzZHdLg1XvYb4++2MyB31Qtlr1v4P6S7vxyaO4tl1BbJuegWoQOW5K1zCAEMCrRMCMhXEv5aeZZX+Z+CSWKS7EwNEKmwfZkPAKGZmDMzNQC0LEhEuLcBkINV1VoPuxHNtTePv2tmxbaeHExojD0LuU2zK7BPtx89Dk23i/0uZH7R9g4v8+n395c+x2nKTRhydH5UtHAUOgNAEiICJEegBkxo4apGM+9NWuArIeiZnBe1K2tvX92k++CRqdg1tZGZ0nU6Xy2ttzZIf1qMCEV6cuve788Oqd3h5pA2AxTNlDZHxzGetZ/adr5osbhsiQn3fhLYy5A+j3q/5yQv0xva5ipAJitPkIkTOS4CC3nnRzRiUlWkvaln+74iAdo7Z8Q+oOkVA0M2JKO9V4+ERoSKhrg3EdVAADWL9BFh0vSroLvGP13xzc6lxpfbhnaZJ5Ufu/7jXw352ZwUppRL7ZRMlPG5If2aZfBeWB31yz/72+2udCaifiauoE5dYWCq0dADssOcBYEMzK6qm/fNnQAQFRAxZ0REUzG+nu5nZgCMdu3RIBKaAiig5sT9yDlU8eKjzTbV7TlNH1f9jVh0YqvLAtI6prNPusay0c5TfDLCqKTyIpZhTl+mXjR8PaoiV3nIayEdG28fFYkP1gyK81pdN7pF0MqSQRJqkBAU9gliRb6eXZevBvgAomUAzoSIRFakZExoLAoIWUgJGU3IVJGZdphHIR6qZ4f5YXXj3/VHzXi6+OaoWYTTm43eCH99i1dpd3B88eGZG9oiTifDt83iQm/pUBV4PR4JX7Lw3zEpDV/rVKSkSseLoR+FHDUFIIdQFWBUEpqY7Ls4r4oBENnMQA0I0RAQDYkQDRwi7vPS+0CLQzUC0v66r9KuGjUA0HOylbbdNrpSdpOLqrw4CLzND0a48bgr6ofl7fX87IK0aNV4vguDk8mkUtSklV35Eu61aMobCXQyUMAXo+k4orj7xxedmmduGBXZIYICOkYDATUDQEUhQAQ2U0UDt7fYAZAI93YtICIq0r6AXMWMkOgqerm/GzVWIxdYk4uUd+DXbWg5XKQtjpNLt6WnjTTJQe/gArFIaV3zILt0sfQEzvYGDAK+7Mu8Vgn8YurXqx1xPDrkeweramQyqkxVLI8CnFPyZXCiooaIkehalSESApuaXTdqGxqCghECIBkC4JgTEBPUKmIvxhjCvrgOFIphUjzNpJF9TvasdlKN01HiTx8Zxt89zrlVdHFTFdpahv6oBjVkvjb01b0GqL23n4iI9fjwc0fgops5zcqkshesIsiIaojIe5yowL5WAq/Cm9fo0v0EFTJks70xaEAKTkFVDQLuy9xUTSWNg1mLsMWylY6G8l7czc/zk495vajGNLbffHe7H1J1YG3ekXDg6c+WBFkFr40HeCefvqiqQ3ipdAskmBvnN8vdmAutDqteMZSOnbJjgjiWtm9C9mawD/1dzxPdV3YzXE+/2yc7bN8DgoHZmMCyimRR83Dd+mAmOvSo63HXY4H5vNbmw6fNPF0sMqz+6CKmITqlbdJ0grJLPK7H4ui+GwHMMVxVBOIbfPo6CnVvmOvzCYVNF2xy//BZtAKrKbOS98QuXQUV4777ymwvha7DCntI1Yxsbys9D48hmQCiZwZElWxGbKAZwFTEkkMyyeIr2iTaFqWMwJuzJzMMTbEufXFRDlMcJunc1eM2waZ28qxbfHKclZ15l033EToH7xG+e9NTX8xiZAUrj5eiVIDj7BTRRMwkkgueR0QmMMhqhAhIe2165Sia2hVOPRKh6fNsECIBmikgMbNcQZo1oUMDg9LNTn3oBhbL5fjw6fbJscw2944Gmm1v8tOD7eZg2rXR0AUaE9069jFQthRg307zMqSvNsLhVSTrKk7w/KN6KMzD7dZs+th/rNVFURZeUqoQVAZ1hKBqapC5gEG422eaQNDM1TbSPgAM+YoPTZQQNQsiIaA3U1UgKiRGAaKcM7sx1fWl5MEvMnA/Yr0Dig/v2eWDdjPRD9JfP3W0HFofD1e6vRkFdrcXECAXAAKGBAb0oys6EgIBFXMGAZ9qa2zYJEVeOkdIYEmyUih8RARRAwYT3ccEr1F6bV8bAGBAACAzt+dLQ8kC5EgAIGWDIrHP7VidPd06ztQMipqFiiHbVtXi45v+vNWDYpMbb7nnmaqNeusnb9DmH9JFomB+0fSOaTvRou1GLSufARE1IuQkBIRCZDmjoe1tXCUAVVOG62jvXtFd6V/wV/KfVbMxkRjtq4SFsd9Y6JPjMeUhAGiKRdhqWqvEXTnG9VmcSZ+nlGzLpUKxs4//6A1586Mh9ZhBM84ngxvTulHpRp4sGhmJTFR14h0g5MyEmnVfqwRqkIlMxdSuNCVe6TRVFUNExb1ZEVA1a8wGGETYCUG3ioXmannZoV9jNpBIzmnunWa5+VgdtCVmKDorYiFkFdO95fD3xykBoroDDsVuXc/5tCtqB7mvTNVUVckRqCiwiRhYJiLTrMK4h/TKtcCrAODeKkSMgAimkI08iWUSZAK15HS1CY11UNRoE1xnJY0WEEmFkMY1LzxyQMaxrLhWBZKDu/z3p97o1bEUR2Dk5XAa19RMup50NEVisghIROSyZlEiUwQAzWIKoAKqLyoYAUwtX9UNMZiJiGYkQhSlKC7HmNHHrVRhpK5a1I9huTJgzFFdVjIwd+n80BP04IxKDst2yKN88OEbbe7443GKRJCwLggD38ZH7EoaqKQWyDOaGhgSO1I1ASYlMFU1k33zienV/D9lIFCRjPvYfnGly0diAhF1OeEe6MEqr1ZsR65gp8EUAU1BwGKsjJZyMZK2iXDSRHfyTZbof3Yvvelu/mg+DZlNEkwu0PMyPfqJaL9GBkMPoDkGZAQdLSgIE8keUkDdm5t2/Z8AAZgIETOigSAgI2tEyyoihQqEynGSyDUlkxyTm63Pp5L36iiZxY2zG7BLjp1LTNNyDYsvM8Pkg4PL18n3RRXLa60UIAr72hlTEX3JGox9Fm7T1N2Goz/+5sazSUE0jmeXaXW5kx5sWG9GA4tJVLLY2IsJuWhpTMiWtth1Wb147Xr1RfBEntOYANFyNucLFmHvNgydcI4V02ROXQzHtAHt/E49GVoUNMhl7i5al+YH0h7I5c/jk6OzUfL05B+sw98fp7UDi9nKqoodSAyHOTvXDblkjUNtFVnUVDD4bJkgmKgysmQys2yiTvbzzUpAAtiP/yFHnPYzhUGZnICkgrKoEu9z6B5S7HJ9eLku9+OXqBdiBJMMOJKMlNKCe8So7OKthWN5yQZCw5fmObxvAvC1kZRUgHwPXCZbTlyYPeuacKDFBbm2T7MQBZnArHemzCpqDECSnKqimrk4NJT2fX55b0kiyj43g5bBmBlU0wQ8qLEzIwIOtjJPRt6cqooBoPMFJPKc0bJlErfYnhMkh7z6ZCGKrxr0+ONlbxKhMq2fih/KOyc6251VsSgerD+CeC6zpXuKHBzEHIMjynEMBpmDZXVkZoTSt84LWneVQOUoIyk4cERONBshASIkJGdAYMBoXGZCSAMW3uesYogE+yDGpIWCAMBm/pvV4Wghq34Q1q8WOOHbZnTYe3BagBPS83PnNMzq7Dprt4sjt/m7cjoc1PD0gkPhIGe2RMFkUFD0QXJmNjUHXb8lJ6aZmUzEijExC7CEsqAA2DoCRF8M6FkBhYBNfbB6t9pqM1/nLGrIFDVFE5awJQ/JFJb5kat2JaS4uGXKL+EUf2T+9LnlQEkkYhPAUdKut22f5zds1148Xt8IXYSBmRGCmBWVxcEbSimx994yOhysV49MKEogOeOQnVOlzo915QrXazLyHnbCAdASA6kEjpKAOvHLJyJK7NgEAJBd3BZmIhDKYZy5jjSNf3ZLnH9prKbhK3NX9AfiNJLLFM/PiOtiQnHzTKBa/VWxPZ3dT/Rgd9qQ8z44do6Zx9TKNCCk1PdVaYMSapX6itn7nIFAchxyUZgixhTHylMgSUQ+lCMisAEgmRiZ+YWsL/NVvlmhEHSgvmq3CoQMS2xdGOtbq87905OE8Dqf/njZGwxNt1/93U+1qQ6ruCNmf/7NQXlR6Pnp7lP9vJhM6uCwqZvC6+7CF0YmaYxZdEwIBWvXezLrB2U2sVHFwGAax5Ry5YLljMFzrXglJhHUwJY7CoVu10ET5JyhMAYCohQrz0Z4aD2leP+etPjHs0sz95roBSeIBPqiX+b1CaPXWfhrXBedSKBfbC9u7BjkoojbiGJf8fHZ068209WiGLvT+WHIm3mlj0cGoKi+27ZjWsW63rbF0K7DROvLhiKw5X6RHx0R5zTvy7XEw94Vbv10ciTVpm1ynl6AxxxzX0y7J1vRoQJWAHJhM5WthKNnM4+XsKxunPsx4myr+T/5+KpH5spOuMo8u31E9YdPsY45VBzRgnp/hNZfCsk4dvbAylaH7uKEwblQaq8zzdZeLGtHJKp5tCjWK6S2pYuhyr6pNBZTH0Q3GbUmdU1BsqUQSkhnB8kFt03s0OUMVT1w0zjDkNHQK1hfozRSTH6DzrNx4RnUiHCLPztMk9FeCSqgATjEt0/7fBfsYuSQT6QfS1q2wyYzKk11KCbzy8ebkU6d81kqdnndW1ALoXTeu3B2XiBEDU/0YuhiXx+0wwRz394+v7yYFzAkj9mDjD716rnvrGAbY2rTVVKDXGBJPF0rILNoWrZ9kf2uHneoB5/c/c26s1BWfnP7n8xWC4kvjVw0uHKaXqbV9x90EMPyj9voqmZyrswzt6IqKAZqSdh17HgcJsUstp0Gxvl0ygTseNd56JM7jWsJXWzCaH4yH7+x83i2Xc587nhTJ0m+76kIRl/fmXTRhVZVkElSFcdhFC67LEaAgCxZudwBgcP43SqpI7LVxfYffiRjfKln0a4qjNxVcJ70B+I0s0U/+/AvD+a36nJwyxO32ayKW4v+8kmccdsJ5BxjbrbCLmVXeiYExXB4tnPQbsdJHMfNdqyopUZqHx76u/3Xp7cXCJX5oadCkrqm8kNXqDiCyW50SCYYewkhDgWKKAK6gcq8vLUeuKiwf/LsEzFBk27886Ivx/L18XwG7o2+kvecjIRAR1rfWjZ9q4vjVes/mHK82KwzUY0mYjqA+nFHhpMbdeEYkVzSLVhq1zIO/dCneLKr/bi+ce9Zdfztth30zvQGcI7JVfOcbEyHqS91YNeMUYS4SBGnB8OwmzKJELF17KSQdUnaOZwuChnV+wnd/SDLtHsJ0KvEyH75wms1v6/g9PUPnHCB6ebHeYJVC4KrYTLDi99+8bXrK+3mxMqoabRJXNvk6NbdaeURqOBtYetO03qFeUyGcezNaW7qfPn00eZofGTTYFRasmJqwziOR5sdpsj0rPMh56LsXCPzS8dRiQyIx1RDHc7OGxSgLP0N6Ueh2P6vF4hqyb9KvnvLAe3HjHKut+pMbv78F6U2cdE12MQHv/z1k1jp4EijBEOvkm3nGr+YFMqQVRD0xvri2dOkGywoJpL+4YrY4ezJOsHXT4+ms3Ves1YV/jKrN7I8JskSsPs23KizKIXSouNiskFiMKQBmA4PHlZgUC5Rm6exF+8I/le1z1vMTXxN9IKTqyVR132o1xWL/LxyEZ9v9TIwUMoh+c3Sh097nB3oLv7q31xSmTooIvCAI1JiXyCe2cGYygMDjymjHxb30b680NCBWVKWICeYg8z8F/nwu/liF0+Lz2/OrLg4nx6Uzq2n2/FucQGHueKxmvbnOx22vbEKeo5JXe4O3UpobCwOBcThQvigvPjz+9qTB+n9S/bAawupXqZWfDff7gsRuFq6dRTDMf3Fv9abUaet2T6JdJUcm25P0+LosCg9IZtZKJvpdDJkucqgdY4TVxNYjamhlTUg3eXk0JWTPkGO4zivtspiRxQWgnk3FrizmgeZbwXRm5DJcD5agZgjYnZghyd/eqx/bISagAt9p3/6YyA1o9nthRWwax/8q8/a2/T48kAMkNEsXF1hBLlcQ1FXxEictR0FfVWOV5vvMDndQHPRPhnGg9ujFsftZl2UdHB4ebHVhotTjUztyjdzv2brxVhsNl+FQgbKAImCh+2uqCCp01HK+taf/vTPT7qT1gcmfbEKAd9p974fUjZAmlq2Us+e/e4Xd/7En8+JshkSiI54VShY4K5TDgUAeUvJewYk1GvrkjRrPnusj4DH8i6ncNTH0D7cfgSWR18w9EN+4KrScLfzmJ1GKvN02odCJQkBV4VGT8OYucwpLD786B/eu1vm0cSCYxV+r3/6Xq8N0AigmTgABXfwn9wqL+o/6h89EAXQlGpTEVWdmuXoS2YF8kBclfHCeQfXVU8hScHDanJpePbtnftHd6fUdTuVJxGCd95PbRKHo6PQDufjAStPLivufbnKAIKKNVY4QmM9ZER1xx/+4xuHu99Snh2JqXfs5CUtA/Y2nF5HzfB7XVRx97ONeLL86bMAi43L9Ydq7DElie1mvW5zhpo2WysIgJAAu6zKZRUHRQUwdFFN24ezW08zrLrVrd3dD+/wECnFtusgFKktqpG8uFFdcNlMuAxVE9ZObDqk6Shjh6UakXPl/KNb/defP9tWi9sfLo5nqoHhnf7pD4bUDBiFiq1vI/eTUosDbWneq/mAMSaHBlQmz7drKwtPBGhq0EVBX5Yd74W+CWHMw9n67oAlyYNHf3H3z//BhwdL9ePq6eWaeXrZNeksHA08h8LD0KNCXbrJWLV0snuK0EpJWXwMVbn4YH7xu123jcVkef/en3xy1HB+P5/a+6YUGgChkoc6kV3EyaMnLtyBi5Ry6lLbA1I5uUu07e/d8H96LP5qCu5izNvNhoT2jX84eAfBmTyVWsaSxrsX/+W/+eQf/fxgU07RdTBWSRo6e9r09dyodKaTLgZr7aA8t4XlMQ/+AJ+lpguBHD38m7Klucvdw68/HMCVLw/ruPJP+V/sJwwaXYmibM8XahDhVfX89R8hoqCaKSMOwxDRm9Tdd1swDs3hEe7cjWYxCxiWx3bDpTt/1KhTRWZQGrrsUGn49NAdHVjyADw/dANQNgeKUHF//s3jYbON5dzgALZ4VA5QTi2BQ4HpuJH1Bi+OizK4HfYQm9sihx3dLQ/vffV3x83RyQyjQFhddLiYSsBra+DqPJ8a9AIcuipXfbs1qFe/s9EyWAu/9Mtq++DhWbq8uLjsjDAOY9a4Ew7hxt0a3b53CzCNcewHPThZLua+uXNrOSmr2fE94dyPymEAUcg531nKRfnxcrBb9wId3Zok9GWAnD1CScjjo8ObLq1GI5iC1Gl7Mitg/XTwB81sPikIc0rZHZ0Uz6cZXVs+b1AvwfcPxL2uGbXV2hqWsf98MruxRH9GhsXCe2s7KkvUpz7MbxRIBHrVvMLO+Qmty9K3dHI49ttuxHLyybg5P7/cjWbItt2tmvremC7K2m74C5jSpgJEheAvmc03udHlrfZRqpZP3ARCaKd32NaPd1XwoZrwhE1UTr87y1V+P5++HZVvHO6F1xJz+02+1QzRllVBCjrEqCjdGA3rG8ce8LrQQRSYfV2ce9+dl0uPClXXq4z+1u1hux22OKZ0vm7/m2//yc/cZ/7kbothgiMFJDA148L6mCQfLhoXjhND6UuNs5NZ3u62NF8G74qmymPnAPrtcNVR8X369GpLAvC7cWpgAOfjMv8mLg//o9kXD56slrfStIGkxJMKQbNna6YHUzQAZDE1SEmJXYl3jszbsPMz8BpKPxmzgPpZc0N2SZoVXv7Nb//8z0/g2wrrOUacoXOYhyEfFTtcU9EA41GTf3W+nIBA8eHds7QenOPJtGyaKaR4BgZp12Z7Dua79On7qkGvq0i/vcR+XTod/SwUVftQzlEzVHU/tLG8++nt7WI5DYBotK9ulSzkvboTHmdp1dZUlVHNUZOyoiPx5nyTRr9ZffdZ+88/7R/cm8oWKyzTLqoBd5KpaGbw2MPy7vB79yE/bqsP/rzKaTWFpFQ3k6pQ74+gJUIX+qsuJHunPsX3bO+8ro7d8PqsuS3rD3zV4rDun15uFKyo0+KT24fT0s3nswqN2YBRTQ0NXFmai6DlDVxvuPTqKbc3snDAcawZJwuLwcs3//L3/9/vit2H96bNIcv50GtRFXwagHxR89gUOBX3wU8fVbj89MZwOCo/uKyq6mAZqLM8HZJwGa5aDvF7+JTwPRGI/QhJ2N6IduPjddl++MGzJ5ezJn3zBF0Ud3t55/ZUNruDeeUQHCXel80SIHmf2E/8rpbt2VBX5bSOmzZKXTeUjSxou6aDb87myy8/58X/uPj0k4WOx1wvZ4XEiTPuOgHzU/FixydfV7OjI8mzviq7uJwvTm74dFlwzCklHdceX9Km1/HeVyb90hUFP6/vveLs6zjwyBqilef3OvvjquXDYQeLyXYn/U8/iOBLf1DVwayuapAcgma2JFHQjYFAQz8shErHm2dbD4uPS3+rGDeXT8QHm+s2p8RLm8rxSXnRL28ut10z+WBeEEadUZ9gQRu5+TD/ZHk6r/7W3a3vcXi2vV0w3sPZwbR26JvDZ8rEap6vitDxik7lxy/x2+dzrLXgRMAbcwFUGack4JgS74WakHMoIkykagCSImTwtIDJQIbhN7vzp8Mhu5uhOYB+3cqzR8ONYwb+2R+nR8rby84Wx/O6FO15Ug9R+gS5G7NO6mElVY31sprq+N3Z5O7CqujQB4b5bjcXzZ75TYH6I/afwnNdDAC5KwPnkagC58QczHIyItPeQIlQgb2HnCUTge4b+qnAmnZOk3B9t1/Z+uFT5Wm5vHXn3p/689T6G/T4fNitb9rm8HZ/+fW3ny9vzpv+7LKY+CIm9KjOb0puk02bcLgoMMdvn3344UG9uWhHtQxl5cvgsuYUwx8M6QucohlaAkIAIiNiRIfgwYxJZR6jEoH6IhCoXQ03EfMZUImQPMdszeTO+e9//V1bTLvd2Tezkxuz27MD9l047n/74M/uHAx/c/f2Sfnrs7H4R/N6IszFSTIc1zGnPIDnqnFzpyNefmWnlzemQ+yq4DL6gFUZ1L9lAyj+aJwCoQFaCgzGDBadMQe0gGjIAMyYkcCqQKbApAiGmmUX1UPOUBcAqN63/o7w43bVAHTrBwCL44ZccXyv/sC+e/Tnt8f/+tNPf/7p6tnFLz66ebfWEepkhuuuGwQqhmK2xJw7+/KLW1/4PznqBlzOJ0mx8PNhLI+PFnX+nwqn2RARCTSQKbPlDKwATOACGgAFEkUi3s9Qk7hR9h4FolIoxzhu3J1P/8nDz795NIxQeMsPa4RQ3fjg0w/+JH7exVsPPv/iJz/7+Hjz2eqZO5xWs11CB2gpEqDB5CCMlVyM342rYTd+GNOsQEPKGbzzYTEv3lwIxP8Zvj1fga+q2BeVzV7MyM4eVxMWQCogRYBxJ4ogYiAGoGrgZd/Tte8pjsmTL1jV0IW6chIxU1Ed3b51+zgAgOq89MsPP/roo382g7Lp4+EH5ebJpTWzP50Mbb8enfajabftfMXKWJzIsIQnq1+0MXZ939Ks9gyQ15u0G4ubH99gfH1/+R+2QBVVdwuPMXu3lWjGkgEDmphFAjQBzIrOge4bFVUVVSOljGLOF7qNqUuRpsvJvW69adtuPPBuvtBcbW6mx903KR386Qd/+VX7YT3HWze3Xz09tZEXzTCkg7Jviwadj01cPX3k1KdH8fD2ggGDw3Ki9VjN5xW/gVT+L65HurxRj7SfuUr4avjMj0PIXv57vTd2pZlFV1eYoShIczb2MIYyjiBEZVU4QqdZAc1aduN2cGVrAAauzDhGckCzycGdDz64ffv+wfEHH9+iNdTT5SxenC1ruzv71ZftTTq9OLmnp4tlbpYJmoM1ulhUNjH/23/5txtAZQduWkWMMVirNg73Pr1zc3zudyISgIp+3wzJtxqFxIyg4+hAchJGNCUCRAUD5zBKgizsTBiIab/4SmXsYVRV6AfU1CcwfzS0nY7eFwCaKRxW7Bzkk4PP/nZy7+RT/O1vuKJb/8FvL/7Lf/TJg7++dUPmk1mgbDj2FCiNIJ5KbNEnBEvduuKjsiLhgFwhhpfWbuwrTwl+NKSABCh9f2giWRjCXkiJkmRXWl+YOO8gAZLzaJb3m4LVYubS5UgoAzlXehu325SwLwpg837ngw6Jqw8/O8d894PV3x1+nHDxEX31O3/46FF5YzcmAsHklJrShcYKPjrE0sgIQcYOXMlJXWFuGXyj8NLkHENEevdur9e3Dr4UZ2KD9e+WE0FWhx4MwHIyzN0gsQ/KLrDEIpSFI9CsaqZGokaOCbxjRFeUXEwmJaVxFHTeETIahtLjYVXCAM3Ro01dx1FmP314dvNkvWqctujIJR384dyXM3M4ffaFSwDofDWf3TmaaEJNlzCvb37wooWYzAyA6MdX6WQEJcjACg7BsokgkyqPfY+IaQsWJp6LyntCU2VQEXAIIYlmLh2SARdBkEMRcJM7s0kAmY4JvNO0noeeZHfjn/7fu392F3//P/zkj599/sntb5/chrzrR2uDc973MVHUg3mpNkYVBSTIihQ0wWQRDsoh+5ecL0MwefcMydfaSp5XeDAogRLl7CU7aQ2ImUA2W6uzxA1nJ4tQecegplpmE1OgilCEimKFiEiMrKPjehk0a0rBcQeMcVDN1Nt87Fb3bz97uLh1b/uX/4uDz57cPjw/XdA4tCWWja+caS62OmMHxcqi5jh0Z7OTisoUQzOdHryyb5HMTFB/9PRpIjMAAUyjanISAQ3QkV5uC1j3mWowYBf2A2yAFMgZiAVmVCByz9sVIQvUleRkkJCzDyxZaNKzRS7b6p/94uIxTP/D7rv5zXZ7HMcCfOHKops4T0iIO3bL4x11AuBQ4iY6n7JBNQ+zJtOLCVe4b6R67/TpN2QSs2UAMcxRVLIRWk5KTtsB4uUWjpuinhSQC9gveRwAGEisMtU0duNBFnBoKt6bGIdYYBqjehgje2YFOrGVW277j75Y4bOnd/7n//Xig79ZfbAZLWupOq7KMOTkhMZ6cuvWd5EdkC+DMxegS0plZYXPL4NFpqbKr/dAgT6fobHvO3WvU3UCAnCTbV0kdYNyzgKWB018+qwfcbKsy6U3CmLoMSWnygEkY5/Ihi4+LVm4gNiw5qSA0xQVSHsqWBIwJmfaWKz49Ofp4vYj+PjTX01/8s2matbkoBiGKSVIw4H30207P970sgsk5eLOh8WTiYs93dwsD0lyfpE/BQDnQNwP7Tt9A7eSB2FUNUPM/Sir8eLJRqb/ybQImBJFdhoRgwGAas6khuQDDR2YhxCQ2FE2ElFjxxAR1JRA9uYnKpVVGynz7UebWXXhTdUTUBG8c1IA9DnvdqP3awTj5vDOYZhUEt0BVDW/1Fr5ki/zrn62677Td0Kax17IMooSxbbrVtvLs3Z26/6SCIbBW1GKQvCIYCpJWJEpqBwM/djvyC98IDXyLKhZERhMTdUQ9/XsiPVil1x3eufoYnEUZ9sI3pQCxNKsBB7VdpcDFodCCWfLo6kvUTUsdtO507fMGCEH79hAc72J8Z2WRR6T5RRDTAap7Vbryy41n/4HN2uxHLNLJoRo4s1MxcCQHEkwVMW8TrwOTUPgOeWsZioNMZiY1MSq+2bb+bkLZ1/PTnZxsuEghqboh01B6pQUMWVHGQOIC74AFyM6BziZoLwlEobuB/edvq5XU0bI45izqHSb3Xp9CfXNP/+PGpSUxKA3CnVh0RDNkBAdOmQHbUbKm4sM1fGtCYxxBHSM2Qb0qpByYABgxlGGehEgjk8+vLEtfFuAoAJYYUpmlseMUB6M3cQSlvPZXNxmPZvbtqy96Fu2mOI7+fS67/RdTyDFbDr0qUeUfnWx7dqhbm7cO8qiUVD7nWLtC4RMDAaEikxAjFWp48hxfVm0JKBcAymCZCVVJcutY0J2vMutm0jRnD88WWzzbOc4RyHS+VB4Ud5tI1hY9ogYaXYwKQWHYe7HPK1ACfQNSWvuXf3h132n/E6cDpraQQmk21xux0HK5cnNRYqEEt0wRnQ6UuGu1kThfiIH8+AhuWYydqttf7MOVaGKhKocJZtnSEJIziBZ37ixuBmHJ3cqLaMULkHAbA1K4vIsgpNMNTyl6fT4hh94cyE46nxRGHpTlrfEHL6/7/Rd1Ks5pqGNNIntxXkrKFwdnRxPUvIBhIZN4wONImV51f4p+6lkXLmxW12ePwmrs9368JgvRSkUTKYSAYgYVI2yT5wVYnMsq20uNkNERgBHuaVkQ+U77732I5Y3J8viqFpDe3lRS+8PGzeiF3OvQ2pvj/fu9ykZAL3Ra6EEiZxljQpEaGfu4plxJ+P86NYturgFvElVypBNvWemxINMedcTglGI0QtUu6+3qbPxm/UHTKezWkQdDEChyFld8JYs+2k7sBPFcLDeFsPFYifgfSWjTHfix3629i7a8cFxQ93jy5aeXmwP7mq+PdeIHAGHV+Zt2/fFHN5tDQKYqQSHpkA49u2o4wDFbFF7jFugri8x0Np5ySKRcjbmIdUIKVvOCnm3zvPD7gLOzg3zPCW16LFUSwqSq1CQAqBhoJxHnIytATMXIGoZS/AhQ25tqTH6o5PJyLlvu123vTnPtJjzW7pgrmL474P0rZliJALL/RiFxmEXpc++WBzUTOP5IegoGKHzIpyi4yHp6CKgL9BS0h3mTecOZiuXxqcPc39rMXfo1W8BiEBVk7Aacag95LG33vqxCiCYLagAm7CQtRO1blXNIRW4fnxxcQn18aIrT2ZvU5dX9b3v5MNrC+F1SURkSOxSGrs+K6RuNDFf+7pmgLSeFAgxj5DJTJMQDUPaOSy0IhvbLkqUDS1qFpresLOVwiANJylGJGYEoJyyZoVpBTmNwffehAuQBKGSLlHOjGgRoA5eQaxsH3226+To4xPnlzN8s0fxeX3vj/VPmRBNVZKBquTct4MkrGoODIA6ns4VNA5gQA5NBWA3di7MGxjSbr2LxeUotKQ2aViyX7U7VyIb+xpZMwASJdKsmpKZ5mgHBRL5hGhIqsZjDpwzdNgcHYxk0J0+eCw4vX0kcXnTjYW8JXgC8IdUXgW0bBKjcVEqpHGzi5qqSVXWPpTOcltQ6rctsjNAEREYopJJmdt220W5PM9+UuYYRHRqsFolkxJdTs57ZkfZjBEJMSXPMuRuiQKkGsTGJK7UUXwfmw2jWzYR9NnjXSC3XLR6cnOR7Y1VOi/qe78njvR2qiYDQKIefZFT7gZBhXrpD+eTZmpjhmjb7XbwBI4oRUksRGbYD7v1dtuOF7oMbAJYaeJJjNtRZFaUvA6VBkKnlg3RwGUtSuv6U4qQQQwcSEbGMg+h16NVjtkmpnkcJvcNZ3XX3DpQLDK8lXz/EJwOTOp8UZ57A9CxAwdGkzkfTJtZM47SOVu3I5UrCkxpzDGg84JwOWwuTh8/Xk0O785Rs8Wi6CWUwWu/xZjVEWhSSdP9BCxlExdgGIoKTAx4LDwqQgwQNRZH3347houFD9U8LGdZm7K8c9fvquIt7ZjX9b3X8/DfgtP9cNl90e9zp6ZQdJjGnG6eSxMdR9XkfFXPD8mCYmEXKXU7GFrAnp1GiB7Apwfzzx99/ah1H/xkViprXQ87Pztr1ZddHLAto286nDg323CBMl8B9M3lDXj6SV2HfpgVfaC2hcBC+fbv7VP46fo37UWY3D8KM1WIGv9BLVRka+TtkhXfnYHSvfv09olfZsbAlWuL5hlAKGBgNXLOF4Wmsdt1KA5zErTsyaURUvqLJ/3Wbiw/PKoKLivtkqKrFMoRe9E59uvReRd0MDbSbp0WUvath8zApUfyAMEEUvL1mCfeVSfnj/LscLmoKuLzJ+X9RQholt9pvX5vHOl7NqibDW1EE0OXs3MaG8chOPFEIDGOEWYgoOzcQDzGzcXuWawXizvzYx/QysmwLVTUOfZcji2VPNJADsqAlQEhDG1LJOOEZEhFIGV/GYpKLUpsHrQnBOX9OHTVoi5GTwnmN34yQTRifSek9j0SSRURyd72BMw0ZkAB0qqNUokWCOxMNQtwKIaxPW1qB64IahJ3F2ebhZu4+dx1HhnMlRWHNqGOKfkJDJfZT1SEKKipAmjsY+FKXHDc0DxIIqep9CKMyZ7svMTyCNrHTZDIZbvy/97tGkWRvem7JOu7I2akasCO8uuS2MjAVHzhxlROtoxmRCBrxz5mNHTeh9JjBGER8jB2Q8rZZ4dEjiGUIeUdAJciOmhqHRX9RmeD+QJAenUooH2fghRU6uqQPefs3Dw5GqLEpjtHZ0ruxh/VReNxnrpqca/pnAh932bwd0OqV7PIXp+2aFf4FjFLxohcsPO6WQ+2N0Ucq3EZMySVqNSNfWZfEJSzcjklH4pKsrhJRwEr6GHVmwv94BmLAMMw3C5qAiQaJ7tJdnR+ZzZDMTM3ZErqi/Dt5Q1A4FzfK3NRuLDjjw6oB9ovKxX/o3GacD++SvEtqVUzSz1IzuhqFckAu42UJTBYvpqNuIviMCmLmA+FYw1VU5gUS3ZFihomKloCHPvHK+dEk1hWQ0hbRG9MpOVQSTFZS+FHYaBxQBYqST47PRkyi6XquAtlTjQ9qHv1hvzWKf7v59PMjklV3hF3sQDkNdLMpB96wdR1w8CMFplDhNQXKQtkJVbkoimdhjI4DnMYtQ6AZTN0yVUnXLCJpKh9RlfVk/jA5qXJMFC9MagW211KgzhynghUJQ/fXqbdAmMR0RHx6A69bJmjQ8L90q13yV55ZemM7afoqVkJIPJ84MNL8xxGx8h21t17crvtiupSna+2ytpeLOcUjWg1CM9H23TszdScSUJP9aJmUD+WpDqdD92unlJuVxkOqs2DzKaH1NMw+fjGVuHwtC+9uy+9/6PT81uA3qPhdBjq1Xa2/stp9+xkenkjazkbdk6F2TI6BDMERHnTM9nnFZ/jVK46g/Adu+yuT2EEajkHy+0w6tBsoJygw3r7pbob6cFR5UI/xFwfhgSioA7ME8B81qhldWMGdGO7c6nrdNe61eUQMUhKznskSCcTc2pUFEUN6qqlAIBmlR1Eaaq8C396+qQ+pYWVgSPsr434AyJ+7iVLAcHM3H682ju9t73iIWbTnTKGSZdpDqD4eH3R/nyK38zIpT4lwSBaWEJG9CjaOufI0uCBZav9UKXtYO1YSs7miiFCW5BZ6o7mIIxGZwuqVcqbD0URzHKmnKsQ4j/46HG3+/ryHw4BmKqxXwIYodn77HXk/8N1xcZVKTe9o1fm+WSLhABu9S0VOy24mlYArgjBjVuzizUWcdiOu6F0MTA2RxPKzntPYIMAO+vXDJQ26176YdulrkubNuchawqAoXCeNVSu3DwmagqXoYSn04oweGTK5LM1Rx/f++ns26erwgXIgDTfz7yx68rO1yMIz19fmtGxX+v3XhN/vxG+SOb7OmAzzOJqKD1Pjrh89NuLDxetHgYNY41KRTXmKTATGHodB7WYXeGlz+S3fhhp3KSn4nQHvoaMpEqubcg5zXY8b4pEvmqIWIjEZVfAGpd80d345D/9y3/Z/vRjN4bDJZG9davTG7f90pphvG7Te3Uf4evkLqxqSA78SmJykR3GoHCcbOk2pxM7V3Y5oFeTcddv7yg5SEbOenXkyxiJkC32lhLn2CdiA/I0qAumvvIEThMWRADkHcwLppxtxGice+eWSoP9rNr8drg8WTaFz0CIP6Qp+g0+vZ66i69R7QuLAgDIFQMWaqmrQaHEiYqfDXV98RTvjhdnnd53kXwJUB6jKmhUztGKIlQ2gKtKSjHldnTDJpdYOGDaKZZVjgI+pjonc+tFSUx5W4JANsgFDkplM12VTXexuPu/+a8SheMj1wMxvmwDvh+nCvuBe1cjkd+pl8YMgK6oevDoyIgFJ03dx10zPXDzx9193IUvH3yVXOXEoJmcR2Md1Pk2ljURk68nFY4xDqvo+paDZR9KMaSyyOM4Up4giioyIUJ/UaYEwkS1btp6cnzg2sR1v53/79axqjWbeCSxH4jTq/ZMuxLVdt338dbqbdaQ+3rafHtr0+QpSWVNxxCkk8OGf5K+2RxXTc4nw6Mnwhqm/MyTZCAEw9wCUa6CJgPNKgoIIABQVjB4O6iDJd/NB9MLN3EbB3PNJ79eHsRYCWi3sIv6kFJAQOc1VhVkIHCgiozfJ1YQAP6A+t5goADlrb/tiYaikKSIABxssSxocbT+ItD0Di86X2xS30cJGZBUUBhGRYKiX8dyjr3mjA4ko69mrghu5eYMAuNixrprM5UeNTmFKWdRQ9cTJa69vqd4/t1U/OOr6cgAIxyHzocV1W1wmsYRxdWVaTmf/bWfzo8WE3dycLa96HWsBisoWvAFDil4KGlz4adh+8BxGv1ilvhwHsXq7XwCDqkkyGMMzUEoSHJWrSSRU7XkKLlpmfj72fGdkP74iW0jAHKS5u5DLTCBGQc3KrvgmVCao83543iz+vR4WyyrIpe8GblMO5pZg9uxql1Vbh/0DDiPyR+c3Jw/HMoSemG/qLVkKjVZ5kU5xcKhZk3NZmBLSlbmWEzcyHjd2fTDILU/GKeKYkTsPnjUL6ox6jqYsa9C8K4mmgOXw5PLSqWp68HSvBnM46Xzh1wKrSnUx7vtZTf6lLfp5h/f524y9BVXIcyPqgRKuQ7AAjhOHBOopFk7ZGTHEKKUJeAPBPT79OkPPM6yOI+5dD2V44iigMQ+eMvgXGimt3HTb/7u8QRnvnVhQuQiguUa0rhVKDbfPsRDXa15fvuDG2Xyiy4bE4sLim5EzkB5N1bGhFcLo1AQIAVLbu4zX/Pp+3Z62t+bTw0YIO3OTl2hzikz2X4+LVvksuyOp+HpjrenD6QpRn5UV0xp19Pa57RbgT/ePBs/OLlM9ulHn067tjjeyOBFUiowEsQAsbf2cnTOkWUy9gOVZoUNbozVgU8efiCf2jutwR96oneU+4efrakQ40ydoVEoA9QOQ2U7Ny0n4/lXbdVFiCDnLaERo4aMaMXyfnP65GHCn3xwGPwgrJ2fFNab2bTKIO2gC+3yJkpiVM3GPnk/GANlzc3UjSw/UPi+kUFzL1MBwtW4foOrddUGA+6bNM2AyXJGVE5f/mrzi6O7K+9ikYPruUFvqGCumrSDznVy0H1TxqH3XqpBq0ISEWWr5uOvHHx04+PJ4s5/20+OiyJ3aSy0zivn44Jy38o2LXs6YmlneSh34f5GLge+KPLyQfOBiz7h1W6w18paAd7xBOy5f/r6pH+9/qMXlv9V2lwzgBlJtf3l71f9k7iseFQFEAlBNYASmJ/V6/MOwy3+sEvd6W7csoOS+pyYq+nB4aJCnt6dPX2yydXRcmhjnEEhsTeRTV9hHDjI2IsrJxATBxk2bZ8Dtr3vpjem+L07Lt8nYF73P1+PkO17omw/sRQAU9H95m/XaZUvLm/QEHtDBF8mLDI4FHcguk7mywpHB9s+tbkfAM0QuD48XpaEWbqLby6qm1oF1Dw0RMbaQyGj2W474JB3qTGAmKvQDZeSuNCNTM5vnVSjkdm7qPO9kL6lkgNfdsbpug6CCFXMPPzmL7bToZ1cPKpnWPiBQxUchcIsUA4lSS5G1GGeyTWVE9iuevCFn2SsZi7GevtsOw7Te4edU6gIMhKgA4gF5dGCdprVOU2sHCylZA3GrKB9KFPyKPAH45TfI633tGvgLKkaQvHZv31YwEaw+3Z+sCAasBbCcqrZPEtyYcqLYYzZowGSL9AXfTRNPPa7jUux01wdcbkYXWUdlkUHIcMY6Pxms0uTRRzqecEzVvGBhhEoNsN5Kr0eLygBWXZ/b5zaK9QKry3NRLMs6ALh7//lN4fDdzvKbnv201KTjzAR8mVPZmp5HE2o4CAKrnLZU+eXM9FxACTyZZU748kNF9NIROgoNggClp1RMRo4GZuQGQYCxtiLs5TbS0N2nxw68ZjxD8epvsWKsrdIKAX2Lq+7v/hGWdMouVo/Wxco5bqZsmM1lGiEKWlKakieQGNP1FUFBaeJk4WmBLnTb6lgX5qI+RK7ArOgGU/SyNiOaRAZARM7Rxod9rZZk88yW/qMLr/o/7Y/GNIXdet7xnw9k2PELj7+/OEvl/iQl7a5nHbPVgdN0/Xt1DMmswxQolZJY1IkWUM5xtIXVYGugMhARUk5xVAIC3pflXFHkwUiOl9PG1xbw20C9qRgFFIEgaDtpB0m1dYWeRBvycrdH4pT/heIgEScDBFMn68jzACSBdmn7Dmry8v82f/vXz9cTQbGbjUsurOpdj896iKILxRCVjVEhBbEYHU6fhtoGM4v3Qhtx9JZih5WHeZLDpZDheYh5WxBpVfLKAzTqY5Du4R1njiw0ovg0JfxMmlMyz9tXM6lS21hqobO6YuOiKuVonsl8VbyRsTXtve+9L1g4AhF16G0XSp98Zt//UXvyjioH4aUutJBfvLwENgBoaVuJO88mYqNYuh42e2sDDbg0HNfYjlaagD7rmBAV1Rc5hECBx6ysAs0TmPnUn8ZbxsUFSdS1l6wmj0ZUrFY3pxzSX1rbrYmR5BHaV4iN/wB9Z3orvueXq/ndTGhhxRr2UFo0sWvf//LcV5ZOqus71PeKgOdf/6BepdjDkyGriQFcnFIlkynHRZ1yRk6hX7QAvM4BJd3JwrgvePQJ/aB0cyzIkupgE3hi6zAlpTYp9ij0Flr7N3pf3dyvJxCn/sAJq/sbbWrOQbv4N8X1uCLiTL7et5rvs37/b1O2Qe//tWv/mKnR7i+3HKNqgh9pOzx4eOTjAQQAgOQSQbnBsk5xkz+1jRTSOsyoI1xOMA+Ok86sPOeREwcEQFURmmbXAkEOe6GWW8ubbWodewGpm4LhZtP3bPPm8N7HxxywPFqj2p+WQ2+lHrC9+L0TR9dNapBCOm7777+7DvFwCrKPhAysvRlonL98EZHVeGdjaBImFVNDA3YJMyb7ah5U9fSQzD1pgJFrezrYCK7EEizAgGI1c1kE7zbyvQoZk3iHOHm0k6qy3UsqpDM0W777Ovl0d2TWY7J0BG9isT34tSeQwpX9bzX3xQVI0dID3/9y6/Odv1BcVDlhDXimMHQGCVierLjgqUjLyqVDzhoIDQJM1eMLExJDopiHMsK2llBrFixq2qKwNmzy2LmMYqvKQzWaK6Wh+tOwc2mMF2pKx257WReD5krHeKTr6qP733sQkH2Yl/i8/lH78HpC0jtqp73+pOUsaplvfqXjx+sk7r67GZDYxK2ro0qopy8GJ1+8SlIRzhjNxr6nDQUmBkmLpSjlRj9PGLhXCU8L4o69VyZ0xipWCIoechUcmQULTvrz422wdTcpN5FbAq4XOO9+RR3w6zaQXD9hTz7Hw/v3zsML5VfGL6yUO9devbl2uZX98hU0XD9+b/6xQiOZKyWQ5l2MThIcaMoKhZr69z285vEkTLQYi2SFV1yE7fqoI8B1KGb04h14UMqKgyzbFpkSWOqqmXXi2fQJ8fOQYAqj4TQLHtxFA1RvgvVBLbd9Fa6aJ9iUSzPFHwaxvHRF4d37t9dxB8nesHcdSmSkO3Xg3hNFjCRrr/7q7/dzQ4fCj67PzycLMYNO1AoZv6ZhdBXsU++vDhvVvkodZNYIGGRd1POHQYJCD73FhJOgotDrKpcTDA35Wooa2clx6rMBGnHydUEOZd+9zTJdt5m8whGll067Q9mspBfbU8up31RPZJb2cpdhm++mX54NJsHRBXeh6etUFFDemO+6XNf7TlOK80ZyLPmQQuXhtNf/+2jLrl80cG0UoKGrSZK4slMRjG6amd8PD0E6xnLsiDni3o39oOw95qE55TiBRUVZaICpM1D4V1R184qBkIH2TVaOVWQ1BGVRy7HaZLEHuK9wcUYlhPpH57prjEPPBcS2kYTg+7Zw+nJzUVA1qvt9juAq6V977IGr38YkAKapG3ZuPzki+/+Ztejs/XuYMw1d1UBQ1Yc21xRr7HzQGBIiPiIitlQkLUBBYqyQI8gXPhco0kCd79PgIEchioknhxeWOMtqQYhL9EaIcjJUpdDDwfWk8qYKot9HxH8pJHt+tfPliNRkbRM4xjY5wyF7YrV9vTw8GDqTcWA0F9t0KJ3yt6XbCIwSfmmbh9+9tmD1XlVWCd+zjTsxm5Sj0PKZF2HJaAvPA5ZgRDZP1lInFZIuwzemUGgWg3REWbzJc83HbJk6T2gaodKvF9CMqCm1pp2tGEgG5wfhzmkou9GX3opR2OuK93Uzx6mg6FzIQ0ONBSAwwaJ4uj8etyclsehCqhqxfU6l3fFk15k/8XIl6V9++yz3327wTDVNmMIZI7HPJp3WSSRjtygnwSUqGIIQDBsjroNHIek3kuyDRISAIS2p+nEmZRl5VOXRtERJXaVrzgUIYkoxMFzHnVsQ0CTaAwkTG5+GOIykB8CRrv3zaVLOMrgDAghZh1HJaLLk7n0/QYeLY4PK0c4GCDxm3z6Jk6jK0K+fHL5F8+ejVyYPvJ1Q8P5eGCTHNRwLRj8zO1aFlVLETXvZ+o4XdKveeYV2DuGWnNWICydAzNidsJUlC4PI3gGy67w4Djv1w+boIIMUHKHVnG2ValcuKEPu5loIbH+8P81+N18RKqNUHQLofEjRGQHnSDDcNE9refLqd8HgfX9OJ2m9tGTz373sD5buVqGCJKTbKXsZLb2E1/VncHQ2rbOLYsIi4qhGTq3mh5/tjmdlEXqnaMigwIQWeFFu+RCTKBWNRjYXHAsFixD6mIyEB3XBJB3OaSYtEgZ1yN5S21vuyqNtfH9k43zQ30alnlkz03c+qrZJvUpDYp53d2STnl6ODtwIbDpD+DT/tHvvni67iOqdyZYTrY5IbtmrRx9VU5Pd76AqDphdEW24qHtF1n69jR/crcdHx/OxhHZP0Nk55lizH7CwwaKaZl7i0XpLJsimpgh6M7IJMduqRZ3qUg4CnRAySaFZ+fCreXjLcLip/mUSuZ2c6QbKKq6WimyjrlM56Jlo10/XVbY7uCgXi4m4XuCLfy/z4NW/uLL/+u//cV2uDQbycM45ozer3a4u+Rq1OlHB31bokGXD3QrqesUd8QGRNZTgf/b+//Daod1WdL6IleYIUk9doNzaZA6JiIDLsGAmaAafN2f90Q8Xm7TuL2cPXu6rGO+eNqUzj1roZ5Ta/Pl0Vlb0OSnn1z83zZGesieZr5vh5CHdje27Vbq0rVyuEgLz9vduOhz+zTuwKNwVhZSJASg510l5vKMnv7bL769yNoJcJDHBJIN6VkO6MxVXbDhojFk1mQQVyeuHnc5CmcVJUcNpmd/9/P/+L95cos7CkAEamjSF+K9KjsPlgwZMhEiGORxbFdbxGBceEyw3ibbofNrU+mi+IoUCfz0wpVd8/HtyGgKxAyS1YfpdLTYE5cWQo6qmSBuZks9a4+sG9RdNHfNADVrmaMRSXIvoivffPnrr7aGWnn5//f1Z023Zsl9H5aZa3yGPb7DmWroqh4ANBowOIA0SYkKUhRDUsgh+1P4K/nOYftGvrIjFDJtMSxSJExzEAigiaHRU3UN55x33sMzrTHTF6e6AVah/Fzuu4y19lqZufL//6XAgaTmWBGbxTScyEKeksOQcptHQGcnKTFyXgwIVxTMJt//wX/yj+Z/erO/LJNAW6Ig8tQr5UxNzCpPulWFtbFEACCBl4KQkFmEITwuNYLL57aWcWjbTlVW2vtBQf/+d3chpaJQMitlnANdvE2JEaWUJVR4tAYDNrysBlgS03n1Rff8cqWK5FJJq780xaD/n7evB93nZSAWBiIrhYkBlII0J1wuFmy3HeZCuJSma1VYsnZ5ziyIIDVS0T/97IP/cvy3P9/RGYyLM3srcQSvHJTRmrIYT7FXCqVU5rQU1lInqLUy1zQUVHo5xj6oFNbeQabV1k1wdh//+kb0FJmwTjKy8hBPed+2cSqoMlPbGmUU8fQWYhha8VKyv1VPF5e79TpYAWD4C/8VtbnL3ubTUeuUw1KnWllAWVuQ0qS7KtRu1wYA1zAVragpWUhizPwOBmkU2vn5+5v1/W1s8WRgmGKunM6p1hqHQYiLaihKFak1l7tpXJBqVlJzSkXGYYZV8/gzYyLn1LpGVdlcyX3l6++/yMEd/8mkDVlYKWMU8Du2JmvbKQYDieXxpIr3ZGyxpQRtOOUw5uSNUyX9JVcSzbkunApRHUPK6rxFYK6ADpWgXQNnso0KgSNbbag8JPE8JWQGRGHRwfLdT/9u+vC/+n/8B/utEMtcISRXvYZxMWACKpbK5aisNQRy1DlpW6GPKKWKSjVJjYdzt3BVqoBlNpbisX3vO5clAZNCqdqZHEgas8XEUTfWNGkJMahiMNousKOunrjYUoxhUx4Gt99eNPovZ006xaokVbr3T9GvPReFzLkKZKPq3JbVmCpBSRJYEFQTsl5JBfsauLIQSFFAP/n0Q/rO3799s1eDKhZTyYUqJ2oNLBklVYoRJxBmNqoGRaWUUjnNRS9Kp2O498ROyGDfLrRy40D9tz5UC2k+zhVAhLJIid4ZN7ORUNTjAX3jxYyd8jmWbltiL0pA0px12bhP7x8vNv4v9XK1UzmOi99MxNE1HmZtiIwCjmpTauOq12YR6cTFHGi9sSEamQJTlcqIyhPr9sc//Giiv/b5P72/fmjRqCVzGpDFR5VsELCBCkgtuRS+pPmUYq2cSprPUafGLMen83NjVklbtfaRVvq0+P2uDWxNensoijjy+8ZpIoIxeFlu4wpj3+g6l+t8LL1biGzbTxLjMWdLJSofvjhcX3V/Uaypj5dAl3CPbdG9zYtRm8uKqxwXAbA6Mo79ZrOZTs9kcgD9k1s9GXVySyZEAaX4bIuUx9++XPCV/3ef/7UflzgVSRmMlhSGczoufHo7N2ct52BNVREMZ1H28BTCMMWGaw2wIrZNW8J6Pe02koq//jvbVHwt/f/0R1lrr83mllebzEHrluhydRo3oMqpzk9U9FCD/8L52Y2HczFrirnWkswx35aFoLaUbGEdz8o9xUaKb+KSBEYxmZWx+1gRjG8OutGHc7w6p6ygcfSwNd42JZgiDCBSlUmFhz/9aCUXf2v64R/0p8fVCsQsWpcpS0U2ppQEdoZSI9UFAEABnM4jliyqSGHRxpaLPSM0BVBLNtffERYAhHqfkJcimruVLGpVhoJaRG0OUFpKXWv6mSTl+VMxpcPd/lOQNNfKT87oMgy1eXVlNXJutCoaBzAxW71EsVoMx4RRQEpRCpRVHjguKY8OKg5KkUxFmcz8zjARtc4Vj//6dy9O9tnfmP+DBpmVjeOy9mGqimYduWAKK0JhVCQipEFwPo7ASZC4FLSrruz84pqWnaNktx+8NzGAEJeHoohzqa83FqMuixblmNTFGctK9FodQ0wVasJJingc3WoVha25XRWDdQnXD3dvX134UnQkrT2pcDY4hLZ3TeEcgF3BxlDhRW232e14vpJVjSbp3tvIyvQzCQuKEDAAxh//+d8xc/+huv4nYtXTkIijTlVpQAWpmJQya4dVNxmJsMSUzhMDK9TMony/JhmKbRtY21Sff2ubQQSEIEyotEJDMQYqFZJFJIjktkD7MvVyFmBDpD7Sk6zV4dGuRZirNCaWOaP/5Gr5+ScffKfTOnUkHWfRqSRSNeSstdWwGkF7hFxOBki1uPZ1hwFmnXGT1bLMvxySxZpAEY3/4oNXZfCvuuXffHbV19gvIbPrJGOVBQgyVwuqiJ2VgTydRrVEUEoTACjTNpaG6HvnXBfD5YfP82IEUVCWiQgIFb4oI1TnushLqIF6EQWl1rBDm9oq5uC4HPm8bEMqORJ1NJZIxi9klmOe2u9r3U2p4xBWSVrkU7HKFaIUiUsi0XpXR80x+PthbKtIHVAZp0A/ARELImAhQoM//OHeTMGof9D9yy8G1wZJC1ORJRiomlWewCRiHbTSmIfT5Bg0aoXCYNvOYoZu05DpVG0/eAXZvSs2ZYkEicFpKMFXNeue51mKlp4lPC3xsENJPRM/7pt0m20PYYQ4gFU6UTWkL5oAVob4R7rBGKDp2FUxPBUybTsEl+KzJKi09TQWRENzw2JUWZFTJdUwu8ykKguxYSZGiX/6my8sZXP4weqf//BkSmu4cMgzFkFBYCCYgGlqUXKIqRbSVEvMbQXb95q5sQq0EX528VxF0MKI7x79UwZM8uQNZSxz55gJKihLzJKfEujaZZQw1SWwSilPdh6MStq02LBREsdY91c/Uf8JjKH4ZrGBjRR7wZ26OXuoEFKtFfDBv6BgNG2ptpxWlCsLxuCOIrUIKvbCCFDD8v4G1AwuNx9ehwECKCQUaBG0llrWjVekCDAv5zGiFaUIao5NxXbdUjVOAre26u99SxXCYoSYdT788LRkr1W63nUwb1d6NABexTigM8nYRw9UupAXkqK3lzYaRovQX4tHH2ipyA/qeUtM6iqB6tzw1JKH2tqjTMPYmnnd2LaOesX2w1PdLvb5J5dwaur44nHXL2HXPyafJtKCtQgIaN/d2e83c0ORwe2e75q7nFTrUJCUQmVszSmVynVcEvpGgVLIop0Hu362D2FbgG1v7P4/7YEIlcpGsjKF3/xJ2AbW7UaAejk9fYDLspxLr1NSPjwIbx7dK4mbhl3H4Mxzm1dmFa+TzFOn3khzdBrt6UjqWQlLJSnNUB3PQaAsxRq7SWQkkZFd8M0Bd/GJ17sidunPxtyzfyJTkpTERIiAiiDJ6pnPVCqj6XYvVqsyzUlUrCy1xDiHEEJYFqkMiAC5FNBaiu7WK5urItXvrHrxGx4RkRCrEkZV4ic/Xpwoo73tV55svyZWTunWliSqDIfrbhFcmqtY8jTkMsUlmcyLRwmy6idS0nCF2h7U77RON+tVr31rwLu6V8E11btkHYHWsjts1a1tByqEkXpzx8ezmw6bA+WEAhaQAJBI1GP+YLMQvnN0MrveWYN5ycLMtRYWFhbmWt91ARQLKcl5u995KYLNupXu1763BiQiBGQFTKrmmx8NhgxRwbZTYvpFwLcSa6e07zdtw3WQEijtJYxBOwUKTSqnfDPOsNnPPEcldtVdJPVeTSHVnKTWeQYe63TqbO40KKWtVWBLvywu5rY+La3GixtcoJ2X7RPVigy2IiEiYnHTcrHXVBikpFLZrK72riaFwgxKk9JKEVF+58kpDZGWiuaDi64EMGadSvfxb+4G8+5RH5hAELke/vSRtK5wFsJaai4lMoQgARUzWX8ej+R8O83JbNY6zjuqRjAuozHa2dsTzSUrs4S1eoXvLCPsaYE8F2pR7U3SGTmTVyzOdhF9lPY0dVtM+fpw9eJePb9XphaJCZAIARETQaHra0SlCAFVAjTGug4NlMJI79jTzO/QxyLEpFHvXrxsZJh0a/JN+7d/XWZDSO+USvROFDn+hzdiVJZ137qms9xCyFKpQ0elcMl7TNb2W7ybq1XTUPUwkLbE4jSqdhGNndG05KBekfGNVdSjM9R25u0IjqkxiYtQrXpjGqzW5otbvQ3sTm2yHFtzBg4FmY3QO1+smjWk3UuH2hgoIXKthdF0ypMwMyvAd0QB9c6/Mkaxrn/2qi1hSsaVzy7/xm+1Y2n+IztdAQx/9AVbStgoENKSnDZ9j2wuDZmuRW4bZanCYspS6gK7cAoOWaqUGErDzWvcGgFZPar3UBmFpQrpUlsz9XqLi0JVnQKJam8c14hNaKORQa/NU3e6Xfkz5jxVDeIKKQQBVIwSYP+sCCLUUgjx3T/YO28VgqJ3eBMiBECtKVXX+MbjOQhqPq3+3l9Xo3GFfmX/hwAgVP7oM/Yq61YZrbRrg7KNSYtQyKRKlkXGQjWNFd1mS+y0NBcwk+4VlSGd+QFcDmkRUq8EQOI8r2ZpVK7S1GYaDFnsHZTUvFj6YWLW+bShyTizl8QcW/vQ1cCUIwARgiA4kpqW3a81SkRIOaVABFBn2zROIwYWZq6sEAFI61WuvqESzblYReHw3/zaemHzFxpQAkRgpPIHn1ZP2VoyjlS3CxjmeaxNZGviOZteXp8McYxK+w7YOr29lmW1zqozAblftyvtPSOp//V8+QG0F6WGFyObtx9inpSZprHWJStW7Tnuribt+9hPdmPwdnvE53ucFltKSWIwWVXYGMiyIsPxg0ugDqtZEIg01lq1ZPBWa8nivBbR7cqCXwf2LUTyFRaCP47/7d80Yhx96ReM7+AEggDH299jpajS5I0x0jWxZrPm+TJs13fDbvNYejvP0vJ6dbwf4/bID/Ec0Z4Oet/vdsfSy5IyqkX9ZkjDw8ScSN7MVpq3USqst7rnyLbrzMarOkIZP9zEMJ0YhUJplnG9lMIsAvjO5xmQIYjw6rtWhISrVYoAUIFTpDQhESqjlVJcGEzTORPP0JebusDn/371v/0HmpT6q6QEfPP7VVmjjNqs1mvElI331mx1YWEG07WmTHORfj6N1hXVqro25FWJipLkA5PSrvVW1LeRsbOptD4vaAzotsl1u4oaDZTmokNDQL0qo1RF1bTHkqUOA2cWLlXQAhAWIcUSjZrzr68xW8VKaQJhMtppbazSxmmlSOmVMb7rV+2V2J3cTL2h+Xb9X/7D3iilEES++q6iD/9uAedpVisiXViJc7wUo8vEjRS9UlJSBSjJWoyzm5Rp5tFYD0ppDyGnMA/T+JTUR57VJd0fNjx1XbW8UUbqasUMDsr6Ut8CMukaPwelvQHYhNVqVu2RgHOuqHwVDUU0kGFnQrp61idrxRVCrqw0KSSFpLTRCgARTLtarVZd4zSbJnzxIE/9/+6/uTaaiN75iX3lBWn4/5xZuRKoLRmh4SQ6n6Zq56gsoPM1i6Ka5uBgPk42oXYxt9RKFeM498I11hpA/e0rKq4sNvLodW2m8VAtGUsQEzRX3ayNYpCSdCsT4xLpxFC26yicQ2JlbBUCFkrKCqki6v0XwsQImkBQGxFBFFFojCEEZL/q2vVul7Z9uH2q7W/49d/933wXQNOXcvWvRFqGf3ZkMMmyRt+SW0L1TpB4Ji/QOqysjCzT8yGpfoX4Qrjrun6AMg21jLME9G3bGtER+xjpSh9WVLPVg8zYwNNJegAyHMlPUpFJqEC0PvCbMjc7OZMq/G7cRQkDgWRVuQrhF598t5mSFA9VqVyFRYgEWEnTtksoJ0cZTMauFrta/eZfzz997+9fRjrvvjYX/+X/VFWkXKoOp67DkFdGuU6HmESrQsqcUFkHkWsxfmf4pJBYWEm0GKkmeEvr3kupK/12hgHXamhst0TIaW8s14gmojBMsH179CbPvoayavp2UirotZ6XBCKoGYqomlFDaSWziKLDn/7ge0p0IkFlMZWOFBRlIArXXcn1CYW6FaX75aj+zt9sbu83v/n+KV1cvFNWfl25bTQTJbLV6PBkyFVriJlD00M2vBip4rzK/KY04cYv9a1008LOhL6ZjFEtmLZxS4ZZX8+nk+v4ZnMgp7JoI5DVxWp1N5/c1ubk+2fN8caYlrrIy+zt62f929AnFiBdSxUkJiWyXgqSAph+/va7WhzUygLAeQMEFTRqZlAk/H1Rq+fb+PQ/9i8/ujj/yU8+eE5vr1bp3fvJXyFRt1rIFEN519+f2qurtxuMNZa87sbcxanZTxk0YPneTT7Eq+3VZyllNG4Z1gDK0LYSFozZZvX+KqutRGwJI3vMp2m/PS9r/wS0u6ZlmN7/ItGdxhlAkt4TkCGkmgeXyOdcUARQaRuBFJSc9jfLbzwPEBwRCGhLIKidBoPKa1Ft26xbLuv3X338sf2zf/ezh5/+T//stdv3OG5K2uu5Kf/xWC5m/n+lBRLC7sX+1O7LUteUOe+tL9BS1YFplae2mR+PZK2ezyuv5wpTvlGXy4d072g9Dh616DLRrsnIRIg5iNrePynP59vtGz3rF7/QIbVmUJf2nmphUs6SpqpQR0JhIC0aSq3ERpgBlZr144/3BA7hXTqomQUFMSpSSMqZxKw26V/+X6RXt/dLMFP++b/4nf/2H334Rm0O4qevirJULagLOXdc+m4bHl8yLwzZcJzYoVSDh/NqBU+068IwzUurijKqzrKFzKMm3ZF34WBGvT+JSTOq2RstSezN5JGE3G1t900xfIWSo0xwBTmlNPYHB4UtFwekBAnJY0zMVQlXQcTcPvzBBy+/ZFojkjIACMqQYiQ0Vjrv2/Ff//d/zN7GqkCant/evf7X//s9z40E87VH+1KMVDCAdu0aQzJJs/ITGwTOPKXeVzAN++2L8nYK7ablWbRMx+fXZ7LLyg/qyOvsdqh+d7AXGJBmp0RxzL676oanUMZ9fNXe2gfHaTGw2ApoKASktSpNE0+2MkGpYFY2JqWFK4uIsGoHeHndsMZ3Q+MEqLRSShmltfVOG3vB//S/+9FaISjrnS7QtPX1Hw3vX0cNyfPXMof/3lCszcB+XVWzw3NUu51Ap8E0kthCbvSAm9yY8+1gNyxJKYaUzTKncZIkj0iTa7Lq7v0e5mnRHqvC+fysFGGu+bkdVjr6IYyJrffbA5i2Nc1WN8vc2TnrhJpzrl2rYialCimjCETpqLavrovGL+ffAYmQyFlN2lnVcSv/6v/60yuhWgBq5ZIzaKd///bZt5ap+TpY4+l/sDRF41Ju/cqoPWtSmHSsYFprHMAC4Ym6QZOUxHqErLA4/xBNsWVeC9EGFrVU9YwbSmERVCLGYeXTLEqbRs8vWmhCu4nKTrCVBZkraK3osDSSdymQyilxpyFnVlq0MZoQGSu5Z+99mcK+W1hCRGsUKGvQbfy/+j9+dslZg1iDCnyjBAmnT29f/oae2q+uKR3+B5IlqUaZDjQYgo0uIbdZkFCADsht6+0MCnUDqdqmYp2E5rpze5A9klVBGmP1S6Sg19aelJKieiWqqjjR6giXdi5ptc9nhIrThYCwVblXnW0Hfj4JQmUgWUgoFwvC76wSlIqvf/Ltvf5yGEi9U8UBErAYqiJ/+H/78c7ekgUWripnAYVS9/X3cP2bX4elVM4VUcljb2JgDws4ByVNO67ljFop0Y3PfKhFgThbNmquvNRipBoMcr+z/JRU3K7VXpWzcsXsnYc5ApUKmtBvshFTki/LfEPbZkVZUNCp+bFEbe/De+cBYcmVTK5QIrpYa6mF2XYl1vbF2n6pBlDvui/EBExGgf3s//wvX7i7XW4kASdRQs4CY9rAn77+wa+9dV8N9fB/L1LEtJrb/TNVbQQmmOMr5BSr0S84wPkh59g7UEhd4WPV1dht13TuyZ64MSfCk4vqZVuCUpymu8KDcqdTO052M8/uylVXJ1vlagR1/53zXT/MzaENkAdru3IQIzOrOfausqA3iis6qwaTNu2D/3ZvHTAp8IRIpLVqgnG1aX76f/iD5zK4rAsrRIVAJJUBTFzRz8cPvz0vDYuN9G6mmkX99PcOGGelOJO5aC2WVadbW/rW2LXijkGXqkSp9XFrTqunwTRUFtkc1azPc8+hpH5TUbP62NeqFdmAnAqIuqTsDbBN+rodwD1s9WS685zOB2er4icgC3WMweQQBWt5+XytFNbK4DoPpex9TmHpn3UiFYxR8uXBlLRXZdv8+P/0w2CXrOEv42MBAFQqhp/0x6tCDnOhX+rO/M3v1V6xUQqcwBIB1o12xtlzzMGvawRtDRFmmpbT7FTQLCi6+TyGkLRTFZ1e5jju1TNA41A1oy4RcrLqkNcKtUvN3ie97kWdLy9mxaWst0V18zqBQHvZTJLFw1z6hucKpThEKBnMmIAV0eZ9pxmQKyASIYDzwsr89L/7o7J2GY3AVyJFjNZ+9rj9vo6oMsovufT15//v6OqcjdY+l4QCnhgEm1wZenWYGKSyIBDOi1IuYiUtDJPdULuNNSaNs+4kqxfke5znlAAIC6suNKsS49E1MdTH9K1BameXikptKGjnr84RioVbbQVcGsHiMr1zqeMYKtECli0G/73eikIWxHc2/AajL3/wT3/fYFkySlFfiZR9hVaG2+8/58Wg4l9Gaj/9l9DrImhdW8msLjxxDtOoHcq6TwtpFEbbhOor6GGuMROkaSS7Caa9X4py2q46y+pDtCYNoXr2XY1l7sFxynV5vva6nOvqdrApQVpPbE9VD204mp3p8bA1uVBa8Ko1vpVYg3OCFpeVoQWxrp+vWrCafEVCAsSgjfrz//GLizYekyZG+kqkVAXEy5vyg6v4Tnv2LlL1039eHaYsztjqfQt5kabr2llpQA1FCAWQ6BBQsDycmqI6T1w80QG60oWV92sYS6O+KwShWs1BeWCACPGQF2727ct+cpuT4TVXKusFdGz8UStc9wtpRTkhlnlZWdd2PBdqdcHW8GIBO6O77fWGlLDmL/nOsuc//1f3V32egzZAlr8SqT2jm5OFH3383aZk0PxlpPlH/zMbCLOyItIb2ZksKsVIo6GDWkdjrPOWJEL1NBb1eMqYQggbTIto64IF04RRJfVbaKhqj2MO4AHWuSvBP80XrdbTEdX4fqs6mqS05p0M7RhTPinXPi6gcwxjISlQQkUjRXmscQe2rSDtexeItbw7eoiUqT/64eexdyMrSAnpq5FSNrYW7Q7Le+9XUfCrNf303zcrJ0VsZXPtC1lBCJVkMK60q9Jr0s5pXV3e5DdNN1drS1UYeaYywbmL0lKEZtCxOqu0npGfRr8c91W7i2c5frT2xwOEsP9cTx+v5n2iHG0Iq/misit4zDH6OizK1RqKA1RP3HUGh9N+85CXpZUvHmevyLbTO787yn/+b3j7p8f/ers8fvZZ/Zp1MqQ1Ss8pvfrXf/0Hzunll2fzkoRAakaoqNd6UKuulqgMrpS50OcQllmcJwF3VuHmhbqarF1A6SdD2zQ3S7fonlmVSW1e3h3XYWny2NJnac+Yzssprp+fdpRSY1fTeWfu0Ra+enEiX7k113QbumrLMNhrfXTbzsppaaIzXFFbeZN01A2+sR+vTV+iBd3oSv7P/2Tlzp+a/6IB7Wuqf0kG/U6FZfP5t/0Ekle/ePY3pthUBEQixT/6IX8c75KRvlclD6bBAt/qptOh5SdQLGyT1ulZk+nnN27vTvVxpDewhxisqbXkp6wKS+7VKx3E59O4XkqtTZPN0l2Gef8Mi7FjuwdqNzASnTE93jVNqWw8036v7xZ0luYnrUE1VJg4UeNqSO6iS4nz+tV7GwuiooeJNvnzx9RwvoO/5opIzFy+mvaV2D1zCitIdh9fZ1vesXdh/tN/H1dcODEJa1XWK6q15fTSNWUhAu2uHDV1jGZ+y0X19yzGZRpaYh0n38p6bSEt+Vp9i6kKTFmi0axw1uql+pxesoslPIU0rBk5i2SPp3kDI1haTtlwPBbjMU0jATYbz7WSwjwtdcthzO2mObrmepUVMpG2+fYL7nyUx+VvrItAkbJ8dftW81vPVhaAId0/+436qxH6+ZNf6DVOr53QOxGJS+NIMeRYomCVTvj2Ddp0wPvbbaO7CQFAmmNnBZep2y1XLmupnVIfRrPMqmhJtVQDYRA/PFx9bLANs09HbW4O2tVql2c7J0/1fQMRXB0TibE1pZLRdI2qsqBStSo/M7r1CpdB2w/21YhLbjv+h8/0eguZHk5/a5NLKZCG/NU69PIfv+yQdTX1oL51menLWI8/+Q9n8mZSohT6zugOc/KKTsCg6rxMVaFpjPjlkPc63Ds0VGq3iKoWc9OZfckr4KtFkwDUKmUlc8LW+Is0phbHdowht43q226ErQR6AL0vXHQN3NPD2VhjLKKkAKqeOcF+DtjqkvN6rcs81ws9HBajWby5+/0/bH69beWiu34TuphCL9Pt9NUOtn++PwF4Vaj+0T//yJcvRWlMMp1Njo4FpLDpOmXsyiNRYaqI00pd8sPrvP6UVyL2IZu1GecoA9RmV2W6xtrunobSqN/23vcd5LHfm8zKIIWlfb51cOZ4Ns8ouzQSjsfOVi0g6TJWOR+pr2y9c7BMtjdzYGGSmKWm5zrEmrithVbbta1pNf7eP7vvx825VAAALC1JREFU/crr3tXb618DzhWn+69GWuH9DxvU2Fg0T/X7L8qX5jCffPbj+vzSliErLcqpGWJadM0rYixsKjcR1VAsH9b9+TE9ivINnECyTr4LuaopbbZ5hln91kpMrzTdbVZlLojKQnR7c75Es2S/qWEnE0mE3Db0ZuraDTs+2Fe7ggjky3E0mxZc7588zVEZsNPcbCXSHAk3Lw1T+vn/8qlew6qxFtZP5vtSQ8gPn6WvXjOz+e01efbKW5jhYw/vDDTK+UfDzqZ8ZNeQbgz1ztuts4dzMVV36VFD1/RX7tPkEaqzugE0s+vFz6iGqJYRLGeOWo9mkpJt94o/OZqNWkLQXVOK+WyTxz5/TgZcS0EujsdzxxcX8x+6K4JuHS/Ow6I1VgHdtbZl1mdjd/J4hnZjY/CXgR7uC6juJz/j6xpDrJLK8/dDRUIp8/mrnV13/IJtZxbLnbaf/Mu/89fe1bfytBQy4eFJgfVitE4VlLIoyNpmoLxvYDoZ/3O7g7Sm2KKLdbU2XvRhVqN0zHw6ezo36tfnp169Dc2JWHVYWxgo+vcNLX5UjnTp0tzw4tOu+aApXN1+/mz6lvq0WyAnA4djbF516XjcTKdI8wzut3iIk7qoE8u0/7VePjubXVPAGVoZyO70vZhLffzF8NWzd2pPv/m91EOzcptO8w9/87KKrZSG+x+fXbtphkjCF7sh9jpIGKNvqtnC4/1U8Tb0Y708j4ei512XTlRTeliPWRsNlevlctp5MMruVlaZLtcyZV1idZH0fjOdPuBl390fGYk2nVl5xXJ+mmPgaDSxee9PlK2sCV9jjynOOZ6XFGG1eTxVD6Ilb3ZG9y0WshYZUBtPoPP5ldT5fDgsy1c7Y1I+/r4Stv366uU+vpX3dzE4dz6+/VHYueELDlySb3nfgVgSBRWBSa82HOL+W+v+3tvtio0rDebz4u2bmEsJRXPC07Ju8UZ9VA4hjOLWwNaUaiRG9WyTShfKpR9otXaq09LYS9SKNMgZr9w8V0zX2zqXOM7KsnapSDAryYhYteVapyuaY2qeofVdYw0wk0bleVrpOp7Py3L66qtEru3f3AeD3aq/fr+rf/b8iljBeR5v6mq775+qVtivlBLcv+zJquJSNnrVKUfGmX294sZOalZ2maq1Q9m0iAxGQaP1Sielvj+OqvXOTUPEsmALEOnSs72vKU9lt95acDzU9CxC39WM2Ly/Fm/qdmXzwnkUxurWqJg3lzSlskmVoVn7+2mC2P7gFTZOaadAiEA5mF1blpDC4/FrHWxYfveDRVXngLaXV39O7VWTlvL0+NPbUGU8Vm114wRD2V6ropvsczIZz4uq0/kk7/unpBgmlOOiPB0ORopyzveiG401t+p7Ts981cY6s+aiDPnqtzVSTMNyHL2GGCxPIv40U7wZ7TXbnDqKMqecjVevi0PjwdXifJjAzLhbK6ph3l11t8cPv60MFnLWkEJBK6Hd1QKwfH762i2jz9/7HgMa7xBNcxvcpUfm8+1P582FfjtlZkbkl3lRep6gxAYjAchTUGu/xC4t3K1QZpkzsxa2wNpC7ocBJBkP2tStnh67XgfSiJJSh60rNa8e1XW4XZxM5+Rxv9J+DGlxl835oYAqLAkhiaHQbBpToJMkS6g1kmt5LiRdncjS3GQsDHZt/JQkB2JpahMb/7VLphid/+jvXgAitpqrujjrx/zchKbpVqtrN0cIoktxutUeSqaBekd1hYaKVqqOn1/2vpGyVEavhPlVypJrmWmO6744G3U4vvfscFwuPh/AsKIQaexEMINbXU25BeLKqF0nXZDmuruKDWllqY+2XTjx3BnrIQkoA4wO4kV8O5ernY2PJ7eln/7xbwgoQUNaL1ky5rNAmYbla+Y/RGL/5JNnmA1WY1B1ssmPG5NyjOdsm7dNLuhULUfTd5aRyRaLycXuGbFkcGyfgIop17kWjgjnI6qkvZ6QtEM+FZ14Pp8t3iflKDlLisMcqmTa++mRmlHbi1fu6Ty35WQutiarlpZ8LvtMlr03pVuGqri6WgjdtkyUse/35y+krNfN7Z/92m8AWa6imgyUWOoxpunp4fy1SBWIe32DjleYZo26C94PR5NKyN2LD+ZZxWJVHeOe0jnn3FxgFskyItgSc4YL+pSu1DWtnHu4GfZX06xMZmsrzk+Zm2mnvtWc5ga1b/mJXOnWZYBD+tbOLKph6fLN9cE2N/TBSHCEbX24S2YYmrVaukECuGO+XVw7y4Zz88o/4U497lWaPl2+/fLlNOal0z9YsTHQBq/ItIoJ23B7f7y/F/yPPxDpy81/oZ1RQE7nh611W5XlPN/fDqf6vSUsgGzaF9U3GU3a7zisV+PZgMuFVJ8YjzPG9XlSsqAW7VblQiCe+jaKCtCoyxrtxmJ5W9RWzRxj0XEp6jKNZ3C1/fV65VKqdp3K6NY5O2VN05bz1MxhnFirlFyHqtVEqkYs5yaf6fm1r3MIZnPRHF+toQgDcylAhDjph9eP4/HNX+F2g1n91nMQQUXMi3dOI/Ny/8l0eRlvhoRKaPOsOS3kus5GTGrTSuaqQ+SsNwYJI6ycsk4Zns7cyolbabuyoLUuqt/yVdsajsFaFw61alYpLKnTtoLO+vlnWlVwhtDGoon0TNroWvBuSRrNvvn8QBsokpcUi1I5HXXfmxqGmrRNuR4+/s6+Yk1M/E7lu9DD/bAMN/g15boqGHZ/XVUxRhjQWaOA+TTcT93VfhtzFOOcbrPzJSuNtBSnSr1oN0p5twGDeRyKbtk13vCclcMbwAXqvKjG6k69R0Vr5TFSKKHuNh2nBfE84eU2Bq2GzdB0/nk/1w0N0POpGliS9vbQdxem0Olx2X/gRWtRqL1Uc9/t8ByAv2sULbG5jt++rEqBB0SEWmr1MYR5ePy6Rl9nO8F/tqngNLNCrQiBZT68vp/D6X4bpkpaQeXWFTFUeJqBVCtCIdSs2t7E7FqZJsYqUhWOMOrASkB7C3Gv2SJxabXlAHa1MuIzahMfnsJHTTVNvl5yNvlUltZvDOXZk0y8b9Mrylrx9MDknChjPJCF7P0S70Hv9HFBhRch4PijS00EKEDCAKBsvz7G8DWNvhCAoi8+f48ZRUgpZkAgakU978zt62VCSaa9vCGp7a5PxWwijOxi8VNUmZZHSd7pcl9KJt1s9XDT9TLvEUkZj+lJ/d0d1eNZHgVq1xk1nbETxmry2V6pqeCAeGyWn2xgqq2Ls11Is3g1r6fzkrXh4+L8kp3mgGo5iz4trI3KQ/F2WOpw2q8/2FZOufC7Ye2ZhuPdzen0NYoRCSLm578DikBQZQAiEImPA5Pv+lyWhNaA7npJxvHo1n0HU5aEbFrl6t0JYVnCzjiDrm+IpuLC3ENmqcqpWX1XhhBovWTIikTlOXe21uJlmcA74+7afV3rw3t0rg6mtCrF9JpzUmfk4tAs0XTK+1IPYoexhgO3Li1FfUT16cmtWr18+LIqXRlAask1zJ+9fvsQl69NzVHWydX0nyqLQsQApAiY5+PdJz95yOUlzxEwHC9WexvRm6cq2DXYDRGqMrHSIL1R1hI5XIrRxsAAEbPLUJcCmdRVHpCa/tzqJS3RSDeA4pLMrn963bzwWfJ2mHxdQVBKcsKrbDf1OJWcr5yopO4O3GiT7uyj3onqiHKo1Fw+Cz9bmm4L9/Xuow+L0lkp5BJjkvPP3xxm+VpvECnp0PLTf+08AkElQiKptT7dj/bFOswhpaq6zZJ1t77c240Ko9RZiDUYveRjUMBdJ59lmm9OlXXFB9D9qIu1YjxN6nfO1Vhf1ebMjdXK1rI7Ls+xauQ6HMx795g/l9XxUanweSYfbJcec8mW3/dWwTmluVt1ODmV5qKB29zUunIxnp69aPIxNp2dPn7vTLVWkgD1WH7yx2+4DFzl3fcrr0pWogvIq394NEk0vqMni6SHhzezohd4fCzEaMwLbWlNg7ZaXrq7C7srEeb18ryTyfrYdE5PW9Gzvua3lROaftsPx6Zda3SNmU5SBXynCugJsdGm4aBti/Nb/a03Q//x83EZkmo1o3lEo6Td69tAPFZqb5NatG9cNdOpWKvef3oM1Rh1GW/T5n054c8ev39lsT0zVBbA6PbaTen0TVYaPz9qIcW/avKHgrbRD68/AITKFPosnAcHJqPTGenemRWOsj6tr0o8n7NOWME6LiHXhL5R8bHRPT9eaBYyGJk+RWdUqI3xYABWZtBEJdzEjlY53S3O2C3cDXYjpYMDGjYVrAtI1jhvG2p+zk3XQpgusrMN5jw1u7VP9w8l9APt7itILRVI8wsY8O4+fxOZ6o9v3mNF/Cv6bt9aY57n9LMTOywkp4Jx1eUMkfFcczjp97ecl9bH7Bqg9lhIxXFK16P4UBGXITYah/l99eJukMKKuPVWg93MOi5LlLxvpBAv07B/vzyd6m5duia0H1zXpoU51tJrvVY8hOO96xBrzVX1LVQZo6gawUHSzfDJU2NXNjx7P7FirJkw++uVVqc3g/pKhL/8zn/vowJUDAsgCHM4Pr09xePYSU4hoe5bcrsP3QKouO1tv0ouxjNfmfMjbCjWI253Go0p6HJccEHlrdauHXSjUnZrJT2norzyjU0MHCFBxr7VkcMJ+lqIH27Xsp1e5+0cOeeVzFVS0aKRNBlFbZHesXFwnJfsnq2X+7laMjrD8tkv/pYHUIJEoKTjp3iav3bJ/DLi9Ol/gvyXPPJEEMsIjW46LqVEZ+zGxqS8wcPc+0WjCJCQayaIiY0xTTsWIQnaWqy1GC2glD1qs866GOQ6j9JaWlJCbow09wp8U1r/vXq/bY+DrKEkXe/evFLAUJO1cZpmr9TGKmVXDWQDBkU3ajaUqJwf3X6v9cMxt/u+PGxY4Tt239Sejufj/E1QQDA/Onsm9asXKs3i9z20nxZtMyp9XC59uVNXQZQuWWa0LdVhefvxNmtk5BOUy8l07WkYgqAxD1G4pyls9Vu2eVYmUW0AqmQKLpI6rLdQsU704uUwxnoIZt5Ag533rVN4Ehh3rqIyZSiTmrnl6MNyEFnt7rg3Y0h11bg4RW9breYfvvq7JrMIQ811eBiZi8JvWFP64/sPEM3yy0nJORW0+Pj58zlMJ+wdVxG7Nfu30V1LA9jl+czBxzttXaNs/eiom9ZbtVvmICDaYqna5nrSod9UrfV00+3pnAxovFitfV3Xqsws139t6XOsru0E5kh5Zpl7yMqmR/A76R4XAGWNzCdVNdWShopUTvHqor+5W200oCtPt/3S3lgWZsnZcWBn5RshKPLZ8QOkvzBQbj1B9+Jq+UPiFtiA0svd9fvl3p+5XZ5y9PXx3Pf7R9vX8xM+e/EaMjVdCTsDoCHmaCXNMuu1+s4xrnJs0nldRu8KBi+CelVKqE/r370uwTyWPtLGgFYQ7bp8qrOslvV1dNKrp7W8kaudCdguOJ3B7vHJeNtQe5+8ZefjbVq9XNcPropSBGHhosPO/88J9Ffq0y+hTGLj7/52NIslBESpPB0///R+5vi+fjwpjup659xmLheSdz7e3e2bQ5AFwrRHTTXGeqdenKh7WFwdj5rJoVk1Adocddus7Vzm8XlJugbu9iXUFGqw52a3HnO7cu58nJrYaqPLXIrfuCiN7up+dzp44qXqGTCrpoyj8SWvXavicpL+Qj0dkz38usz3j/c/2LMwo9FVbQDv9DeboFe5y1K/pHsKQLXbl4sNx59+8DHcVm9nwCG/aE4rGSvv+hfuye2XE27vXvbnoWlO1K7Ggbg9LOt60u1INRYgQNDS2SithiHsrpcJddZdXha/PohdryxZZqy5udzd2I2zteRCxHpFzV1K812P0K00RtOs13muuz22NTOa5qxW6Ty6awcjn/lFl2wQrqh1CnpXPpuz+qqj2i/1BhV+HrCKfAknkIaWWe/05Xj/gJcPo4rYQbH6Kc/AhnA4gFsGMql9aoxHDYOv80mD122+vefm3JUqpEC22sDhwFvOoBs45/3qyTUOE+bNh12hXuYsRa/XV+5WcpSUijZkVebivhiJyEKAPGtjm6A1o4R5GkCUUephUqsmH9+2fVS+/OyTa6wiwGnK3XJemL7RcEx9Mq4Zf+U6e07k9Hx78512fX8Gmzpj9Lo1Te03jcx8Wu/U0+iaCCe6VAlGCKdzKHnab98uAKfoSlZe1TJrljhaXrjVTZZeH9p81t4Pdx9fdSN6HXKFZtfhtKplgaqtLlXpufjLznlryxmBwXoZg+9PPM8uaMgK5bTftjKcGO0+Hh5Se3etdBYpIUefTuBU/vqafklTuTteJKW+THulku63VusHVKtYUPVqJgj22euGOM6oYOyf2TNdFK+/uLm6miUvrDGhhtlf4mmIVZTDxEFnZ5yazsRU6MLOB+uoRuzWJNLHJx0qsfEyZiwlEpO6PE+kA7mn9ZpFh6FD5bxajmi6JlGe1JWBFkrc1nBSr7rH48Lea/z0OxZQRGp4nM9vYpu/3nNAAEAgmR6+h4D8bvvCejh9dmqP84ufjutNDDKLWcOI7UCpScumuXVt1TtdLCEtN2jSYl3TyGr55Lic2ybMqLRKGbfqezIGG0++UwUsy2ZRzoC6+IA7ofPrJWofbb8ko1gU5JQ/SmfWkf1RW0YN5umzjIWXpSI+nVG47Wu7Bu9uxqR31/WmzNCtm7ub30GqDDkNabj74zcufJVV8MteIRT4W7+W3/lJi1Sey7nuzeMBms3yJjqodf9M66aSLY3idQN7dxp7dw6LefkK7m/96JSx9QKPj/GwRExaaRWTMzqfbuU932xD2/T8RXpv/XB/cW3keFepnXHf5U1EGaUBay2EyEtcDCDUD6JoF+ny6HJJ/UpH513oLCEcY52tTP3zJtxBg+rajiDurJWgsrZNYU7GJfirFhURuNKZWeAd/RtE8Xg061dXP8q76+VzWLvSN2N/kVSeDM0u7x/HsJzX+vn08PTBb//4h+sZoQ5j57eDp8fTFSqQmsVEZa+7Ra2cPq8ZjWqKZjbbXXr7N9FK3j7bwqntTrKWFwFszBofZdNcbaK9uIF19u3t4yxd6xoYe53H2a6yblDZqqdeppv8op2b+vqN/aj76e/4wYZA8/T84n85V1VEQJh/5SKt3mEdsSjZ/6NqSARQSs7l7e0UDm8evxPu33JRVanLdncNpHFX8SoeIyjQ3tCTeY+X16sP+XP8qNnYdK9XNR790s6LskYWq77VCPX1YWrqXdDk6F53DlV/PdeuF1ZqXGrNxuObQ62nyXTu+hmVHF0QDrVE7scJiery7LpbxipzWVnWjdHu+Gia9QX9ZMH+che/CN99ZSUEjPYl/ZuTIv7ltOtfzgYRQLB88A9/+RNXLvNg3n/uzKe8c+mxoNS2zvE07Oe6RKr6UiHG1Fzfjm57MWTeHoZx0BmKoyBiskl6TUN0jZZjZkgjtqD4VDsF2x2HvN7el5BmMZdjKwUUlwJQc0wwNSuqOVS65GDjrGqOpttYjlM9LgQ8JTlyq+BEL/f3tzE9y5rSfZxWn79UgVNKbhUq/JWXjKAAIJbD1JV3qltEPNfjn+R+f+nfPA72usReeaOU66dTpxmMuzhyU4aC7TCAVgSvX36bj1D6xo5L9JqjUxKLdqO+mCXrJkoxnecF4NXVNp3zGPOMhhU56HAGTerDqUiRusB9VBqW4aVBAIT8cA6tVtqccwZKIbdnE4VW2886Pj1BazZP01xx8+r44/cuAsfl2E7HCfGv8E5+d4Mi8uO5ZwX4DslKBrc9jT+53K3ePj4ARZOTWlBNs3cl1Pp4LK1fnsYLrW8C+/lC1/pe80Y/teFhcBt3bmmsralWu1Km0PpFL9F48nnbKalxkZnWazsf8oiNKWR0QRQCpsvbsTWCbhMUBbUebKPTcXIbxfbKHIbqk+h0eyhXw83uuu1uPovty9V5nG7o+DyGBHl4elrUX4FPwV/58h+Pr/7SWzkf5qv+Yvn3uvfbucDYMVEIqpOpCOLqHnxLeIqLMkYipn0a4kplXbvVbZVSj8lAu4IZ9UOQOPclr5aUIl33KdThXK2LjWGRcdqUWEvleusdhtiuRtYgrDdlNlo0SddZIqF+lxYuGezDsNq3U877yiv98BBW3eZKPT7gs/r5M4ol2BATKPkatf5dig+CoucT4DvtiQA4fXoT9dXqN99OtV2dFuPXl20N200Js2/b93/svQS4bO4m3di73J8Z1Tg9bn3fXZ6HKZjJXnVpqSttZtNZUVswvXmqz01INZN25rKJT0Sqef44K8QyC6LySdNd57JSSuKqRg0L1ip+h8oc8jIF25jJ+E7XqNbheIPT1QerZfxEDc2+fftnV88jp1pEqSp/ZSX+LliTRqB3gDERmVL7g4/e3n6yT1s8nfj6KZ00ku7sRsdtI4BB/HL2po0FqJR0dXukprVz0u39KZA8O9Y6nYIVvR1E5jxvOGO3iuVprcA5KtE4GIs1fnUz9tZB+TYUUjqE/lLd6Zbm1cunw7oufqiszPIwbG1LNC+TwTx0je9WY6zvvah3w7hcfrB/zJ+cauAA9hBEIYPJf3V1igI6JvmLSI0pozpcfv+PbnDr7DH25X44Nv7qlpTbqIeH/dg9j5+MB9P7g275i5xXOAl5JbEa0njG/Ehq00Z1sQzKJ9BzJbu0H9bq78/Pcbnvq8JjLd0cWI2TrpucBgQP1+YmSmwg2bYp56Xym9OzjNvq297kOav2ye7bcsJxWpW0vKZGbZ7TZ5+N7kPhaz+foXav/78IleAdyYblV8BgAREhgfD3/8b8pc19FXz772n9dLj9zW2+u0PNyui6vpKzr5vrOGh+slCeltXYrFw8dk36YsU36+2Uulq5iLQtUevmsjvr2exbeorZ5zyMmM2Cri7snyuWXqjqeVlIj+ZqGUsO2pUDH1lUPamdirBusNmdlEa0vVfaNzWXtsspc75qNRzaj58vJZ6VerZ+LwxvP3upVNJaCOQb+0gAArGC8LvMgiFXd+2fbv6JevG7hz966rOyzaZVfk/6KW73XBKebsyz9fAFGb10L9wxzzfo6nZgGIoepeaslC5OZ4eZl+RrKTXl0PUW80kaNXaI2szHvaq1S9JE9r5aP7rsyWo1WqdzcmomCmcrQcekEJtcj54iN359LlsLblNuF3l+5R6WPzKtX0SYnc4a4Gse579EigiIDBX4XaTCj7Ub/iytX1y8fn1av6efHIPCIk3L5JijxPFFWTCou9Xz8md3zz/c3a76h+GFGUtrU/UZWp5MV2OvG1gqVmNPDEI8NS7PJWEomz1FsJDEqMVtVAR0+izp8FwZyGLd1mMNKLG1CkxFv4upShkea1BkGtuqssU3Bz5tXllcEmctXbm50IwOJyVfH8T/5RUjBHDMX6JxEHH7abO9PD7eXL1/fftpysDLYU4tcXtePXOPc2PaHdfG6c2WDvi9D5qD25qF4nDc+NZOFdEDaBynon0EZSwrLZwlnzbHNe1t4dymGRMwPpXIsTFZ0knNfXpaEdQEdisnU1E5MyIpX1Vva9VYLLnh2OC8ULPekwrXF7WLr82Ll/HxEOPlR1tlfX5EKt+8eYnhUFFIBIWJhj/70S5L99Ef9r33Q2lZFCIqO0/YFFak7BBtwx0njqqp9+f5LdE63fc25C7FalPMIEVY18jEpMKmxCDxVMfN5WY5lJoO40s/T2qXvXc5d0aPIEb8oclkrXeHwZNRVg+IiMr6twWaxre9L6ZZuUyPWUkXgwxZby7NFG+q7ldouZjpls07WPdX1vSd7EkJnqrmL4W6uCIaTuny8uN4Hut2GdjqZrWjlX2Gj2nTToqOwYc43B83bnnzRXrWpwe/Yb+dH6Nb8aC5VEWtZc0VebK+gDIaOcrKAmQh3aFZ60ZNbSfUz4+oW85CtT9QaTpdFidKh7qk7aF1Cpv2SbTkEIL2nW+2xT2o0HWnSW0vr1bx00f3G5TQDztf1XjPCuo3VeJIiBMTCwMIM9fQf/C8fP4z8+L50xcnWEUrJw7l8NteZ7YyXPral0WH/Zunq8t2uY/tmksyV+ameMB+EWVYI7ijNs7WIEYGY7yNGVbpvLD2ttnez7xejadnYdyt7oZy2YVpSHKxzusLiUGJMaWmcZMWU4j9oq110qej1WlZyfJsPRJy//79avkFrz+kED61L0NFK2FAAv7GPhIhJkAs8i7St093w+sXF93rn+jvfP+nX2CtMXrXrQ/Dpu+UtDOgn/lFuX2GWMiCpfZygTG8qrv1p0cTpCcFKS2sNlPR3abRdpwbjJYvQha1DeFwUByn4xTavb4/YupTrghaozK6nMfOpfUl8/YqTK9ZYxg2XIHDOEtFkxLOF1ffo4wH+nONxlzWx6fl1Yc8uecx/vA1UMnmlz2GL3ct0ZdlXIpt+AdXyWbUtfL88LZBHH8E77fHu6ekj0ay70U3fVkQn+bLs8E0ndxD2Hzbj4fTs2qYS6g852v/J096t4KpNL4m0gySudhsEIGrLGZn8EwzTI1JWO/L73RpKWiUdvx0wsZO2QYKgAh1ChUbkAqibZOs01yEdlM5h3PHNA3JrM+nv+1Q3j7YK+Le5OmNcvOhKFT0TUtaNchyZq4MXLmUwzlfPK/j/Z9//3vjXfTbCbSRvBwv1pz1hqgOvV0r0GQKdfrwU3/Vz0E5HVGyWrXMuEaZE1uNWnOsUN4VE5ziVYWHqrtFsKxW2JlUC9VYNOSlNN4FrKCEqMiQpKUpFdTW+WZ0NkS2fVOnArrzesjN1h4O/XH2Oequ/eITXVer7unhqWgW9U2dbdFY86Mwi1TmEt4M5ze/6Ox3Pr27+eDDXzwOpqLWzaotG3Xy1w3UJwxIixYzxwHcsDqM3oXH8n7nF9b5xNi3sbg+aLQ2C5IqqBC0cDAEyqkVnGXJTtsHUdYYh1TG3K2tajGzNog6YY1aTgvrtrHIaB2jrtPjGMUY3UBcup77x8993+M0/PnFhGujxp935wmpJAt/ZeYAoJArn5UgoYiUoK4vFQ2/+JNX2+PNeNKNmkpSbbt6u27GiTu1hVeLhAc/w3x+614+V51l1z3dlF7HKCX0S9TTqKjqrAGAlBAJVKp5qbEqVKEZmk3STX6ZU8lizEiRWg22EyQLqhVq00EaJqVQKjBUcZ2dFrJCqg5S2VsljZbWzAe9640oOy2a3h+TpvLN/FLNieiskRRWkTJ//pY31yu7/OmzVX/meV5LnqtuZDiiirfdjjOfWWq7cEEDevfZty4+eejb5uZCz1X7nasgRHUuevGmAiI3UFIVzm+vztmLXZr1/iqt5qcHQtDO0M3KESXqR0xQxbrnd1OxLUlrJCjnfZuG7HvGNZWCrKhjhWM2fbjJGHfrq2EZlFlt1HkoCGR1/oY1hVwN3zESgdQaRns9PXyiL5/9409+1jpar5+AtNMAz3yzLaO7eDPwZ1Vz61m6PqXcfnqTl/uCdbIRK/tJyDoX+ajWxoI0JgHWWBA4XPO8g83SdSXKcj63Wlib+NTtVXVQCLRop23HaaL3dqnW4QshJHPF85wKq9N8ylj1+lpnGUedP0207+nmk+GOd1dbHJbDyADwqxco/PLs/WWkXKGZL/+hKOYc0+nmn2W7auvTp/1Ve7xJdkBE03Xr7YqqsSmrY2n0pi5qlQPv/Yk2b97anrndcuWnWAp6RyisijbWVvRmmTUnsQqhbYMfOBbz+bJTevf+/DCRAeibSCszUluyagjpxy/69lkIm9cFFUmOnWlzSlWq6m2XyA7hFJi0qN7HxTBdtgRvoFEsBAXgG+G0CbXJd7Nn5pJzXD68+xO53G2nf/usfbm7S3EXhkmrZl2mmi8ojzEuzZakxTqH1svu7sX0NF9sjhdvFmtDVLumzKWwM2rvlFk34z3qir4u2l5f3Vrn4Kjl1fvGRSXJOnQmfwF1whA3VnjWm4eXrajz3fz5aXxMXvgE/S2/T0Emq8NT7pvb3F1AWbXH+WG+fL626vQY+le7yq9TE7L7C1/BLyWohAIAhAQuqv4/39Qm4XjOP/zi8oU7vq4ffvd8H+JYL+LMzmoN0O9E2VQdXCw3O/ppt7uQ+4f+s9DGRY9qvlcL3ktj7Eld+TCPrK8ojcEurBSJyqXKY7facrpT/coWRgjOxlSVuWUVo5eSBXr0Tc9hriSthnt/Csa7nx6zM0qXtmS0VgL3KnE8eraNozS9tf4Dk844Z52oqyZ8c3kqIqVARK7G/uKzH10q/ZH/4vd+8PK928+jTQWVaTfrpiumZ91N9lrzmofVKaNsA0scCjXUtcfGb4/31VeemEMupLHGxSA6TcICGji69dN573iCtappJGDhUtK1c68XxGHo0BSN5KvSINToxU+ESpm6lbBuZCxLEBhmZXI0DamWrRz0Fq+0eboJDT97eZ6aqv7/1OECkpIohkDq/vHvnz45yrc/vv6D9U6tiboJCZQ35ZRh712/DoYsZ+N9HXBVzH4ADbIMjXo/3N+pLm7sEtFKWXQEtJoqWskVsFOH42JuT5dX81C6OrErM9CKllkg1M2HUvNqSdT3aQYhKZmWqNoGsG78NkjNK1IEVSqtQ/TNrsNv/+hxt39uh4dik371DB6f3UbOyPSNS8oCcYF1hpTHR/Wz5iM4/IF/9uvDSNQIK6jLHDBfNOGknqLbP3Xu1l+l0iq1itKmZGzLJ+M6kug193A6kQYVdEEwRotTBZFJg3t6/WqldVxVwWHpOwEopE0Xa4SLqyV7c5guVuULtGKAkYbIpJhLrCrZGJpOIy2stQsVltanVnfPm3g+VLnctuv+GLfbM6J8MzoaASEGTEnq/DCs797YV8+bmz/5eJduyoYfbeISApSu1+06iyBPlJUWMRFch5ZI9c962eIJPvr88/EqGOCCMV1oEgEB3QA4CDUlVwOLUp3i5ak4e0Lv0mLcFnDS/Xy4e35xYX3hsuuqrq5FQ5IjOlstWzeDKEXALGgS4DhZ2OzzcpsvXmJY8SnL/Ez1MDjQ30hqR0DMEQMCjV88Ln/r/HQ8bL+XP525oPhnJ0CCIuYp7Nu4ejaGzUNdy2wv8lBayDPZBA23RKWAQE3i0MYqELViRMgsihUBYE3EoMhePC6juF6Nzlld8hwajWaO6tlcPZX7ZtVcSF20CT5ircYbZakRXlVV5oVJUuKKdhpX3frzEdcG76dZhasP6tOw6+41mG9m0iNiKeTNgsvTMv7+b//ju3/2o+tnv/vFHcFElydBq3Lyox4CXatQFdgVupAKaEynwws6KaaOtT89njU9duA6yZoX1RW0lkAwC0dypIp572q1nOpi1tZ6U5qNdTbGyCE/HNr+VJ+KnKseOg2MOEC8y86vmjGzD3UzbpYhW69FJPbbavdnIr1dzzclrLdmRV/cn17WU5O+Tgv+5UwHItX6j78z03g+HpnCn/68+dbu+OdGea6KjzVVTVXo6ts9bXedW0bY4erqHsuQ1UBu5R7xPSLoJe+nYWZkg7FoU9Vz23rOqi9FvFkWBYt7Pt+0udCCl3Bu3OneXmm1bcOZrujktnUHvIhfNvxkNlzK3YSINUXHXkfjXLWOCeai/EgXrObn9uZmdC9f9Tg8ndXVWmH/53k16798n8K75i+ASFYlGLX/z1JOy49+X777vf3Dz9LV5f5uUp1EQcm5ilmt/av1+qJX5zbtnYefL8R333LlavUdXH2Lz8MntOzXt2962xvbei6Y1Ua0UaSNsDKSRdtSWp6B14VRUMsxA48ndinrlVObF0syqnPdWqluXQZoaXg8F+VbddWbjLvmfJxSLDW7YmrRkqlLN/Pmuqtz1rtX3XB3oP5xSP6bDiRGBMof/T1b5/Nnnz6+WS6+4z57oy/X5TSRx8ypAGqjpVnmMIZZswHvcQPJN7OndHs4pUQrSt7C401Vu1I4noa40g4BUGI2GkhpoaLTcKGhi56oURPzaqOOiRD1bj2N+U5DZELF6UYul7En7Q2S7bZjHbm7ag/LEIkzGZ49hOqk7zdn1nEYVpc2L29/cfmtD+jVafyV2x5+JcMnISP5aTHKH35yvtrf/SHbl9v53+7d5TzPyiWtag0EeCBruTMFx7A28xrTCqbdEtQpdE0+319sHK7XqT8AJraK77TLJamSARhYSNFokNf5SeZdiQ3HpoSWUHK8TJJPjwIXixadIXsopSOIxjqjYNErtNmvkRDQ1EKGG1+BKiHvv3UeY/lWXW7Ctv9oaOXUtJP5pkpcVaQCp6xUfv2z43r6wduntz+9fvksGQQ3TxPWKsBcvTJbN/v+J/0UxYg587Sx50JXZ7Vt3ky4zBnGKrms9VgthlfqKmVBIDMXAWHEYoq55AcgdzoZqX0YhkLem2aY5wH65ovaeFedARLbhJHWy81B4Twpv8N5STrNonNGmhsvnU/OsIebG7Xv7+/S+lkPZ1n0i3j8VccXvyYmIWDo/6tNevNnTyv+9G3za9uHUcn7ak5GC8who7Jtu113z3fYruSq2exC1NE+Pu9upRO27XDevXxSUO5Prq40KuJcWTsuUoAooBISgEZoPq6b1eE1tqPos+Lke5ML2UwbZdXoTVrOnVKVOhd4a3XJq1VVD8tFLTE2FammCjy5WqBGN/Hi23nRKV3vMT6d+lWbsWsff+lB9/VdjMx2OF3h+fV5v9r/65svnv2v+sOfGmYZk75EQpaa80GlFYZUUzLP9VxFWnCtp2bZSZq8PThvsmrMrI9100/VN+rbqAyyYEBCAGEbkX1v14elv1SKplmQqM6ht7bpMQFiGCrs20bIGb9up3B38t6sOSvoVjHVLCUIVWs7LpJqVk3Dh8V97Du4P/lrv5VfTElO3zTfm1HX6ua/91J+8i/eEPYfrY6/eLTPvv3zY/EqC3qoLKIUqaRgqmUrskuvM4CjFZJUs6EEHf/Y7yDEYV7WpYA2WNbqRUWj0bhJKQQAVjMVcKUa5RqLyqdeF3Lry+pqgZAaD7H26+d9X9OcNurTwofHOAUlZlvOw0P2DDUpw056CNaKaxRCgG24OWZxrY4jt792gY9fnab7ZR4clWa257/37eFPP3//w6dffLZ5fy3TsGzYrCGIrkusaPvVZkVti96+TGVXT/tnR+w5bOZBO07ZdmA+VGzmmfxaDbwzp+X/B6no2gOVyRrtAAAANXpUWHRDb21tZW50AAB42nPLzElVKC/KLClJzVNIqlRwTMlPSlUIyMgvyS/OyC9YoWCiZwAA8zAM4pHCfeAAAAAaelRYdEpQRUctQ29sb3JzcGFjZQAAeNozBAAAMgAysYrH3wAAACJ6VFh0SlBFRy1TYW1wbGluZy1mYWN0b3JzAAB42jOsMAQAAbcA21gdt7sAAAAASUVORK5CYII=

In der BOHMschen Mechanik haben Teilchen eine exakte Position und eine exakte Geschwindigkeit. Auch gibt es keinen Welle–Teilchen-Dualismus: Photonen (und andere Objekte, die sich in der Standardinterpretation wie Wellen verhalten können, beispielsweise Elektronen) sind simple Teilchen.

Der "Trick" nun, wie die BOHMsche Mechanik die Vorhersagen der Standardinterpretation reproduziert, ist folgender: Zu jedem Teilchen gehört eine Gleichung (eine Wellengleichung), die die Bewegung eines Teilchens "leitet". [19]

0.1.2.1 BOHMsche Doppelspaltinterferenz

Die Bedeutung der Führungswellen soll am Beispiel der Interferenz am Doppelspalt verdeutlicht werden.

Wir erinnern uns: In der Standardinterpretation interferieren die Lichtwellen miteinander. Da sich Photonen wie Wellen verhalten können, erhält man auch dann ein Interferenzmuster, wenn man einzelne Photonen durch den Doppelspalt schickt.

In der Interpretation nach Bohm interferieren nicht die Photonen selbst – Teilchen können nicht interferieren –, sondern ihre Füh­rungs­wel­len. Dabei bleiben die Teilcheneigenschaften der Photonen erhalten. Die interferierten Führungswellen bestimmen den weiteren Bewegungsverlauf der Photonen.

base64
iVBORw0KGgoAAAANSUhEUgAAAQAAAAEACAIAAADTED8xAAAACXBIWXMAAArrAAAK6wGCiw1aAAAACXZwQWcAAAEAAAABAACyZ9yKAACAAElEQVR42u2daXcbR5K1E/vGnZKs7vZ0z8yZ//9/3tOb7bYtiQQXgAAIEku8H67y8UUWAC2mJblb+UEHAgtVWZkRkbHeqEVE+jq+jv/UUf/cE/g6vo7POb4ywNfxHz2+MsDX8R89vjLA1/EfPb4ywNfxHz2+MsDX8R89vjLA1/EfPXYygOIDj4+PKaX7+3s+p5RWqxVfTiaTlNJisfhcLzCdTvVhuVzqg6a0Wq2YsE87pbRer3UxF+jDer3m88PDA4ug72ezmS7Wn3xoKSJisVjoJ7pGT9FfU0rX19fFVJnSri3wKM1oNNq/FBGhSUYEe7RrPryFbvvw8KBNXK/XLAsLFRGPj4/8aT6fc03sHsvlMiKqy7V1+FLoMzu7WCxYMU3SL9b9tekfEdTayQC6b7vdvr+/bzQa8/m81WqJFNbr9XQ67fV6KaWDg4Plclmvf7aTZDAYpJQeHx8Xi4VW5+DgYL1eNxqNdrudUrq7u9OcG42GfrJcLrV/umCxWOjD/f39er1ut9sPDw96IxFQvV6PiF6vt1wu5/O5Vl9bOx6PU0q1Wm02m9VqNfag0+nM5/NmszmdTjudTkTc39+fnZ1pX5fLpW7CvlbHfD6/u7ur1Wr39/fa3ePjY5iwOhaLRa1W6/f7KaXVatVoNMbjca/X2zWfTqcjhjw8PNQFIrh6vd5ut5lhs9mcz+e6Sb1ebzQak8mk2+22Wq2U0mg0qu0ezWazVqt1Oh1tzZ6XTSk1Go31eq3N0mg2mykzc7PZvLi4SCm1Wq3RaNRoNB4eHjT/TqezWq20+Pr3w8Yu9n18fPT/rlar6jXT6TQi1uv11r9+srFYLJjteDyOiNvb24gYjUYSyaK/m5ub6XSqP4l8h8NhRLx+/Zr3nc/nV1dX/sq6g/ZPXz48PBRCjstEK6PRiMVhSJry34eHh/dZtMlkwvXixj1jNptx2c3NTUTc3d3tmo+u1xwuLy+1LMPhsPp2r1690n/5oPedzWa6ZutYrVar1apYzz2vvF6v1+s1y35/f68d0bSZ1Zs3b2KTGlkWveyHjrT/z8yedZxMJnrzx8fH+/t7zezzMoBWXNOA4pkVr+AsPR6P9ToiWf384uLCbyui167otnd3d7rJ/f399fW1/gRZaCmkKugbbert7a3Y8u7uTteI5abT6X6a1rO02kxp18WTyaTYBRh763zgBySCJsmSPj4+OjOEcePd3Z3Wbc98it9Ka3rnVuoVeFDxJ5/harUSM6zXa5bxfR5RjJ0MoLv7AvmzeaTm+hkZgD24vLzU5+l0yuojdDVPiF7fS+fR/GezmX6+Wq2KV/Zl1Q+1EyICDX3muaPRSNdAfNCx7lbQx9YBP3/33XfvsxTaBVG2nsLiVOejAdPqWYgDpqd1++GHH1hJnS28y64TQH/VfXh3Z+ZiTCaTh4cHrTwLe3V1JUoTM/NlcZ+bm5v3ZLDqeMcJMBqNut2ulCUpyhqHh4dMYj6fF8v6KUf16RyFKaXT01PkerPZjIjZbKbrUf+QN7Io2Omff/5ZXx4dHa1WKxdLrj2+fv1a0hcpcH193ev1Tk9Pp9Opnn5xceGcFhHSofeooBxcegvdZI+gYR2gHmT81vn4i0+n01qtps+QrwZrq0frX5FpSu8gHrQaEU+73dYW7BrillevXvEKjUaj1Wohj6bTKX9iklrGFy9ehKlD7z92vsNwONQCpZRk72rPTk9PxRLQhAvCzzUQS5J5o9Go3W5DLloj9vvm5gYr1j0VEXF1dTWfz5F/sp71gvf395hxvkpshkxkv6DYD7kQZIu/7/ZkQ1yT36NySP7pX8gO50R1PlocTbjVaukz95fwlij561//yjsW1mOj0dhlAbsty5HrrFUMzUdCR+vcbrdh6dVqxR30Fo+Pj0dHR6yPfvg+52q5wnv+Np1OtWeY5J1OR2JSjpEwV9eHPviphgSqhIS2fzQaHR4e6sS/uro6OjpievIA1ut17bS+x3vjVhT+ojAO54fy5EArmkatVmu329xBd5MhIaeT3Gi6Xhy7R3ZoqfX5xx9/fOc64OPSD5O5ZbfOJzbPscJSQp1YLpc6+SX+fM1l1q93DF0g5Yo57DnBYLBWq6WDAgWVowxLT1vm7BoV7e49x04G0O2Wy6VIXz6mer2uZzcaDR7/abxArnHx4fHxkQ2Try2y21s/0VKKGRaLhTyAOBb0dpF9MnLv6g5SEh4eHnR/UdX9/b3kjXZCF8tz1+v1rq+vmSemJ6SmX7Fo0+kUItM9maTENq/pYrtwdFS9eTJykO5M4O7ujgXkYPeb49LBpmw2mxD9Hsm9Z+hlWTQ2aDKZ6BvNUPNxho9NDsTxoPloy9br9WKx4Hz2Uaht1fmzrcvl8nfDABpSOWazmVs8zvopJQSGDBXNczabHR0dyajS9e12u16vi2oZL1++ZBtkWumeLiDn87ncXzoexVS6j2uoWhMt3cPDAy5jtlyf8WwsFgs56SFK9+Hy7u7tLraZHxbM4yYjWpyO9zCXgLhLkRBOP6kWH7G/eijyAhNCb8FiPjw8KBDhSsTDw4OWSHNQeKfT6aDEFqqg5CAOa30zHo81B72XLqj6tX5PDFDokcvlEoNJumyj0ZDolRCdTqciL8iFO7iI1RophCQ61jJdXl6GmXrz+VzyVaPZbHa7XewzvECi44gQGfn8JfXxjfz000/6fjgcKtooXtI9tW0wc0rpT3/6U3FD3HG4azXnqChXV1dXCmxh7PKaehAx40ajwR3k4f1o/VaTl7ro7mbeKKV0cHCgNdfGoeLrGx0L3W5X37hy9T5xBqSku/XwPr+VULtm/6UxwGw2Wy6XyEsXJLPZTGukOddqNe0Z8luXSe2GGRAnw+Gw2+0WQmU2m7kg9CgS5oF+ImXJpWxhKCseV/i29d/r6+vVaiVjTtyl7cTmEyfLCyRyhDFQh1xHWi6XfC9lRkTQbDZln+CmFKtooQjqPzw8QE9avdvbW+TxBw3deTKZQPTMk/WZz+daWBGoNujVq1e3t7eiMX0DV+t1itAYs8XzO5/PRR7ka7RaLXlulDegBZe4+d0wQFTCgZBgt9vFeQflybEj/8ZsNhN58VdEghMr8eNms6kkAh/KmdGqaTjPrNdrmRxO+kzYl8hdTAcHBymlQjvnWSwy4lzErTu4Hf/w8DAajVDnbm5uUAt5wfV6rUXwc0x/ZQKuEP76CA+kT0RSlKdvisi0yHc8Hne73YODg8ViIYbRZRcXF/f3927bxI44Q71eb7Vap6ennGY6KHQfCVDx1du8kl2z/9IYgAC7mJuY/+npqb6ZTqdKFAlza7INEqWz2Ww4HLIxOG2IEy0WC5G+S/Srq6vz83M8p5PJhEDydDpVYMEVHt1/vV5re2Sordfr8XjszsTYFGME8gaDQb/f9zvc3d1Bmu52czNXA2ODp7A1nAyibLyxugnGUuQYP4SL4vERQzfXsw4PD6+urpiepNh8PkfVbDQaHMX60lUXmbzEZ2NHnEHrM5vNUBZ4Il5vH78bBnATB+stpcTyod3e3d3hKPjhhx9Wq1Wr1Sp0YtQYX2J9iVEYEdfX1/ASJOjh1cjBGu2Z+1u5rR/99Xp9MBjw24eHB00MCqvVatfX17BQ4UbUpmIa8q++0T1FKK1WC4rXEunAXCwWiGE8IUVahOvr4/H4V26unoXNHZV4MFr+eDwuJLp+8o9//MOvx4u1K87gEkGfXWEejUaTyQSl9HfDAE4BEXF/f49thBd/tVrhTcMAEMFpTcUzR0dHhYO8EJbz+ZxVbrfbj4+PrpzEZoQkKhYnGrx+JQ276kQvlrrqvJc6LsJ9eHjgh/IAhiUj4g1MOfgVOXLnmlJhnNzd3XnwmHd0D4zGR7hBk4X8+DnnDLNlPoWzPyoapmu5kjh74gzQ5J5Iy1sP9a4/f0YGgMrxSUMu/ImF63a7vKTHs0SgTPL29na9XkuDR69YLBZy/iAzfAVTJVciNsWPK6Nh+ox7VHTuF0vKfWS61et1BRbdZgiL7+i/hdU7n8895uCBKiQigREeEe/KmhSHc2phYxTpVejosXn+hEl07lMYrJ1OR8vObKPiumWqHs6Hoz7CKN81vjgG0KYuFgu8hMg5d65HxOvXr1NKzhKr1UpZUzoZdfTLfSlzU9YPyozy4/X58fGRk7c4EMJ8yb5z+u2//vWvMM7BtNWX+iG5XHCy3NK9Xk/C7OLiAiYUKXjuDfvNQc+ZToQeYQ8l+RmF7kTA650bMZlM3CZ2y5tBbEvRFZme/NXzme/v76fTqSj4/v5e3MKa60Fb4x56Qem0mnY1O/PXjC+OAbQuRDShb89H0I5Kt4lNt1rkyhX9aTQaLZfLFy9eLJdL+Supm2k0GlpiJOLFxUW321V1C7uOjSFtCu3IixBWqxVZNwoFKHGaXMswy/Lu7m48HksRR5nRmEwmqFiiGwh9MpnoGy11kZWEu/Px8VGvI6mvv3oWcVW9KYZutVgslH+hvH/P9JbdgmtfvhSVyLiCqtkq80I00+12NXnyUr3iYk/cQwqexJ8u9jf6leNLZADRnFJtlXKnyWCP/vDDDycnJ/pTSqnI4cEDHdn5E5kKcboXbg0VQ52dnYX53fiMEEX2KF4jDU1STRFT/uo3h2eYQK/XI6FaPEAqsr7XerrfBoNVRs7h4WFYTQ8ucEW7Dg4ONHmPVLBfHk7ZM/BBwYTff/99ST0pDQYD9yCFHbDS/c7PzyVQdPx6rhGnHPVG1bhHUaBT1BX9+vElMkBkxdfVQYlt1h3tFrnIQck1+PLxOnMHKOC7774bDAa6Ei0WFRznJtmmeCoi4vT0tN1uQ9zaG2SYs4Q2UrQrlSk2zT5uQqZGZAbo9XqdTocTRn/1HAderdVq6VT0IhhPB9Cz9qsQrtxTAPTjjz9yKlL/PRgM2COVB7n3pjBLtGgYskg0hQKlWG6Ne7A4rNt6vXavzq8cXxwDkLpD1qu8NNKVOfcpzI2smrPrKh6NHMXUYrVarePjYySNflWv109OTubzuWgC8+7x8fHk5CTlMDC5XE5t4j03fKEbTurVaqUwcLPZVJoGrzmdTqWe8RPFKCJCpcMELMkUiGy4O5GpQBb3kaQmHlIX4bxmvIcK4fEEr69wKVMU0EVmNl2DAuaP03x0Mkwmk3a7/Yc//AEptjXu4UOCrFrb+WvGF8cA0IQUIeUARvZgsqCKYRXYBPf39+12WzTNDdGCyDJgL4t0QrL5z87OPJgq8S/qefbsmTsiUDOcArR50+m03+83Go3nz58Ph0PUXxQ83VmmgjKL9OjC+tc9Z7OZ5l9k/B8fH0cWmZqJFBWSw1yhf8+h95UxE7mmPlnuHVk30+lUkSlZ+ZIaYhiyOFlevZesF4l8oQogF7bGPbzuvOqs+/XjC2UAYjpETMUGMgMU4lYKvlNDt9t1t2nhWZcGWfjCJZyGw6GsRpQfkq7cNdRqtYgnhKmnHAVQjJ9UItwiMKwLer1ekXEE1/mx46Vb/gjN350txIlJIS6Srt3BunUoLXy5XFIJ6JFBN8RRx8W3boyxaMpf0EM9HlIUSWpuW+MekdN79PkJHaBvt3XXH35rBtAe8D44gxVFIlCCT13LJIp3Z6huotwBUj4iQqJRNFekweGYJ1e01+tR9qU/SW1AmXGecaSGsJRMSkZZFoWiIiev61ZaQF8xT9MtQqFcQJ1uwcCap86carawjOxdBSvF+jtrqX6yWmGoiXk6k5bOS6UjZy5GFmEYA09YPOjwHGyT3ov9dbs/slR1S3q9Xn/OE0B30Mno4AtyJ08mE3kzhsPh8+fPm80mFIAaCilAW/1+/+bm5v7+XkezTltch5zL6M0OH0Lh/GQykarjYni9Xrs23Ol0iuJG8DLCLGCS8FRtLBIhuqSjQxtGziOauie6cJ5ArOPxWHfTD9G/NTS3Vqu1q2SRLZPW4bVXj4+PhQo+Go3k/RTF9/t9ghW+dLHpvC8cOEVGw5MMiQaQVCi5jlx2U9T08aegBm3XrT8BA3haYmTG1cLN5/Ojo6PIRYy8Vb1exwGSLMwuJdX9ypEPgbBcN0hEb6fbOvSL/tput5mbJ8boxeVp8WNEiAaEhLS+MsG73a5QnMRprkJU95In4st3BtORUsRxlf+YcqJvbGaM7h8yKHftXRF1Ojk5UZ65JIvXoGoITUy8imUl1irOtycZu/CL1jvwl6Re4s2TltHr9T4nAxBgR/ix3+12W2YoCZsIfhm+3377rXwgnrOAd9l1Td7ZY0MuM7inzIwwfcANcWlfb968IYWmqkn74Vur1RqNhtOrSi7RdCksxh1EqqOo2XMNJFk9mUI7InNIGrPetCgI3AVbMhwOuVIeRuXukxXL/moxx+Mx1+t8kBdouVw6woVHS3SWhgngJ9fgt+IX7cdfkr0nD9tisfgijGC9A2h+MqcODg4Elye3pgSJfMaLxeLvf/97ZFWEmzw+PqKWEGkCmjMyP7iGrc2TrnV7eyu3tIfJQAC4vb11SBwNLbELOa1YvV6XMTeZTCaTiSgAvUKyypOCZrMZDlZVRZLnU32oZMFWb6CMDWVrvzNmVI0ruVdXGeDJUp54okrtxKXNZhMhotiliKzqaS0CI79+bMUv2oW/BJcqhviLHrHr7r81A0g0yre1Xq+Pjo7m8/nBwYFKfqDXwWAgXYh3cEAYfZDOcHh4qFkhCyXXherDGrkBl3KkfTabeSFVWFrlarV69eoVL6uc/rWB+KE9y2xQ6WpxOCyXS/KfvSzY89sAp+An+lCcYO5FUaBKN8RvFlYhGbtPACQ9Xgfq6bS/t7e3nhLCoScaggCUKlvkNZD0EVa9FHY6PQn1O+tyZ7amwF9ylEhf2M/GACS9RYSgT/v9vvt8tNar1eqnn37CClQpoE4JgibHx8eNRkNp9MyEM849/dPp9Pj4uNCtIWW3I/W907GEvR+mOuvl0kZSUkh1f38vE419clhSED6wOvQnMbB7P8E70QV4NqvAKjJnCwTIPVvg4T/POSNtibe+vr5W/nmn03E/Ff4rrkfHKyr0VZT3tFkMsQ2/KN6Fv/S3v/3NN/2zMcDaYLhFAa67+5ZDHDqvDw8Pcc5Ug+043YoCqMgmLHAaYdgkyu2R57ugHt9ggtMpw9eknI7qAHUITs+tkP6gNWRJZXUwn7u7O6+e8fATuWWRxXYxTxzqyFqvH6gO8rqdUFQ96LdlJqenp2IG/Cq8L0k7RUqzw5UWQbFfP3bhF6Ud+EueFhXmAf8UDFBk80rwKCOSUJfqoLWOkLiei6bhXOFqUuT4opR1P2dns9nx8TGaA3Pw5XNtBz9g1V+BO1IpFZGtqyqErZYIl4gG5cL4DVlA4lb6k2BC9m+/GwCecxrb4AH9XbiMxYSgiwqSlOO1UYlOCBsm9gbUWBlicz4NCs1A7kC4FKUIkUU1udPuV5DQlORyz16YHuhROX93nWaf6ASQTzAyDkJEiPo7nY4EqmhXH7RwlDiK9FGQlAGqbAWX+mGlWJFTlBuNBi4mzj7uidrt6QygPQslVwLSa+SV3uPaBfYrZwhU5SW8UXGA4t5BHvf7fVIhtg7fYNApC/GGRkfseTKZFDgAJJ+60wYsDL2vrgG4wWvZqOXdP8DQhgGcfPEKFEna7ofQQ/VqZGEgVvr9fuFn01M8Ls5wlg4QTndN/akYgJj2ZDJhru12WyluEVGv10UoYuLVaqW4uu5/fX2t5Fjtd6HYOQqDi65CvDn1IIyLAhTlihHplIQQW8qME9YSt1IMCINEj5PvRZchpLk/+00yI1kMugOzXWfcm+rQU8i3iU2kg/V6/c9//pNJkhEU2W3quEAFp8lhwJxdKHgCkufD7jFqRdPFEaGl8MJ2YJQAOHKYGS/QOzg4aLfblNSEWbqy6T1LBa4moQO8o9gsqfnNGYC1w1+B1fjixQvFVlRCtc5NXFhfV8qdRBaLBSmfWojJZCKvHI4dxYMjV9WklEB2oD4LLFHN/+TkxNFkOTFpgxCbmcaDwaDT6VQxG8OUYM/F0NA3yk7z7AloBbfp/iEKA+HDJ3x5eUnBpJZUzkoP/JFW7Ua2QC6gDzAMI0tuslSKpdhFPxGhgAPmUBEUcwVyq9rp4syFvWMYQ36ch+CZej2q/LDuNPsUDOBvq2xBzFxJfXUBEjVwHxmy5Pw4+15dXSlFPqy2+uXLl54x5gacdPHImWReQaLkBZ9V5HMZD4mbWUBPF34k/D8kI3lqdFHQrAkcHBw0m02YR4/DNt1/omqGVZvbEwEkX9Jm6Y/rSE5YW8EsoDaOPg9j/fDDD7HN3vBRBK0LXSUyvxX5V67esA4OIEnFgoj79vaW9ee3RSqH2xV093grfXbN/gkZADh5jf/+7/+GB9gtBL/TlkjT3yGlNBgMKB1MORCmySBo3deJ5zs2ZUyyJK3ipPZXo0RD9QOtVktRs8hxYtzhsWlhz2YzXOAkM0c2kReLhZZFRODbrO/3qEC+QdSCSZo4NDQK1d3dnWsd9/f3eDPDHJ1cgB/T05/0IM3t/QO6vjjSMEejkbfwiFyYkTaxHxWkJ906rG+A5oBV8Pj4WOBuaOhZeMPevHmjycjH8Avt/dYMQJ850Y0LfmqLRLu8P/35/CxOKR0eHkI3z58/5x1ENzKmNT2xh+td9/f3t7e3SL5areZYHfqgtVYmI4JTJKUljojhcKgypbBY3ip32vJXjs3aA5ZRfyoAFWezmZ8Ge7wrqpDi5ykl1ZS4cq/Ji7Kd9CXzXrx44ToSIBpRaUOEzAKOV+uwMiz/XUO3xbnkSqCWF0346OhI3cqoGoOydT3abGTVRa+vnz979oxmVqINV3UgJ8557KK31d6/NQOkzeF2mJ8AQjfxdH+Hjun1es7rrVbLBUAYxj/GE/qAmEfLLbgOzFOqjSkU1A95Zewt/cQlH5jmuPPCUmh4WbV2LDjNjw5ONndj7+92eHR0JOtIr+OFPrJnijTgok2G274EFsgv8mnEZvaeA59oSfcnt3kVQUqJY1lWR/UYwbogbxkYcHfqJ/O28fpePBCbMU2t0i7wlQ9mAH3mDF1ZRy0cZF7bLwkqope6slwuxUhhiG7sLtmXhUtRf4XTFFZ0RbboisWfTk5OdBSGCSR3Mkyn03a7rcdJKSJduVgTT6PAdnSi8RxpTO0isZQgA2ex2pLqGt9vUNT1QbLZc+71QWYG9FTkvaZs3XqIWheQc6o98iLG6tjViKR6uEXOVhKT4HmUk3qPvx8tkeqiRe5F6ZwTFmTwLPowfxruQe/nQA0+4cKPYQAhMIqD3Uu1NWeLWGan0+l2uxcXF61W6+TkRE2KVMVSrB1+K/k93bejdxZhsaxFpqHm5kazqysMclqQEJq/OyLD+kpIRWZuxa1AX6MEmfvoh4iJ8Xhcr9eLkLNi+MphdOUHx/FqtfLl9fpG51JFyheLhYfSCuQV/C1+JBKVe6dyX21FFXaQIuZ1TbV0HVwj/dc9BLrhmzdvgD2V8PJgf1g/P4XPXbi0Wi1RFCF8MqOqKRsQ3gczQJGaohVxODEtoopatNPNZlPq/uHhoVwof/jDHyaTiXdCJi1Cuo0cowqTsejKOFeSD0IoNlVV32zpA3TDdS0CQzYy9IA2jOQwwmFFCSJ2ofifPXa6n81mnjAc2evS6XSOjo5caG11qMtkR7g4iSt3g4vxHYkJRfeNRoM0yaKsWRskklKqElRVRGqrY1czQvI4ir9CEij3Ioxd/n5UVoHYaYMuLy+1DjRGKWrlMCRarVbhJ9CygLLhGrUrtx/MAKTX+X2L99cFoldwkdbr9eHhofp6p5yVGpsndUQcHR01Gg26D2kOBdfJMXd4eKgpuQUChIY+iCZarVar1XJG0pYIL9Hfuho7pNDEX9ZT3IpDowDJ8YNbpfFF2qn8iV5mCTf6Q4t0EpRjdUvv9/u1Ws1PBhlmZDuDNJG2oVLrgwNbVAcvtbUdLcYPvXs1cypL/VZb/f1eVKD4Q/Erx40raEYDDarIExEBiwjv7+/dDJhOpx9jAzSbzcFg8ObNG/QEb8WhGqheryeDtVarTSYTDmXmzWton/74xz9KG9ZxrDvrAPnjH/8o9AQWS7lZ7qfDPad7np+fuzaPCoFI9kRfGd+S2W7+QrVhYGaxWRuJIwVTrJin/KdFjYEKGwo6kP7jHIi3Fx+lg2el7Nnwm4iaSb3GOCk6COlUXCwWIPC9D94gbL/abEguIBknOwfj9+YgDtPCIsvfT/lOWP2+wOj1J97l/Pw8snC8vb3VBz/iwrIeUiVcE5vhvI80guWWiQx9E2ZR8VS0f30gpVmErsLCRqNxenraaDQE5qGb1Ot1/Yo0fSSxXBPaLbSUlNLLly89LaKok/CXQk78/PPP3Ba4Vm0AZ4UWVA+iD5/DUYUlXRWKVlhgEm4RgWKnei1fUZjiSOhsh8SYu4DV17WobCwOLtemyNTge1In3tlo2tEgCVl4fABMSL8bjyOAuNXfz8tijMliTrl6S3uhNBCvJWJx3C3hS0e8JTbj0G8TcD6UATzUEpsySdujPnPJnAP6oMTMlJ2V4lHciKvVqtPptFqtXq8njtIBApi9E0dkDFoxlXAzqXKEWIHuiZz91mw2NYd6vf7nP/9ZjVUKjBOIFcIF0ofPzu063P7yl78U8sazqf2Q5K86wXDLyPaoYgzqWPOEVvlAigkj8ORqExmNx2N9ICAF9qjsBHhDbT7eyQPK7HJ8HtBIizOEawaDgQjg5cuXYWgOhb/fE++kNypvnFOXd4GdwoChjo6O/Agifd3rhDRDV/M+BhUimaWvk/3m5kZk6prc+fk5vvn1eo14Fv+A707+z+HhoXa6sDEip8EJX01/op+Ciz043hHMdXNmgnW43EQIhJgoTdTiqvkFbOw+cshRZFp0pyMvtQhTFNIxzJHnclpmknIZwD5C6Y9t3l5PZyhcOtigxAR5umySwmLeOqqYK+iBhZdJd3OdnjT4wm50f39kjZcwESE81hb3aMoQ3HKTxOZRDyp48avirfVhJwMUieOe2o5Vp21O2d0pme1hl4IrkkW+ZOmL0N29qDXy7IlCmXNGF92s12tPvndh6S8CxSNyqlvOEad6Fx3Q3orYOQ1FpZiVKF7zaTQajUYDZ7aOC05RDRpacVp2u10SRXELFphf3W5XaqRrtJIpRaLr1kGsg/iJ51Y4WltsWrGcG4TbwyorUnb9gbMEv7Ha0j08vOMCxX2JWt5d8QodC95ip/ARvc/YV3ixyC2rEIHaHjlcJbC//fZbzgdtoVqqONGDtuANbv2gkFTT2zabzU6nQ+pBbEYui5xntRZNOadfRySJwR7FBIuhEAzwLRPjTPekAIpiZQMUqEwOvFXN0C6SvcKMPC7DVws7eZErdovPU7CBRbUHacx3d3dV7M5iIDWl70GUt7e3ToU+MfAj9F91o2JWxXv5lcrYVapFv98vUndB2IXw9EO1S0vb4hVUWuonBcTO0zBA0YwJ7Rk65jVULZostCTHHNs2GAw8vE8p4Hw+129RMLQK7la/u7tTvbm4y2sairZneP340ptN6A6Qe1HuxCjaNMhNqWKR2JQxr1+/xrRIFYuTDkX4y31Vb25u3KakUh5GDROfkiy0XWEQ1XIEdk9Rib1JdVSrbAWYQJWSRsH9ad+rXpoe1tAbSfTgApK9MRgM1Jm81WoJP4IH6ekbnRvzSa5zb1e8Qj/0PsEfgZv7DhtgvV7LhSx1hSFDnoP74OBA8YtE+9U8OO5VqRnZ6UsUXS+JThZ22MFmr1+/LjJjvVGu4h1+CvsiFoiFkaW4vyywJeidXqfnG0B9k7hdlVM4KHTb8XjMrnjtvzw2+p4IMTjMyDD+KzmScm2QfNj6oWCFyInHxaH5Y/i+swjdmTA2y6/0FIB+W62WxBANCMMMmOU21HX5cBqNRrvdvr+/L1zJWjTS2qpey6Vhzce2eIV31vhovIl9JwC6V6vVEnHrX6UfovGj9PuZoM/oJ+S91Go1wTRok1arlXRZF8+xTaWTrs8q+4P0rCK/wOmYxbq+vi7UYvf26E8C5EJMKmsDnpQLMhkKHX6VAj/n8vLSJZYfVrI78Ui6trPObe6fPXt2e3u7K84aFYTTQuF5JwgP6UNSC6vw0UofEIK8oo1U0mCn0bdmg6Syxaj+zWF+5MheY6TV2dmZytAKuwWHz/54hc7neFdlwp6xkwFcMZDd/c0330BwekNpNefn5y7+U2WoBXlkp9WLFy8ajQaA4J6opEWngDVtM771q2K/R6ORVI6tRVh0efBXc6njZoCsl6OjI72LpxWFec3DipKQoz///LMsPPc5xKaOcXV15cUDsZm+psdR8+GBoTdv3oh6pCfgblbpJrjtbtzvKa10PV4fxOruyVC0nratsYn/zri+vi588K7TE66RnUNTMwBe37x5o913RGh/yq54RbGMRTDu1zIAO/fq1aterydj9/DwUJZAt9vVGsEV/X5fpHN8fExfXlR2OCSMayFEnZJubEjAb32f4XAIuxc42pCRZui7IhVOq885A5O7E5rIIk8B+ASh64ChDK9e0K/W6/X19fVWQ82loE8pNs90OQB0TL148YKjWPstKaDrcTThcgXCcdfQldhm8q4UlrpemX4fzBCQjmROjsgAM5EhMzQBzn9lhentyD8vZiVPtNf+b41XeC+ZIoL+NAzg+kYh0QHNY+0KwV8koK8Mu4I29r7rhVriUFbLDOoPNfd6PdEx+S1b3fM4fAoHcPUpHojxVkJhGrzPEN8A+yru0ltTJ+D+QTh5NpvN53PepdForDLmh2t9fD48PNRtnz9/rjRYz/Ap8v699kXHgmun1RGbXeBdlDrd+xGNq6PX67nrXUtEUwLIRtcXiqjbtQ4g4N0MiuT2rfEKKRSRURljW/7pr2IAnpTeY1AoAy366odBVmDNcIFLCAi6OFU9/kJqTaFpFKNY98jus61yUWnDXgSs4bUNWBrtdnsX4BT+X9Qq+FO/pY1XWOMTiIaQSNpRJwCRYaUUZTokFDgaIUiM5JnCePqhguK+XPiR4e3nz59jgkeEKuyKGeIKlw+Q6sdCiVqtVq4rFufA+9AbK+lLzdzc/crawtU87h3guB/EAAoOPDw81Go1CFqTUw/NlB2phI0hOw++ikNE5dQ6FrvrS7kL+9ITzV20iBylYgkozvvScVuB2j4+PqJqRw78vRMBQNMuFGW9owJb1AZwK6qlfCa76gTI2eYbct+LGPCuLH+PAMiZq/8ul0sxiYiYvr9aE/SxIpNPTCsmIVHUq4Fjs0WkJKBXF7lJmSoO5V2jmuiVsnMCo6LAJEXzZA2fjAFcWtOtWnRftY/lFa7VamIGxJ5YWbjQhBS4w8HBgSwKrZQUj10NIDhD5MfQ/QXVz+ovM7S3R2GTJZP2+30P0nHC7tE4i8ob0b0WxA33u7s7D5+z1J6vG5vOH/LD2HhvyREVTfLq6sqjIuPxWHPDxiDc5s3tHI+xSLGMTfUGADwXN95sYVdLei2y9pTWPn4BYlviZlccwzO0+a9KViRAl9Z4ylPFnB+ejAGazabS7pULnTLgYfXOeDaKkE1YPEXoSyi7FHRWfTt7FijMF+4fIrtKVptggA5lQ4acGyT6CYh0e4ajfTgu8SpX5b948YK30yq5zbper3fVCfg9sWE8p3K9Xl9cXDhJrTZL3fHMAq6aNg3ZMEiLyEfZcrkUII0Lae5WldZeqZdSIpSZNl3VBH1plO2I2XtWmHY++i8J87gWHM41NjMaQdGKJ7QBiqXUZwX/JF+VtqDDrtls4oKUYiN3r/cycPU0cp9Tf+JWl2sxMJT7/b42jxx6z0iRjiT6VnEdXN3tdgWwIeNVEcDBYLDYMcjegVagLb2a90cKawKpKXn/FV7fdeiq38O9geSiUSABRoskVLPZPDs7g9kcOkG+Jmkv3W6X81BKkcOE6YMfaGJsD/b7/KMSblftKGU0Xh/nn/cIGpKjwPnhem8zHJZsB83QOuji4uIpTwA+12o1ZTLW63URuuANZZnpbMIA0lEo9sCEYhEJRupY9CNsvwUcGagQ7tdCsBbPnz+H0MFZSLn1OQtayKGbmxvltTd2DM9y0XBj4OeffwZZNirZGWyMxtY6gSIRQN27wvCFAIpKZm6122147LvvvmN93EDSNJrN5uHhIQegd6kpUuoLAnCXkYQaTI6Vj7FX4LZzvjkFv+cJD5VyZLmWuPUYcd/0U9oAR0dHIneku1NDMn+/KM9rt6UlY8xpfsqpJAuj2+1KoivbQoGtXd4YTwQPi4vhcPTkFnIHPOXYB05V1mTXxhQGPers7e2tkAFElK5qww+vXr3Sl4IQ3lUnQEZ+UVijVZLlKieMg1/4v76tDow3Ho/x+dLpLDaTPZl/VOxUpcoV8Ag00YlsZLM+XkzCW/iZsMfW8ooIVVNFjgsxq7///e/UY2gxaV3zCwjsEzKAg6Y4fT8+PtZqNRG9zlba16hQmGXVNUVeruczo9i5erN1DAYDbZ63JwKxlTME4ityjYqOzRghPrddwz2nsvUlFHD+OIdo4ImSB8aTzIo6gVUGi59Op4PBwM33grCqGDhFJ8nISZr+jp7MRxOkApO4CKGQ8OfU6VjC64xMURhdkY1mUQKXYczsD+SRoluwTWQz0t8LB3cRQtkXCf4FOyX7STxloBiu6Cfr7IlP5uDgoNPpUM9KMtxgMCDGoYXTz2ki7SdscXRCDSsruhXtqkNjMT10HjJVsfDAl2WrOCXZCS2lt3ovcjzD0EgLAY/TlgRMN3nZclT5lKuifFW73S7sNBgMitMGJxUJ4ZREe7i3MCcIYIXh+UiXY5Lv9Eh+lrF13fRSBRYvRR1ojOL8x8fHnQyArxcAw/2D3dJQpgcHwsHBwdXV1WKxkNgWRlBkpZZ8CoU2fAuheJKxUau8NpfeoMBRRQUFWpdhF4omxBK9Xs8tbKlqukBc1Gg0JpMJWTEeWNBP9ApKnnHXhC9poZXF5vnGnzxjQkW3UDZFnqvVSnyIyqd1QBkodsS3VR9QMtGa0mYpLSfhR1SZfIKxZ938OJrNZtWiJc/8S+960FsDRak1LpKrQzSEG5QggJAMC1QpQlHJcPHVNKDf7+P+D2vaTk2nXvj4+FiX6azwpXGoMKn4rk26SzhymF1OCc4B55m3K5VPLb0X7iz9VausA93bGUVGJC7ACzyFSa4bzYfG3YXQ9f7PfOn5GhEBjBTqTZh+gv9XM6fYWo0RwspBiQpDMU/Y3/cJx9Z1Y+McjYLYNt6zde51sJMB7u7uvFb/6upqvwqE4E+W2oDPkZhXWBWc+xNkN0uCEiK9ubnxDFCoTVO6uLhQkZEQcznimUCv16t2Cnt4eCA/sYCgYuBiK/5LRBbjkhR8TxQLa03lpOOnU+RT2AH2isvW67WUw8L1AclGjjaKpr0FC3Bo1GBwpfAh3caFG72OOUxvfsLeXk819qwbG61aHEcOd/dRCAVn/2MITDp2+a6hbSgggFQ7QvmVHwL6/PLlS2lmPAL4LQiFuLpu5S4USis0KJGW8wTdlyOl1+tx4us+ykfXIRAmubGDUTR5ih+skVPERGEkUXuFB4eS58axGf4UTAsH8PA+fBIx5+fnbviCTLPOmEWolL7gBRyd7nlxcYFZItfT1uzAL3DsWjf14/LlhbQ8dqQIzz4G0Lq7roLLrDr6/T5eZ6Fc6Rnu1E+5YjhZKujV1VW32+XOLor8YGHn5GsjHbfa9rTwnUlsS4KqvnZlVcKKfAmnKBmYT+HnQeLqJDw7OysqiR/ywEOin9zc3MD8RdMkXYlnqdqPWu7O+XwOxKxsdyAfYxMeQntEAk+YP4BUP0+g8rSF2BTzs9nMEy4+utzktxt71k1MC+EhiVYZwyrMttnHAFpoCgDeqf+k3EIZqp3P50L78XbteEgEgAp9aHKykk9OTryVC6WiBwcHwuQiM9aDSvC3ykouLy/dgPPwVhg2RpgOwItIleIg0gGihpNKSfdahaqZ6DgrYT0gYhNGASPYsY79DNSSEg28u7tzf6KXxfFzogcF8L/mA5Zr4b/CjejnAxH6z03tW8audUs5Xd8lKUNX4lTYdwI4YWH+FskIPuTp9zS1ZM7QlPV7Pw2oFJvP50o6gCDkDhcR+EtqS/DPeD11mB9A+SeaLRXcqASUZcRmTkG1rpyQ6lb3P3ndJLV73ysudlHtqlfK4eTiyzCozZubG7cu4ArYiaNpZbDv2B6F2laIzOVyCQyby3jAIAjGvRMw69OPXesWFce/l1yDKyFDqN/vfzAwFlIHvAoOX3zVTuUpWwWLxUKMETn9IbL2LO8nAFtHR0e+ncmA/nBiusHAiU9EXWQNZTvSKtKi2+1iAsbuiDKkX+BMOSU5wNNqEzEF7nXHlLfbKEJyaLQrQ7Ko1WrNZlPN1DzXIHJyMrkevKPbvrsGLmASb3Cox2aHxg8iTa/udbWq0FU4QgvkgbAo71YXPKivjkAaFTws6r/1L/oLVKqA7Mcgw52dnclBKRgp0mKTZSwr74ruv1SKhB0C0O5sNlPfADAImKto6203m5SePXum9gKx6WXX9YU98GDtnRV28EKn0WhEadue7aSGVdlNydoE7WrpEzmng3RccaMXqnutU9Fwl9Bhyt5MFweRc4Sqmglef2od91OqrKP1eq2DCNqlxnI8Hjts1i7poDEajSRfxdicQre3t44SKacZidyAanoNCXKzXq97ut46gzH7W7j+SUtjkQoHfkrJc3KhqNUeZLhdDAAnaUIi62+++aawr9MmyKF+JaU/sk5P5TtYX/qJ2EDr5SWwmtXr169lMSuV/OrqinPfcxAYHvvUwBYs+GfrYAPgN+qktoK8VmEPvVLR4ZEjKzAgTUD0roypF05sAlgU4lCDGbrzd1fOksMfSR/wUzE+RO0pUrW3Uqe2CS9ZygnSUgq0I5C4yBRZ7gmzuCjwOvhqgCerRS5Aonz7ftnHD2UADhECCi5Ee72ePICUZiczJTED1CVA8XwlGzvcVUG4y+WSHDuPkspOaDQaJycnrmc7BqpsBtymq02Y8p9//vmdVaTV3s6MrTDfSna4v7+XI8WdcTrZut2uTipESeHP5q2FeBU5Cq7msL7aRTvriPjxxx9pTw8Y6J738iG5A0eRXlF9SpWevFm3g1ulbAeK3OnMF8bk7ment0jkbJEqH2oNmafS8jQo+iEmQPPz6XR6dXVVr9e1mO12+yPbpOq/YjJScLkG3NyUfab1el250CklqXRCOMONnVJ68eKFlkNvJWobj8f6r6++7ll45S4uLjBIBFcmHiDDVJd5MUcR2twT6Nkq27TTWxs9qMFHSglYPwk5pbVGNmPgDaQ1WYqapLyZet+iy1gB3CBQKj/TPBa+Z8jLJ0QjQg20UcOpWpR3F4NC57SZKBpmjBYrTNYt5pD0SaWv47ZSDxTAUpPl/BUpjGqsVGR5wH5q6oUZSUDmIzvEpGz+unbolx0fH3vfOz5gLke2CiQRIZ1ms6lDTdo2RxWHyevXr0XZBBx812VoquzdI2XC0Awz5vRbL7rHVbx1IP6VQ+KZFMtKqx9tKmYlvFo00C7YRgJexm7RFCPMHiVJAbO72tqIl6WOYuvYWrpZfKZy6n1ARyhmcsYWIjRZ4tq+q6srtx+YiQPiSyzSElwZe87VMuewgB1OASFLb0l3EEt8AKX6kSfA2dmZLnPkWi8H0QycB4p/5eoOswFWq5WWQBakZKeWnt4K0vs99bJWq3W7XfCw3DAVu9IdDXA4/6/3d9g1Go2Gp8ivNhs6REWzYgH1KxLUtGfiZ2y+fr8PBRSAiliTKkbxFHnPCFplhAWF/bdmDW0dnq2kDyTeueKBY3rrEF0WTOigDPqAU07WJ7nDLoxiMxHQKdWznfUTLSBplD5VT+XiTe/v70W6qnv+xWT9UAZALoYhRkXWR/UnnxZWrFQXdUXWX3U9pJxyNiJsEJupE3gG6VKsby4uLoQ9USCn60yQVBDEiKeFhKWn7/GBLpfL0WgE1h/H9652n+6l1esglgBvC6tJKE5zAmdFJoLn+WhU+3rgbMWNuL+kMCy7aatOuJWx9wzuJkPI5RSLQLeUMFc91k4xE2cS7/BeZXIXZ5yoyfwxNPYtyiQ+mAF2NcrmZaQdpZyOSw+PXq/H6cb5EFn5UQhMWLMFSyhMplsxdfFVUf2p+uPqixDPoseZZ3ZQvdntdguNAmez5+0dHBx4wbVeP23iovpmR67q0pKi23h2tK73ABkdBliuQrAVDLCHgcPKD6oUL3s9zGUU2ypX3OnsfTIp4kPY8yIy4ZT1iBOvyLcj7sGZQIPhdrvNzT2FgX91mGjZReidTmcwGHiiALZ10Wv+l4ypp2IA8gtSbkIqxVp1ri7vDw8P5all41UnUK/XiQCwu7VardPpKIpJ61VkAP4lpRwzAYFTFP0YNQh/ahXcvaP4cWRdHxLRfdgzNYgWL4mlxXXurfOk3LB8hGTA2o4ZE5UUiQJtl53apQLF7oGiXOTGKi6ho7IIexUxLNk5oifsV3Xp5MDHx6C6yjDM6sgKAo0U6KGIhyAs7UUPJTwizVDk5KXn+sazEofDoVe6Rq6AcRAGwE/fauBPxQAuJ9zfwgc4IbIR7PrP2/Mo+901RQo35ViQPFgsFpjFKEVqExtWePX69WtIzW/FGQ19kw7JQQGPrXMDcNgG7zIM75YZf2K5fdsEmVrkHcSOJLmw1hiSL8ojfKcRXN1HheRQ3txsc3R1WAJzdjabCToJ7ZkDSmabbCd3JUM2TFU/0WErcufm/EuOkxodQG/6IBnPohWQjPpXIGJeb60PkEph5f9SW/tUDDCZTDhtndUWiwWaD9qRc8LBwcFkMsFLhTyILODRrKgXQ22QBUaZJczmyZt6Vc8I0tIQCyyq3SXnvMFZgQ0a2ahaLpfj8fjo6IjCRUS7QwgWfkAvyGDjq2nSeGCcOeVe2+oG3bWPRAm5FfGmIp8PqUxnNP0LKnrBNjo8gaLwLUhWsY2UiU0b5vr6GrX++PiYDinqgircxeJdFFPX57QZBJR2INwQThLntMjYUEXZwBOfAB6LLRoiRQV7TLJWVWD8SuXhyYxF5cx5GyJAkYTR6dOW/Cjwm3S9K4LT6dRzBpU3ohacPDeyXx9xzlII9Vp6JzK4moYdm02y0A2KovWthTLO6h4Z9ffyENUunCKnnsi91zVzchb1XjpnCHFU7Q2OIzkDtb+AqTArx2OEsT2pHpLlNQViB66wMwnXNxoNuuilnBzgjgcogQZKVV9WsnyZt0TyVAyA3FKPrfV6rVMPcm+1WqL19XoNQtbj4+Px8THmwXq9JmDETo/HYwkG5KVaNlAz4F7/yIllRSVUMleSU2qyQjMu8GpJP989h9Sr79brtefzkGzsxFqUa2m5hIIa20olZ7MZ7ZKwBQtAIZeCu3CK0ub4r//6r2QmhwsFHzIM+JU2S7q+asp8WTx7YpU7ALiyfnJyEuaj5BGO7SVy5Exot9syiMNSAyNiOBy6rkuaIyEIpduIvmn14NoBt9Ip/ZQngAMfLBYLr2ZMKS2XSxmL1MtHRL/fn81mdFVC+Uk5QQACms1mCgLQbpo/ua6ZLDrmkvX6+posaFBicGLoJPEOKF5Bh2Yvp6dWRjuEBKXTvb7585//nKzmoahxu76+drLbWizP2uKR5HTdmgy3K+BV8Ly0fCn3el8ScllAdpx317OkxniGRfETR09xHFVFJ1QbiEXhAWZ1jC5KEbxPnBK92FkOQ4563ZMSXF/YwuMEOLEOkKc8AeBUltux8kTchUY0n88Hg4GyeiL7SVjc2Mw1AjMnssjEheIC0nthhNm7o9HIqTByjCmy3UJVGrqB3JFQNkZVSskVDDIfgWmhDl2nPHG3tJn5Q1JkFS7FQz9ugexJh946UDOwzXgpKYH6q0OswZz44lzbVrjaT045N2EzOQ9c7noSQJjrs4AwcTg3wE/1W7bG0+/dOnLUnGp/N9QqBwt6qyM8FQPsug+0DrHWajXpPDr4VOASpjCwK1K+tay6Rlov7cDEckjiMEWQOFpsFo6hbrkHvVid2Kw01aCgxJsHgxhHFXxsqqSFV26Z2yrzzR7J7cPVtmplAvygh1I/gKbuIHzVfE9/TYiMtPa0qSfzdM8FlFUgpYVzoCjBi0pPPt+mXSPeNaDDd3ZK3Vrw9JszAFQI0P5qtSIJQv+KLNDa6aGin9fr9devXxNmjgzgIXdBWNSmVquR9o3ekjL+blgQypeYF/HzKmXHggN3ps0WHkpuLUBqfRvgKL505SH2Rmo9XdnTvADZJOSiuanrFkqgJJznSgnmQytA5z/HDhNncmq5HCV4rzNQWpO0Pt1ceeDif89BLMytbh4IxAJzrjp2pWCsrclfbDa/2DqKktdfgNI+DQPwnkLAVXAXb49CBO12ezgczmYz2UyTyaTdbt/e3l5eXv7lL3+B1mGDy8tLzcoBYik6c7w+Lbp0MNx2vCB073r5crksALhdDwaa06WUWv9q5tjrDJTDX2BZ3wUzI/kNxaTcjpY4axjwY+HMLdZfBOcAZJxmXuDm8tgb4zYaDUiZtD+M2gKur3iFZGXfAiaLHUbO+5yExSANHlV5P2hxGIba29n+1gyAXO/1eicnJ99//73upuh3RKjqJ6V0d3enBqyRBaQAEcLcYbqhcuN0/4eHh2fPnrXbbSnlBNQkngWVLBVcYqzX63EO0HGN2b5586ZaJSzyWllzrthsV5NysCI29XWJpfv7e0/P9mv2Jy0X+QgYwcTCioTqi4sLL0tyWLjpdIqfSj/kRPVWToW7DPrWZ9JU3UEEWqPG4eFhgeNbrXgk8wK1cE/xTdo76MKYzJjZOmazGXCD/oK/OQOQQYkiERHC9oF0yJF2xb1er0PNPMhfNZlSK/c/XmdlsCWLnblo1PyLGjyRS9HpTKPQtTBY1QkPb1U1VKljGodjWEHgO9fNAwjFeSJzln1xGLIqVqmSRNT1VfRNbWfBjQpoiM1wJrbbbUJamMIq8CAHzDlWL1j0ipWUGY/HiJ6HhwfAYffnosfuQco3KYlb65aKnyhyqtqD5f4WSU/CAJFj717grC3E379cLlUTQy+JlM1lmCFlxQZPkY6FsAaxVYuNVDzVytze3rJhwOTHbklcTSD1jvaRT1JJejZMuhBJZnLtPzw8FDpVZCN+19EvPhT9OZW8ePFCz1W02BV9eFgIHcrwU8Y1mWFU+kpquMMeuaDuabGjgGE0Go3HY8fjDzP9farEPdVXF16i9lK5D/Hhw4PKmmoRT6zOmY1eWk+nT8EAQoVfrVb9fr/ZbK5WqyLUlVK6vLx8/vw59AoPzGYzGo7L74Y/kS0X82gdxUWpklzueGkpG3841waDAYKw2ltSCI2+6NPpVJcRtSWVP6X0v//7vzrr5LF1n8Pt7S2aCeDmu4bmrzsXKj53QG9h3biSRMi02SiNZjkpOx4WuU+hcnJl56CZUCGwzC1r5R7ASEDvEm2gQyos5eoNIK0FOl3sReXYOtgjcFQLU6Q6JG58PvuwQZ+KAfAe4vBmd6Xfp1zmIveosqzW67Ue0W63C0WITFIcmto8Up2J/oAypLsJuUh+DGDbnNbJUwrLTHRwc8m2qneP+K7318A01+sTfEGypr1DTkxHOnGI82QqfqEqFN0AfLPDSn61rSya562QClrdWa8f4qQqmjo7WTv/o/+IpcXebsXuIfTq8ATkgm63DiLH+IvfgQz3hAwQm41GlE6MmJeDX215lBp0dHQkSGdiZ8Cr1Ot17AS9idqQEXuSggRCP5uKy0xTJeTscJlur9NsyyMpoi1o5fDwsOgKLO7a1bWSwRnlQX75Q3QmyPmTUnr+/DmO13Xu6rV1YIoks2ur5bzxfvWN1YEty9HnBBc5e7mKo/qFj0+hAkVF1lLimHIQQC5FcFPYKiqsXec5PDxEWitqqMbokmS6zMOKycxo/uo6ACHM+Xx+dXX1+PiougpdjL/vYbPRN4I/Minv9+p41qr63RdpM9988021JVmY0zDtbgtbpIgTxC1qf5X6QfD+/Yd+7uE23khu37D0no/jsc8yfnMGqHZm12I1m83xeEw0Xupy2gyNURxMFAPotZSNYzoNR26txYlB7c9qtWq321i9gteN7OuIbRLrp59+GgwGaAjJwIt465Qr2SWq02aCbnUQwNZUq2EyvZdH3IjX1Ot1Kqd3EWiRcR2bCcBsnHp/ND5w+IsUyeGcrqRneqL1Fz5+cwbgssvLSwqFBJcAUnRK6fXr13/4wx9U66i0OfEAEHRvp5vS0dERdrDczNrmZE7P2WymUwJNcT6fHx4eescHvMIpR9OYMzKeBm8kwKVKrrVGta9edSifDzJSwhy0VUCAOcKCCg90hz3iX9NznUe9eYgBIbBjt798T1r1yooevQdUbKZ2v1Md+KLGJ/IC4RZwJUHS+vDwcLVaCSrL9Z/BYKCtSrmMJuVIXq1Wk2ui3W6fnp4SdU+5VCAiRqNRrVbD3xdZvqaUDg4OPLlAZOHxIMzEyAzMsSN5/Pz5816vRwaliNh7Qe8avlDi0mS1I0ViApORwE4Ze2vXCVD4AeV8u7m5YU1g7P0oGFuHJ9Kg86SUFouFbkuWZRWU4Usen4IBPAVK1KZ+jxidrVYLnb7T6WAVSKLf3d0prBublkAYXa5zQW2tVltvtszgJ3o0VQQpYwmSsBmbrjQZKrVazVtoRYR6uMvF5L2vJX13SWgwyTwHRi4yUj7XuWKLOehgEe7IfgPDO77I+egN7ufzOYCTHyehi9w+bqW+wrGtlvd3MT6REaxgEGywyh2QYjO+K1KWQt9qtWQAKI7YbDYpA0D8AJbktYISzEV4yA8H/QRHpNc0uYoieexqj96dBfFsGYXw9gS2pPgdHBwg5s/OzmjIjttHMnW9Xitxnywu8P12JYfFpquNZfd+7oxfI6GldqJbvu21uJlA8dUG+GVUc1BJ9eYaaD0sOoZGpCp4zSQibm9vRW2Xl5dKm9N+oOZqYxwwQpMsQvqAfIUFmNOmIVuU8CULbTpknzvX6zsGz4IiqbmhJkHfe3dK3RyErD0bCVYXoppN+eGHHwjFeDbHhwaeCjiwsMCqzmG9adqbv/CljU90AmwdC2sKn3Luwyrjw6GrSCPiv5GVE4WTe72eBwfSplenSseuW6PuO0JJt9vtdDpHR0fAvitoQKzXYwI4Gf1dwpIl/Xv/Ib/17J1VBqLSISD7fm0V0hpKLcGgKhJyPvHYE+fxJIv3bK+YNvtLEFv0uh937OrMx8medruJ6d5SwNF9NgaQYuMJJ5wAit5LzFMy7xCCOgoks+XqBpQ3rPC52+1SlySxXTQQKIA7I/dKeXh4oPZUf/JCJKGt6Fa6P3EuGg7gjwJ3VneTKligoKlAkZVx/YFkJJ92mDCmqO0zjrXhkOqNKHHmmpWhb2wdDttGUK9WqznnKO/DM17/8pe/pE3QuF0qouTXljL5PW8VvyUDeE4IHCy//uXlJclC+l4nQLvdPjo6kq/j+PiYUmBeRiJc2Y4HBwdFQyHWiDx+Xk1Xer6k9HtBvXc6HUma29tbOv6qsJjkeM2z2rNDn+kczNEkgNiwg0U3kXSfTCakzaxWK0xzfwtf88+oc6NWrXI5KM2Iwg4rXbwHjN7xSfVB/DOZTLyg0a1wCVBAa1bWA2/r8HRduPFzqkCr3Pua9fJEf4l5hxaNDJLlECk0okQMt1otJL2UGc6TyLaBmvnJcenWZ+Q8ZLK4lSSsEnjkugP06RVQlMfjMW77MB7WoheBXhqSul+yirSF/6BQ7YDD+IypB5w/tN+kANpfRK1LY/cJEDlK7TlCRYY5ySnk2I1GI3fExe4T4O7uznFlfnFg7Hqx35oBqnUeiuNGjrMMh0M2WLWOUjmwPrvdLq8h781gMCi6l7I0ePF1c0lxZT0wpWSF29pXXUauORHoRQaaJiWYQBV3oxZEzOPvTkIyQ3Y8+HNs8Hq9RmoKPEc2tKx2pu2JT594uKKPAHJcAsbBwYFIaOsQgZ2dnXU6nW636/Wo3oa5iEXy4pzeu4ZyT1L2mJMY/9kYwM8y1xwEW0eeGSyLNi/Hs1M5/OB0r8TSVIHFi5xiTRb72jrYXV9fHxwciNSqc4vsPG00GryyEgypwCw6t4UV7IksqpxfwBu67YEa4HnFmBNhcboPXf8nHGTdRk7rKGqv/JrHHSNyLhZQZWE+vTBHgssOTk4CILvc0JIja6uTXn2airA9Q+ovcRN5vvUmk8mEAl9PNwdW+uzsTFqNu4xiM/UtInSM9Pt9asmB10MYFAUAr169qtfr5+fnl5eXtLxWGqnbyl7NrcuKjqIo97C6NlVhCpwS4l65aJX5J2heXqfqA6UBsJuMn3dsjfMoYihBdnJyQqbGrhOg2+2Sd0QHywIevdVqeayGo0DV0sqG3Dp0pLg/8DN7gchM9nxMDUEeQKZyDirtbDabKZcLkCNa1jmGs95LSW8SwPQbXFgfMccOCkMQUv0ebaR82gXeICXqSu0EQ4F2i/BMgRnh+P3j8RiwxJRdSQTdxBveoVlnnTumPu8g+VxhkJS9DjKxeFMJmj02ACJmbajuhBru7u5IPWTZ06b6t6eVky8d86zVap/zBNgzkMr39/eS+iIRz4qTdME8qtfrPg1d6fSXrEU21tU6d7BU3ZkD2eK0kaRZrVYS6g4B5OkVeGO/jt/T+NIYwB0I6wz9lTK2OL5/eEBqEtE0UeRoNCI+X+CaYEs4e6gDaTJLA7IWgw2Hw3q9/u2336Zcx43oRQIBOvJ1/J7Gl8YAEsNYLfSZ0wl4eHg4mUzUo1Ikq5jrwcGBFKf/+Z//cV4CqIyXRfanlAaDgYIG/X6/1Wp5K0IalhQhTEf8U9dkoRbr+mq356/jSx9fGgOE+XTlZJSPRRmRsnFx7WsynpSm4f12BEyrtzg4OAAZ0wOKYgC/1enpqYwtQBZE3KJ4qnBgDzJGv47f2fjSGEB5AdgAHjv0LJpUoXsFyaWH4EPgTwX4jKhf9iWX6ct2uw2KYzJndq1WI+OfBP1iAlVW/Dq+9PGlMUBsNlbRh1evXj0+PhbtoMOK/OGZ0WgkxGmJZMd1SpYlcXp6ihdSCZ7VgA6JKOpLLhZqt9vyY+JwULOC9B4uiK/jSxxfIAMg+N217ENNfrwKMaWkCGLKHkMdArJQ/RviZfogPsEpRqMe9Rss1srNXPoIcTfntK/jdzO+NAYomiBEzguQk17ZmqnS210eYm+/jN7vnWJTSpA46gqdHvVfYMGxhuXjd7cPDwKntuj8/HX8XsYXd2rDb1SKqUGDaOvg4KDX61HyBxb0/f29kFFSlvoqo6nVamKkfr+vTB65mFJOuk4ZkcWzSlJOjNM3OKZo+6dSQKXKaW6r1UqdKlNKOJRarRbHiNvcGp6v+v4DiwVmEwOjgNExV/+t/U5GsnTGlHH1npCu1NnS1+2Je4Q9of7DIUABgHBNUk4ITTn3QdkjKaXVaqX4lMqLqdZLWe/3KorlclkAbnqzXn1zcnLCfnzzzTdaNS1ZAUdMaeXp6SmA5sl0rXq9LkVLNrQcUx9NoOIrcsXc8GBiAuJM23p3f8lDWwylpny0PsngKb1eD2/Hl8gAcvUATwlRKv/++PiY5hr9fn+xWBwfH4PAnAym/M2bN7qShE1QGVNKNCQl98HBxPkVne1Yu2LPOp3OyckJ/UyV10QPWsp9QCJiJVNKR0dHHyHktHm6Q7VQHRwNFLz672SkjK2UUlLAkeqipxpyZvg39Xr9i2MAxnA4VJ4gOw20f7KiYWX1FI2Prq6uzs7OvOu67OAiQ321Wsm772kU2Nb0vhWkOx2N/IDScxHnAqCtZZQeUA1xHHn72+Vy+RGFLJqGXlP2iR4tISd1SNN4J/juFzVE/c1m0+keRLBfP7RHOiS16W+BN780BpD4VEN2OXYuLi4kIRaLRafTEW6KLkb41Wq12GwcH1aQkeyge3h48Caq/Ip85sVioaIzoSjrVyJ6bxl9c3Pz8uXLZrNJSdQ699ogXqF2jqhkqGE0uI53NYDYOtC19N8iOF1kiT2VCvFbD39B1XVoaz60eH/XIOOajXgLNvWlMQAVtFil9XpdB3qv13t4eACXIeVIVqvVAjGllvFRZBIMh0NVV0qci/pFgspv00MvLi48eV3q+3K5HA6H8/ncewKQbXpycqIzSjzjWebatiKVIzKuW9qM033cKk2nU69DZ/KeVPvZa4U/dBS9NrTFv50N8Fbp3TWbz5sKoSdKa6dgN5llqXqAZCZmypp95DaJvV5PwOuiYHDLhEInTlP9jT89VfrjRs4AVavgw8PDm5sb0GeLsg9P5qNEkNXnJmuDs/6gEVajQx1ZWPf5okbkN9ddnm5QW+wl1E812COA6z5zUfyu4cao/3t/f9/v95UQStbxYDCoGYqOF4UBiujTluZAsTktJSMrTrVabZ0hdCBQaEsd9XS9gyvGJlZH5HNsvV6L36ICC7kV2/49ByVmjs+u0Ww2vXc8rXx/FyNlJ7jnsDyhm5WBefY5jWAvBY7cuY0m8usMhpM2sRBruQfJer0+Pj4mC7rf79O6lEkmc1yKr1qtltcQgU5er9eLps1OoL52jt4BGjjN+fQvZrRM5ILWOXAcLoWoH6V9YXlQwE9Il6UfOr2hPm4UoEYRMZlMEJDAdnhD5aJghbpnYFEiV5lS8BQGAfbRU32SUZyfOjw/5wkAZg5qg8h0Mpm8ePECHqA03pnh+Pj44uKC4IBQpSDTwWAgQQgnNBqNer1eZEPIOeOgEgoYO2CWjAonAr1vAb1P8dfj4+PZ2Zm8DSwL6J9AXy1zw/eIGI/HTsdeW0yRWlhbJDCLdOV4PP4IsFvm9vj4SDcQhlpBhjGA56TQ5EH/daaVMSYeqOKUfEbY0OLRErjrzwuLoj3WVGq1mlqdNptNultHhAxfeXUeHh5Ejo6eklJSeQAfdGcFyJ49e4YJoR9irdZzXNBBCFHAzs/P6xZj0rmhCSNCRMSj0cg7ZUizglxub28VOXYa1V+p2NSXk8nEcf3ZJzEkaOnUZBamy4faEpoPWbdYL0UfXw36RGHTaxGqip8HvOmHoKf87W9/e0KC/oihCdCm5O2+77r609gAQLVcX18jzumKd3Bw8MMPP9Tr9YgYDoenp6dqhvdf//Vf4/GY+vfLy0t1LKXEVvn9sVmeKwVJCf2tVouCL+9TFBHT6VQppUSyNMPpdCqHo6fEUUjgiqYuEM8ocUgYdYW+rqbI9c0cUsU+1WpJ39TrdYda0AB7ZzQaqV7249YfeBXKQXnl4XC4zihXsQk2qiFnMTH4Xq+n3lbFZBy2uoDY+JRDjwZyge8/GwMosy02KxvDDN+UEuEtETF4WKjmvJtkv7S6k5OTyWQiyhC45NnZGX5l+mZjchVJ/KpDV0PLlH1Q0+n09PRUxCqRDDVTBiAGdioH4ERaCnawQ6cUzkpRs3L+qvunpQBgS78FfuJD1x9nC+qBpldQsCekMHn8v8vlUjGsq6sreaUiK4qu160/H3SXD5/GdDr9nCqQcC0jotFoSLHBgVMYvinjVeHWoFGk5JN+DuhIIWZSBka/vr7WQ589e0brscViAQF5u99kaXmQ/jfffOP+hE6no8MEvMSCcLG2lcNXuDiqbUZ5O+4gzYRsDiHHaNzc3ACuKu76UHdqQejrjLMS1jZTN1fOFSXaEFBEtFqtoj/pOmPvUKpBD6XC0viUA4GLqvmZgbEi03GtVptMJs1mU/3HEfkpJ2xGrouXniP7UnfQxADVaDabhJ/COkni4Xn58uXx8bHISPyg+3gL9SoKuTZYKdlepqMP6kysAD5B2Vqtps+ko9U3UxH9ZItMcMreU3QP1UhtjvT5+fPnWCySu2L+j4h5eePoqHQCl70emydPbMbdNEmVYkeO2nKNzl5XI7+cIfe0NvSzMYCUkHa7vVwuW63Wzc0NZDGdTiUL8YoWZ8J6vZaDH3+cXxOWGuSdtjqdjiyHsIRTZyFaLXnYnGuosKkZyvbx8TFngjKu1xlsyyEnwmgUBkvZVe+nDY3adY3oj98ixsLcROmjitEODw/FA45wWkx1Op2mXE4E63JehYF3aFW1HesK7jdpgvub3PymQ4++vLwsJvabM4Brqwg8so4xZKUxp0r8y0m/1+uJIHQIqDtqyn22RVj0HnWa1s+Reagr3ByINVTbu7s7AWN1u13pIZJw4P3j89EdnA+9GE0Kzx4CZaHQE5hwdeg+nkPhLqmtGOu6wPvErDebCuMF5viqAxpl+YVhehFYV3sabcSOfghhzaBWq9V7NhQroFefsAfZJzoBOCiVWqNEPDnm9WG5XJ6fn4sopRrN53PaWafsTaNX+2QyOTk5UWWMt2yBmoVniLhyg0zNrcQ2q9UKDVtv9Pr160aj4dCIyNpCgAnDsJCL0nmw6Rm7dHGIG0HbyKCLk8nEO3jjrVKOHceOPjimiyZwf3+v+UMu3misiKBdX19vDVcRgFMaLCL/ndr8akc/BAIL3jluz2ARYtsp+uvHb84AWEhYvWze0dGRnwD8W8994dVMt9B/rq6uDg8PB4OBCHcwGCDeyLOXYBOkHEDb2n6oJ8wngJQSOK5yUdmzyDS3WCwuLi4gWWnhxduRQxHmbK7vbp7nUTkknCIhhPMYXouDoHUYXX3JcaSba+OStTDSHbSA//rXvxwnT69AKmFBcATF9FDB/+8aW/sh6F+C5fpAA5itxjpPFwc+rSX9KU4ABdjBcafZ1nK5LPpj619QyFer1fn5OUldWoherzeZTChZ1Ic3b95Ai9Dfjz/+qJRmyVcRk7zvrKw+kFJRz9CLuq17KqfTqdzzkVMSHCkxNl1ALIj0LuUFbB2ag37LUpO44Uh1YTq0M8bh4WG/31d+RLPZVBxDM5Grfj6fFwDUkS0Qxz7S0HIdHR2RHqJWlloiz3vdL4Z39UNYGxY3U9pD01oiT8glA+VJxqdgAJZsvdkQUv0mUiXzBwlXr9e9Q3CYSTCfz+v1ujiB/kjC11fZgEgnNtFwI+Ly8rLw5FxdXXFxZM8ju4sUrGVEXvceInfdn0MFmTy8Uop2nQC+UNfX195ZDGho0mOFjafP2hfp03d3d7PZTJbJixcvSOXo9/si8U6no/NKConnGvnerddrmg3rLRqNhtdVytnF/a+urvY01mY4prlW7OrqSstY4NxUh6bqMJXxfm3JvxQGWK1WHHMpl6qklM7OzuTcjIhOpzObzU5OTrCDRffge4LKHxGj0UhuIlLz3Xut/FCygpGsBQYEo2rqsSXuj08ZfrSa0RlZydYL0pY9Im5ubnSTPSlrPhnmVi2Wj3xeSW+BRRV1blg5GNfLpid5QeoKKhCZUcqSkosZEHnebj6fe9z0u+++88nvqdlNu/shFDQWOa97lwrka17EHH4HDOBujYODA3nNFT2Rl7PX68mfg+bDFtZqNQ/6Kumy3W6rxmU2mymeRU5Y2vTqyIzWUyTtSNssRJQHO+fzuaJjKMRiWr2IBKRgu0nzdLBe3Zl+Qdx2zwZrQHAS6q4x6+ZSHb3TcK/Xu7i4cPA8iBVlhkC1ohxcqXUgrVXuXW2uTlSaM/T7fffqXlxc6LN4e8977eqHkHLVbwEvsGvopdbrtbTNq6urd54bXxADSAiNx+Ner+cqkNyLKVe9RES9Xl9bS9Diw8PDg2TVYrGg9FsK5WQyqdfrInTnt1qtpuPYjUsJJ5beS7Q05P30ovLY1kdew3uBVZMaimt2rbMiMltdIqtc70L6sSfeFfVxKQfRlrlbsE+giHPDQi714Xn9UNq2+rJhzR8fH3sh8p59jx39EJgMZ2zaOxoG2RSbJ/OvH0/MAIr8ES9kJ+jPERHSIKF16cEqdkkGdP74+Nhut0XxYfaufij7QQEvWIVmGfKfIhrlsSatuqBUJcxJqSAxm/AFThVC6C47NRSSQ2ZvHatcTb/KFTZFnrOsWErC9/jXqyE2T7xR9CplCyQZVDB1/URtEUkpJcC/6vV6v9/3Zo9hzvvIB6YEfBWnyBVL9x3DVzgVwrJQqya1MAeK75NZIIr5eD8yIiRutfPb+/t7nSGc3o+Pj0/GADSxYskciFxHqlLK0rZoF/7QZrOp/u/tdrtofy2W0GflxPO2+PL5Bj/PcDhst9udTqcQb99//72jOQjqmV2UKC3Q1UWjnFeucDt97Bku8wBV1zeS0yjZeyqbNA0A6pK5YtkUpXuIyJT1FRlA0lFQSSAPc3nNZrPpdEoauXQYjG89QvdXL1fab7nmExHMUz/kmKUs2/PGw2oJFCDje1EUKVtySWt4SjmnaDKHrwSKXgEXAlWEq9XqKU+Am5sbSSn8VhLqWsf5fK4Nc6kDyR4cHNze3na73YeHB6XERK6MZo1Sdl/e398LGUH5ldgJtVoNZ6sE2Hw+l2qkCg8HzPrDH/4Q1p5VL4LpXF0QZbaEtSHzy/S+bi8WY7lcikuV9BE5SBRmRYSVEe/houl0Woi3qtogJTs2g19ka/rM+Ymr/syZjCmMadqZ6Vf4uEhnks9X1jMd2ZyohOG3FRbJF+H29nY6nXovwNlsJu66vLx0M6BoeC6DfmU1qKPRCDwElvpt9s1TMcAql9jq8b6+amRUq9VevnwZmw5Qf/Pj42Mt1tnZmWTD4eEhTeRTSpPJRJ6WRqOBt07av3ijyOZNOb/SXyrl4pi7uzvvHi4euLu7a2yChDYajZ9++olT20mcpcRZ+c4IpdooieIJQbhKEFlz29XvtuoyL7hOlKFsfjrJFvCmYUlv7KN3hkVyn5yc6Fe6g1vDnlSDo7bT6aDF9Xo96aJF6GA6nQLD4dl1i8Xi8PAQW5kooXjMDbmw8LbECjxQyA5UA09lpRQxntwGUH2d2BdJiXvOVXb/N7KKr79Ki6UKLOW8gIggOSKyIC+IgKVPuRhXvQr5K9tMDqO2RAGyVqtVuF+Wy+Wf//xn3fbw8LAwOil6WmeUh11+cWxQdk5Yd7EJnfL+QX6V8pDA50cQ8nKxWJDl5rQOJ0gjlWJwfX3tmYJeusB/GwbFVYhtqBOgPupUi3wNl/Q4APTib968cYeK+wY4dgqf72Aw8ExV9s7PVSVBViMPT6kCibA8F1/+E1zCYdp8yi3ulPZzfn5eMAN5MjKRxRuEonQOSLqLlRFvuoP7NMLkk7/gL/mAKXW7XUXQIhf+qRgKW0r/vnr1ijd1etXNJWt3+cWlkspt5e1vYUKqimVO7DoB0IDH4/FgMIAO9PqIT4nhZ8+eybCBN1RSpzdlDtIrut2u9hrlRIxROHCKY5DXd7xujGDoUo8gwuDKj8MSe/o6T7m9vZVqXbRh9Qm4H0+6HIg4yBSknihKRRRPxgB+9Lx+/ZpV0PklXyddflerVa1We3h40CyHw2HK6W5p0/spfSBlFztGhaTFYrE4ODhot9ssFi0c02ZrUTgBkSY6qAqw2FQGZFkmC6bCdUhu10ze6e8vhkQgJ/IeK8IZJqUk/9jaWsljYXO3u7s7yujcmvdonVuQUiOhGFmlLneTNSoXXQLwqId6y2Snb47KMO+ckriYrd4LWSaOAujXVSbcdBIHWHdVHdjxQE9OToC85+InVoFWGdVILI4kEAF5qCsi1Fi3Xq+r9R1rhHRfLBb0i5dpRbmwXrLZbJIJB2yoNhiBgW3gkoDVWeUSPjRL8py1DfidYHLeCxCe8/PzqtOtSrX6gBqq/1bPk8je5K2jOMpkurghAaEwGU+e4ZDxF8HDI0CxMMFZLb0nQRVsanGIdpyc3LBihqKyAvcXfX+5P3wYlsXIb6WmJuuRTN9br2TwxHIPP+P9VB7NFgXufRiA04o4aIE6yHvid69n8PFGoyFQfwVxr66u5PEkJqA+2DizhLgfBuwcm1oHm4pqzvy1cBQM1HKDZd8kz2v3fhy6jCAOe0CdB0VPeEjQbjVArfMl5RFFkiMluYDVeRa0tyXes19POPQK4O2hrjhZI8VFbWIMwj5pswLu4OCAHDi9GvF4wj4oQnyIiLu7O2QTPIwiRNhH4TkYQxmWLssQc/hp2NkPZgBQtRwmABe7wj1cHzlFObK80emjLLdvvvlmNpvJjSOflIqqlN/mMV15jSJiNBq1Wi3BNUdOGSLEExay1YoQtMIbwNCGFV2EFS9T/mPkjH9ts4dg19agiUC9RJejSkXmQI36JgK7Huoiyu0zmQoFXX4C6octZbU78WnyOi7+8pe/oPoDkeSaXlERz2lTxC58ADPDSYthA/pGt9sV7+mJ8JWECJnhyYI2vgWRz8ybm5u3/LNrIXYxQPECkgdg40SEQDlPT08vLi4wTJOlwXHgRsRgMFitVkCdEcUUVXF0RMTj46OUQuWESflzZY7VTyk9f/7clWkPYfqZzk/AiknZS+MAadyKgEOj0ZDDDjRm8ZvW6vT0VMpx4ZdgSAUvelRyKGnopajATJsFDL/p+O677xzQqkgDQbKy7MkaTyEfhSHpLoSwunv9SioQ+mRKiWgX7Q/DkIB1K/UZKTxL3B9WVFTHV0zi0qGfPkYFwqRwx2qYkBBBvH79mlgM+yeRLFPYjWO9tggiMnRzyi5LjkVcQC9evNBk5vM5Fpi4SFoHuyV/znq9ppkXC4cKS6silni1WgmuK/KBC4dgcMtXg0JP1VhETCYTES5rJWtHe/n4+OhlBi7mkVVAOPLKnwzq2bNaIktWpAYKjGNTu+WzXq85NlP2jHW7XcVe9LI3NzdEIVhzt68wrtyzBykrIaqwqThjIVeAP1CBWOqbmxvcIR9jAzSbTRVk6RoC2pyJ0Leiv6J4RXlF7iTGFYAooCOygvqMd1UrIl+k+yiShWZVFSAZIOnyxz/+sSqMEQ+Oq0MZoQ8RdDL/D4Ya/xapbNK40BJXBuh7dnYmLuVskQKtn3hEBUgvAu37I8RPMpDZkPUqFzc6D4SBaoVlaDpLoBxeX18vFguhM0kFoAMVp2uR4Om7QMM1SLHf76OCYjLF5gk5nU6rbQeS4VXGx+UCIT7ZWh2XgitE8dIstevCfdCvTk5Ozs/P5/P54eGhIkRO7oPBAIY+ODgQuBWckDb9aP/3f/8nHoNQIoOPhyGKhsGi4D4LQ6DnlRFd7kJBCLFwZMWRUqYNgEtdqGMo+47K26sTT6xFxNozNyPi4uLC3+4TjLWhA5EbQm1XUcoYm9lykZ11BN0c9JeonBZQNyTrtjC1Na6urtQfOnLQmoC9Fz+IRInigf0BDetu2iYn449RgVzi8obSQNzeVUgVXe1tOxrTiC4uLqSERQ5s6XF6ivsckyHHO1FqEV30zmYz1rFwqEOdDkASEW/evNma3FK4n/G9FgGHMGvPF9pj3oWPH3ElB65HOlOGVTw8PPSkXyDcPsEJEKbw6C3IC6RTidOrEF2V2UGuZRgMAn5qtysk7z0aWKROaigRQ7SEdK9KBD1RO6vZErz3+2O6uGXyMScAJYgSgUImTDkojQYmMlosFlIBU/aESs9xxAfRIjPWSrkudH9/r5Jc6XkSM3qfoo62eAu2QZolbKaXB5taoQxPNkaekaxSOJrCtBR5b9k2LAoRkCpRfFncKC/UaBjMA6sHBwdU6P7WY7lcNqxPY+TGCJEDkR5f12qIKxCOYhU3q/Aye5Ii9yxKhN0I8WIjRlFKSoKj9lQLiJfWTwngasK8t2nPQnALz7yF4CKLuvpmh1pNUVUUfs6k7KB1nQcACCIa8/m82+0q4IWjl9UE7NZFLMdF4euk8wVFBWFJUfpwcXHhNWIF8DKhNIdEdie95ia3rI5+10cLvRYWwrtXt8bGKWca83RtEji4QDzoJ67jIVChGAdiqqor1b2m6GIPYNaHjsfHRzdJUwaTLNSHsFC6V00g4wtXtVO21oQce7yiHDvoQpKYeikPB+1kACBlEK4Ouv/NN98oWknKJBM6Pj52vKputzufz/GBpopfKG2avDKvtVWnp6eKnWktQDSp1+syrBmEe93uESOF4bCLmEh3E5XAtxgweG8800aj0+k41pWe/urVKxfP//znP/nsiGjuy3OWIIPNc8UI8bIdiMZXr17p+/l8LoXNj4uwtOe1YbaRCwQfOtIox+MuyMQPHVoQf4QQftxfwjLW6/WiYxouOEpMw5xshTtYq+EC1xtHhCUoRMXP8Y7Yitw4zWYTUvBN8oMJ737a9EZBWKRCPHv2TKEKLD9dxlsdHBxoRz3WlgyHR/4QceB4PPaec+y0Xv7NmzdVvVkHBeF0T+Nxb3dYJilheYdYK5L4o1IhsLUqEsHmWr43nmFByCvWG3kzkchOmMIwkGUPjoPrIZHFYVX/dl0l9oLmvv/Q1jBVp6jYljNCmat3LWGsDZOPn+C0APbYbUVaEor2FLfhucRGdzIAyYkuYCgOUml2s9nUn2QVyMHnSQGAe4ZVKsKdwIf4rqeUbm9vqzpcEbSKjI2DLVFgNOBBCsNv0q2ePXvWbDYlVOAxXNGxmUENabpb4+7uzpNwlDequV1dXXn65Gw2AxoIIaSWH9qYer1OG+2CVb7//vuw1AxVKqbcIQrZ7NRJmQS1YDrDHYFU8sib5Th17oFN/9Chd1EQXRTsZZYO21rIHSH/+a20cTTCgqxj07bmLdh6nYFafKVISpGRbb1PBYINeKTXieuDOMzPX0+rkkjudDqCgbi6utKf7u7u9BPV46EphvlxAVv2ckfFiYuEAkcvXCwW19fXcqTIZUEKUKPR8FoC7/hbVHhAuK5KJcsdQsMp7FdH8PMzGqHlQV8giSKCDumiS4+UO5VEPlV0mZZIx4jOJYf0cUHrkXJPvdS/mkNxTlYbZ3zo2OW3JUQgr4Ofh0UPDn2m3gV7pii38uCsGD5yKWx1T2MTsGNfHODh4YH8ShTfZKXWhcbsKlBUUrTX67Xab4UJdQlOBz/DChRQh4hPzai9tA9fU8EJogZUCwl+sql8EcPOaN4oKi42Ek6wI+E3J1n9HBAb7Zn0XWa4XC7//ve/+9ZihcM2keskcSkyDWXLak0GgwG5SUXgFuVHZzJy1MXkxcWFC0hn1NXu1kkfOnwlVe+CINC+OF/59KoRLjG2TxX1ZCu/eVq4ay4kgeu2Wvn3yq/S3ZHoiGGMelJWaB+k44Jg09HREeEw7Uqn08F4J8sybQaGvCyLrXU3Av3kPMeY2quXL1+mlNSZApdLo9EAPLRIIMW9o9sSrveld8UdKtGZAEvI73lwcABqCISoPB9CpMV9quYKGDCIBiXqNRoNvZ2sfIK1XC9pKqmkhHOK9ejr6iQIYkJR3PcrgThdk1HcxgPGOl6qkDNrg0/kT/IL+fe6ycPDg4S95l+UsOEtCHPcpWx2NxqNnQxArWCYPiAq1JHtiHmirf/93//VfzkupOO6qBbx1Wo1d73pepGLVlzN4dD8UkrVkpECVqSq13pGu/su8XuSwoCKjz9O16CSukbh2eqr1Yr5eO15WDaB9wxmSbVbHPpbVSY/8fy3OLWK10ct5mXhqIuLCwpZsMHCQs5U5caO9qm/hvoLLioWhCVlMm6qVmmScmpXmVDYHEzOG6QXzW9YwH2BMHYlvccoDDVRIUVu0vLb7bbsqmSlOrjGbm5uPN/DZxmbYW1doIBIu90usrIj26a+OsB873pfp3v9XKqR95DUB8UaC/sH0nfB4c2DveTAgxIwEuUa+7MelNpF/Ye3X6DQJ+WwVLGhjpaOkDo5OXGKdwQ4nogi5GcCeZ1O4sS5wjjZpc+nGXJ2+4m3s8Bo1y0+lAHQjsiM1QDDVV+qSdH9/f3l5aVUZHCblfTvnu/pdOpdr1GBwlRMl8fVQtvlcqmNLNqc7Jq8hgdWnBwpGmSJIgsYFL9+v48LC2v4+++/X+TuEmSq4CP3R0gKrnaPYpujUhboww9kXx8SqCLi/v6eFZaf4PHxEf9PocPwX3muCKi7d1Kvo2XH9zWdTp8Q0XbPQGJSuRHbPEW/LNGuP3woA3hPRUWqte6SoMoY4VatVuvly5fK8fBcsXa7jWal+rfYtJbCcGHZSz478ivkLtvRXT1bB7ki0+m0KoNRjWQSXF9fixZpFarLlKmrRSiOMiZf7Ja/HZViaXdxfXEccX/S9MWQw+GwEMB+XikkH9vQRBBJkgi4zpA1cjbgXXE1yXW24rZF8vxvOhyp+/7+XoJmF8jAU54AGjIBm82mp/QARe97r8tkFdTr9bOzs/v7+yJ64l2xeARqSZFKEJsZadA0aFOKleyXrGIVSXGCjvLDFMTqp1DVde2l2YxaraZfyccfWSGGEwDE3g877lKAm6sniCvQqwzDyMAyYSVdMUNv5Ethz6QclXOk1KLm2NOSIydcEeqWpPg4h9IHDehHB04BaVEdT8YAcvucnZ1J8tFntyDTer2OTypyf089pYBKxWIbDAaed+DiWb8lbiXPxtIaR2tvAIrZs3ByS/tRXq1bX2Xov6LhUsremDDHH/8tYGr0dsR0yJNNVkW9B05drZ/ChKujQws928/k2Oxq4a8m4QKqptsMhc4A4d7e3roaKfhKt7UeHh5ub289sM0yEi78rYf8V9S1qs3rpzsBoHvvOuEbNhqNdEroXymgtNHtdDqsPimZ4hOSmSR9HekJvSVZsy1wNrUcRXS9GOgtOl70+pz1oH2FwXpKx1MBJC7/opSJSBMExDrgdmSV3lNAypdKBW3kAwQbFydJmLHLCYyfLXKqEnFlP2MdbUpHnLMlICjJNCsxMwEKLZrQET+NARAVUxvssF3jKRmAHJ6TkxMJM4+OSfyLCrV5LIpIXHtWBRlWkbEqy4oDh6XX4549e6ZIoZwAKh7VnwTgvEeyFmkwycr5OL4ga/nyvfkcN/G06mQugUIV8X7rGqqCF2Pv0ZU9Ky4MAqRwAzjIhU8ybTaZjGyt+j3dX07NhobcXAVgCasndzkpTEdHR14p+rS4/nvoVhJHyp6oIu3u0PPERnAyTwtFgN1uV4X9ybJ5uV7p49Ax7jYUdwzlAjSh0N3JNY/NSEq1bnXX4In6SVEOu9UpTp0A7YwKtZs19NgINcT4f30aOA23Dr+myicw+ePjI/Mk1uHSUWypRJVV7gCL+7yIafhGsxTMhycWtW/D4dDRSuITekKXyyXhjo90g7pw4uWrcL4+aALgYHcidyrQ3Vmkf0mp+OMf/+iMpGcNBoOloX7r0MAElKTfQyiQy2KxkG5Q7bn5zoxfamIKuMxqLdgeCefoVCBsttttCSoidE79jgjE48SlsDpVZrwyH94nekXWSa1W04nHUnMYKnPBwa2Ojo48Hh+bwcHYrB8CX9pVxOPjY65hnkVSVpi17axevFcR2KJAh62PvTbVvlQI4jLiYJLhtg6aMYqIRdaOPkn2ZQFUje0r17LnGqxWq4uLi8FgwKmiOmB89lWg1urQ5NUuTuX8/Emhrj3BAWRe0TiMQykyzr1jLG8dTlKk9z08PJycnHg0bblckuUblthIfz7HaHFgRv2XlFXCDjjTxFRACDo76dDTrPw0LkgHB0vVAZWsdhQHvP+2qFVaG0S+KAeGUfmH61fYG1hTOs0cAU5/ElQmJOTWzscwgFb28fGRghhH2ywGDcdFlNpsbAB6EygZVZ/9rEib/nLfKpnzWhH6UhV91bcOFCSEkEQsNOQ5oXsGk9QPgUIKOz3e6eFOGc/UMxMfHx/lH9TE0mYMjizuQoBdXl7ujxbTKrxYh63/5bICUXi9Xks6yJnhZORRbX/BtAmNiOsWNx0siu9obY1qyNlWrD1lnFB/ihcbsYw6QqGiVe7LCLbNxwTCVgaD/E4pq6FKZAeF1kDCgfwDu+PCW61W0JkjJRFV4OcpY03LDN2lAqEl84hdhA6i99YhDBld6eEnzlkv2dlzmKxWK7qzAItSzMSNLtXWpc2jHOxEraHgzSie8nwy0cTWWIS+EevKztEdfC+0sGJ4PY5TF42UxD4/DIvHwbrqGqETCanB0vGNBK40VQwkTqSU89Bc7BbZKAU+jQ7DPTJuJwMQxVCKzn7x77Qe5tWms3TYuZysgzk/VBkx60iGDIEbNV7WUqqSRk1idkVMiUkDNhpZJomsJR7eGSGGUmVFONs8Pj5iFOk1tza628p+hfIW2SuPf5NkhJT9GGlH8QadZiJDv8CiW3EI+Su2KfTneGwaDqbNzwlusqphWqJngkAJ1Wm7WzwM8wI3Dhzi/oy15fevc5o6yYJStIbDIZrqOzvq7VOBSFZJ7zJ/taBIblw97kMAbLXRaBRJfJFBP7lbo9Fg158/f17g2cNR4/F4V8QUnGRPLCWbAHdt2kyS2TpAxZEBA2kWB+tyW/sWhsfsqieypifssKj4rMhUZX2klnh5qoQ9NZDFxlcX/PHxUfubzJRSN0jS4DhAeGWRJmUSpFvDY46S7X6zZJabgiGuuxcZ0YQO7+/vWbECZdGVQF1fBJudkz0U874MII4XnpFv0p5BxYYSHML0QoFSFDoVJwB4huSsY/xJSBdJPmmzKmD/oO2X52nKm86JtMeYpnbRH3d7e6s1hc28Fc+uk8TxAEnShphYmU6n4+nBah+PM1cfQK7FZy/jvqgo0PRgKjeIyff2o0m4Af1+X+usd2faug8dOkajkTdEZMXU7paO8J4TLhnR7/chldhMWuaNisovvpdNCBsvFguSlAoNsJo7+GEMEOYDpuqs2sHcX5t/sX0J+ItBkVhS4r2LuvihSId2m8l3i2ZEe7hRjhpXncOKHNab4Ch7ogSItNVqpWNQ2v/R0RHFvkxpD3AVvhGc6N5zJawQliYgZBDKT+9ImlHpe+A2G3Jk/0DVjBxvYZW8CJPAVqfTcfEBaTqSkr6p1WpiyEaj4TEZ7uzGCTTjVf+UXJNzhUcLyVjgCPHuBWKfv9oHMADqbxUYy+tOigwCanCRTKRkOsqx/sTKKi8IFVCM4RzlP9TQeUd5NUoFrgyArIuKzUaj4cUuBYGGHcpVQHofDw8PQEHpmwIol+0sHCaF3zp24N5wOhVJhLHpJgf/3Yt3xS0eNSvAgj4CYY4N1UYfHx97DpIqEwq8VD2UasEwY0PLQgwRknDcwQJ7D5HhvO1o0n4rlY+9Tx3CBzOA5yN4Dj2f//u//9uVB94tpXR2dham/6Cn3tzceK6vv4n2dZVxySV9e70eydJFW3OERGGZuR9aD3IYU07VItSloUTfyWRS6O7qVRxmp2LxF+lMYcg8hd96P+4N5w+V03IBO1BpQQ1OH9LdYYC1FTd/6JjNZj7J6XTq6Jxc5vV3vLjW8+DgQMeCQKLYXy8Y4qyGnLyH583Nze3tLWAT3IQjdJFb23uCukflnoABnLKVATYYDAg2aVFIa9P1z58/V59qXU8uSrK+OjxX7nAHovNZoQxoMzgf2u221KrYFvYjbV1QhDgTHZezmmEf22Q/ahWajG5V7QquzStCpFW/NQpbFfeGrDIBFonylE+lAPl0OkXDdlU7IobDIQqVz78Ivn7oUEQFgiOO5u8SpiONRiNkwd/+9jdu4v7iqKiO3hAgGZA9F2iV3Ifrr6lvCvCOJ2MAB+1QZ0V9A8uKpnGw4PuXKSzMQ22/aA7PqeMDu9aYNt0dhSocFvfRNS7ai9o8j4yy7ghFqdHL5bIoQ9PPdSK7J1447PptVa1ysnAo2cJv7WxT4N7oJt53GcgGpT2LjKAezdPPuiIV+Z0hkT1jvV4XxxoAGd7jVW8tc84lEXZXVTxpWUTi5P+y1H5kFWCbkdU5iXllEsg00lQBuXhKBtD+nZ6eFukoSvSnK1bKJV2DwUBCnRihBDz9v8L8S9pFjxZR+R85v5JwmK7XAm2FmVdyIunWEswFjA+qyNpa/cWmTNK6AwAMQ6IQhgVHxULI5rCIyla/9R7cG6WI67mLxQLy1ZXyxiyXS5cORYXXVqS3j0Na1+u8fv1aSy07G6vDsagQOqBJF2inUlS2kqZehBZYDiXmIAZcSfcJf7QGrlsspadhgJTNMsFRYHvJ1yv60GWO3oPap7PC4wPuykibVQTcSiV8ItDLy0v3zGIjqsg4cj7mcDh0D6Onr3haXqPR8H7xrt4UyIdCqN66UAVjhCULVX3qsem3jh24Nwr0kgZLHziykSPzADKSQybl4IbIdFc3lw8ajiwSm0aaQwIjqtxFoxCQEivc7SavroyEakM0kue9FM63CSYvzky/GPvnyRgA14ouW1ibkIiQLVu0hhUynOTo+fm5PM0p109wrnlQrCCm1WpFMylFGMLwrXiEq2ca4Dm7c42kS4BalZJdxE0lqAp1mcTSiHjz5k3RhZOeh8kM4tisUq36rXfh3kQl8/Tu7q7obyCPuw4cd1sBXeHrQKr2xx0ClMKpxiUiLi4unG89Xyus2YdWWyLZQy7exiJMWAA+QBqptkbLKHmBaHABl6y7cFiZ8h6b52NOAGmfcq86xg6bBBY01PD4+Ch3WFjPldFo5PK+oD+HEdYPoQYOSioqpcOIvsEDE2tV85/9v54Uifcg5RyKlGt3qoVFhXM6tgUBJCl4xFa/tQ+fhkcJ9AhvP8Fr4oel+JXQB9Sjo6OavP2hw53rYeGI2GzCHpti0dPRSMvxzZWkI7/d1Z7YPGq8yipMcOgY8TLUMKdq0az21zLArkbZfsIeHx/7r5bLJZNOGdmv6AUmxpUzhD+hTSpVDs3KjQfw7vArF8axpqH5SDB4UEnLTQaOpBehE1rOIKWw/EhBI8IlPRjMM7IdPbTn2oJCDUXBcbzLQtVUkbJv8f0yw4epH24O0XdQi+DllJBXUQPNQee+LB2A7sklzRaRTLRra3zDh8SHyBfrv9VqQcoYS4vcNJZVknXR6XSqfi0iAGyEZCv+GJ/VkzEAi6K4fcqljJEBK9mn+/t7pgJlqPo2pfTs2TMlxOv15NwUedGqUVNy4EjdR874qEB8+upoiWXNU16jP+lW7DeOxdvbW3ojRKUrVmxGYSE4plFAuFH15hsWubkVcuSdhT609ihKl87Pz9vt9qtXr7QvBEb47U8//eQHr6e7SnKTgOjhatfREbr6r0yRrflLW+MbHFP+Ez8/0ZEAZXGQH02GLh66kvJLjwsVeQCXl5fkXbObT8YAYdgeXgEEibPi/X5fTrGUE+NqtRqa/dXVFT4W2bspRwMW1ttiZd2FFxk3U89FlTo8PLy6utJKXV1duaeFGZKih1YWljFB/AjzOpk7S8lkxS7iteRUcZQ432BpJsjy/e7qglscYdyTNSInHnc6nXa7ragFM9RxwesQvYmKlkzmmRaEhP7r62uaETo3soZFsszW+IYH3TUTwL2deaISYShiGsxZM2HfnbtUU+Fpv2GojBv24q9kAK+Fxb8R+ag6Pz8vOmscHx9LqT04OHCNMCznBw+PHJpHR0fNZlN+Q+m4QK4rNXdpnd+xR4nDaxRmpbKsHx8fAXwuUg8Qz1J74MCzszO0MuZQq9WUsE4vBjhHu35zc1O4U6AYXTkcDh3tYtegVqagGCrcxQztdttzzlxRdpBDXoGkdL/ScTbDOlwUwaywjPeCMTy+wbIUGZqeHFHcxDXeagqdPoiWtlYwx+ZZXRDAU54AzGNtGLQPDw+ePSEXUL/ff/PmDSKcuUrEekwkDJ9dahJlCUXteXFiusRdr9fMQc3IMF63xnpZaxAlwuSNZLZjA4adTshmthz7x0uHOcEJmoqeTk9PpaGlHUOXkSuecmGxzAkwdPV2//rXvzDrxa4F6SuUqc8uhsTGOOi0rVJ1dGZ6TQ8BCvySt7e3u+IbHuPXu683QR3ZF7GTYw8DCl/Qt8bWnGccg7e3t1pzRJhc1U/GAEW0H/RWXSDFN2X89Pl8fnp66kLCP4gTVDkeFWEZEZeXl/P5/E9/+tPr1689v0UaoWdKa4MLxwvXIEWgAwd8Vd1MkW9cLdFA6xOciYR94bEJSyOrGrteNuXrtnU4cJ3GaDTCwH3+/DlmPbwtJVjZpl5l5mU0mjArWVQearn+9Kc/8Vs8fgATRc4TgZq3xjfc/eCoNlX0DU82cQ3NU324g+Kq+l4SSqnd/Krb7TrrsgJPeQJARlKHxGReCKaJ3t7ewg8pA6Fh+/OlRBoKDCev1Cfds4jFhqUQSsbIhqZ+nICl9v7bb78VZUuDgiBUalisvmSYc+k//vGPyFDSVZIlIoO6Iqet3uj8/FxTFSn7QeTY+VuL6wvy9R/S1FAB+MlkUkBLvH79+uHhQWhFhHLdE8WVV1dXlODpm604MRi4TIObbI1vwA96cbnFQDEp5LpTsHpY4SB2x7fu02q1ZM8UjCSu1tY7KYo2nlgFKqx19hXVKOVcnSIzQjtH4Aa6dzhB7kkP1jBfZ7fbBXiepV8sFoWSzWYvrbeXB60L8nINmJa0ZPt5gVXkAwE/Er5FPyHJnq8qqdgY+4fMfTdIvNaHNwLwIjZ9OLwXiUmxmd7j1Iz88tiZJ//4lbGjtq4Is2xlG3d9smXSaR1di8mTXeK0Pp1OPZrEIeDFzWSnvjUgn5YBqsNBBXELHh4eAgnIdKX4apkkwHSHQjXiv1g8R0dHq9VKGqp8wJ5whqKJc0ZqgCo2PbiDOHHXquOoOSSJp23J0D88PCxkQQGSheXnshP6EA97EpGzxHK5LFBJHIVqv9EM7dbrdWIsGCFe68yieTE0M9QKg2oTFlP34Ea8C4nkgwbq6HQ6BSCn2WziXRiPx9X+iNX8F3zx6AKxv0fYUzGAhldCRE52kDdaGEkp+wdUBuUKEu/gvTBSSv1+f5X7qPV6PT/+KMDjVPHkMI4Czz9lBdk80k6W1qBJvmTPsiQI+OrVq63GWURcXFwUliKcUASt8NB7VddisxdqgY7oPrfqQOXzFMuU/WY//vijg8ewtho0U4pKXHY6nRZG5/X19UdnWe8fZBMiApbLJcWD5+fnYZFmbQ2pH5y9NLxrt9uHh4d4kH9zBigQ+WLzMK3VakKdYN3lX/OsUk8b1AWYmJCaFG6Izw3f0WiEsx+JJe8EE/NqNa86xZyKHIwTfJ16HjMrjnifp/ckLdprK41H4Qgq4Obz+WQywXtbr9e93ZXQP4fDIeJNUNhVAPRiVJUNyCjlxCoSJ8Pq8iJLGbVSFtYie03sRZgU+u+PP/6o8+QjKs52jaJwdDQa6Zvr62u9+HA47PV67uyWr9njhtTQ6oBVevJbt8SuBz8VA3AZWZwKMJGr3W63h8Mhs0/mD42sneuU0G9PTk7q9boXlRZFM5DyZDLRqhHHSQbmIUdbRFxcXMAVKZetVfHB1+u1jDlJUxltrVar1+s9PDw4viJwhbsWROWUehHet6qm47otCo6rqLR70B1JCmIvigRV3FOcAFpqHVm3t7fqY9tsNsn+wPela/RvERp7qoGusrVCVUkDWnCpFSl7GnUB2ZDF8pK08ilUINwXK+svVACOR0S/3wekW9dAytfX13zW/mka2kJ6bfjqpJxW7oYd52DKKdYuPjVPd/UoQBabMjJy9R1wvErcRTGNfCYoG1GQ+bHZEVUzoZE1IREB+4RVdfoWANWxNUNh16ClQFhcr9o13vvVhrEZnlls08gZIpDg4+MjIskTkp9qOKCGTpildYFwxxR6oyjk2bNn2jtN6c2bN1zwlhh2PfIJGcDNLG0YCIe8jPQTfJrJUrtcpZYZwPb3+30/YWq1mqofdMKMRiPS9KOCDRF2IHhglZSS4+NjVcCB7XF1dUU9LvqJo8AeHR3VajWU461Zx9BH0YdLi1CsGBd7jPObb76Zz+dI/f05FLz17e0tOkNYwy/96+q+niKkApGBs5mOLx2ADtIRljzyhAPYbU3Vnb/6nrldXV3htqZuU6f60dGRp2B5/79PZARLU3QBSYyJFSTKrX//8Y9/uCWASydZdvpbCeoAABCjSURBVLQygobDISB2BZ49JOKyzR1q0r4EMgf8Tlh3t+VyKSZh1cKKSwofiPRyh4pYWctrumMApF5dKAzQdW5X4+ArKDy9Xm8wGGhJVWPwnvSEmh4WsPdKdi9BlIYmX5nnIEXmomazycuyGu9E2/7QIYvOd02eKI+s86dq4VFkWZNs8NffnAGqbXSZomQ5QTQowGVhslTkwin07NkzL0AhiTeMYQrAV6UDeJpk5ORnEoYLfzNxBtUzeFUeep3+C1XpBUU9HBfecIUpOQIPlaxOfJ7W63qFpxvKp7xr/Qta50uP4DrsFHshC1uaT61W6/V60BxCV+YQMQ0Kvt8Hkeo9Bycha+Wdwx3uoFgcmlN5bpxjF7zNN9n14Kc9AT7ohXu93mQykWtouVwCmBxZaeEw8RAJ+owDCngjdVYw5YwgHkrKSlTKMouWZMkSHsOQEfiXYkgAv2BFd64rr6kK6kR+vHMyNZnEGb13IEaLhyyoId6VVl2cXYQFitVwTB5il06IHEqsrWhLYhuIYsJ/bnQVbT6eBL/oQ8cXxwBhLiA9921H7+yWnkwmf/7zn6VnozVRv4LxKsK9vr7WtCOLNIIACqksFgsOfXr4KOLjWpN6TkaOqGufPFXOdzSMbTij6He/sO4excYXtiMeT3Edxqif+K6dTyYTmjqmnIS3szVQxm5A3fe2iqxnmILhxTfVxswiA62SUrl6vZ6aJ1CNQKYMKg28EU+EX/Sh44tjAM8/082Pjo4I3+CCUMMBeIOfS31ypAA37MIaDkTuJqJKbSJlRTaHu1k9jyjy+UuqqdxKnpLtISpNQzXTRT7Mrvx4hl4fJNqIuL6+9qaLyl5mF/Y0RPHBZdJhFM+u1+sFfxYLonXrdDqUH3lZKQkRWO1nZ2fwSXETb4n7tPhF7z++OAbwvUk5dq2W2lqO09NT2UBez5WssaF+XlXo5/N5o9E4OTkhkrrKnRQKExmgVjAL8Eqp86SLagIuw+FQcO3JspiYZ0RcXFwU3BiW/VsEVik8Z3ikVqE0jf/3//6f3+qvf/0rYjjelVRXdBWIHF7UybCsNMJgkqpf05GrlXEaQIeRZyblUAOuBR0Lke1ANu7X4xd96PjiGIAIRWz6fFLOfXj16hVah1PS7e2tiN4P8fPz80ajMRqNwOskXOIPxR/v3xd2lRSzs7MzBLw0paKZj7jUvQ3FwCrVBfvz4+W75I1UF1pNEOR98ZS/c52La9RF3Ks9dZaKExaLhfcdqkbf/H2VSu13iyzLT09PcdO5UlSUsFbX/7cbXxwDhFk/hf9nPp8j+VLufKrPUKGwEqbTqZzBigYUyMPcQdgWHuTyJE3SsJCCKMEA+bO7W+OUkZ05BSKDV2bsyo8vlrSYJI+T6lXYrLie9jSIjs1WFGvDcC4ix/P5vF6vyxWBw1TTVnQfazuyd85XDzer8qLdcecr81T4RR86vjgG8Gaj8v0BA6pwVarEXyJXbNArpdvtnpycsJHK/RgMBu4y09IXRSoFxKc+i4v0Wb8VmzUaDacVUnokxfUTOX96vd7JyQmghRiLnj5Q5MenXJBFGdA6A74jO9EiihxPys/36NDeUZgaMUcypbto5ExmJ4aw/ilhjQ4eHx+/++6709PTb7755p///KczuWMxMSgD0H+fBL/og8YXxwBhAb+i0+3Z2Zmcu6ofiAhZhJ71Gjn5HrcdSfOSZLgv9RM3r6tVsOIr5TlT64jQohQLv1DRus/bpUwmE6zG2Kxtj20paz7JqvvVAwgFwqQ+E3nY5QYNIy9v0ELOFSvv0YNf6Ca7O4uZ05P45uZGdZVeawYPUL/vIH9PhV/0QeNLZICtQytbq9VkmFLJoW1gk9wXLt+ITDQaz/ATx3XSm9brdU8R9RJv7qmdRmGoquOQe1F8jWYvUqZMKYwQPe91V6OH1WrlAHhQCYUE+tNgMPBNocjdp42kd/3ngwloU3YwCizKMPvEnT9MnkXwQ6bwa6FWeS2EBi1zYGYKgyInDTjWJfWWvxsGiFyCKAxDnfUUUp2fnz88PFxfX+N9A0pJbQZfvHhRnKf4E8Nw+vWOBYoGhKWkSNRxfZCetjAIf6zDot+tW43yOZLvEObkWRqGz6LS6kcZqaoWGAwGvV7PEaqdJpzPSQjzSgbfZf/yI4Y3tojM0noR3VztEt1qR4P6/vvvmf/9/T2vU8Bor/KITYYhqxe+IkdI8QQPm0hvJLD46XKBfv3wR4zHYxXLpQyqNR6PgSuVqu3xKcUp8XCr0Z3cPpTRuDMOp76cnqDnipoLaOsq/BYWnvZe8/ESVf1WQToX5KvV6vLyUtp21ST1mfBe8/lc2b8e5WCVVquVo7yQ46B7/vzzzwWU7MdtjWwzEYznQc1mMxaHItXi7OJfeiJBVERR8JLpv56UVfhwyRGqQqy600IPfRvu3PVWXxoDKH3FEwNRgbiGxXXN3osM9U2RBJFSopWqL66zB0Ms5L5U7F2yCVC+pbWrhsahH4p7JkuHFo+Jbva0++Qm5FrLf1+r1TQNKA+TGg4JgzotEuDeJ7l66xBT0URHjjLxGzCSIKPIikubkKZeM+0xci+LQ7vjhBREOQc4BSeR0cILdGg52TdKl3a90pfGABqAARauwJQzJtRuNbJTRTHLsCwUT/encMxTOFHZ1RRVF7smoyNbVC54hbB4k0dnV9bsUfcXhQHiqyvlFNIGe224vzgNn5HixZpEJnpeRADrYbi8XgKK21FqmOfqfujgTGMI/kQeNp2iYR0GSPhJmy1WNTgrpPGG6UiMIgYSGTWIO3jAjkcvrY+tLv7hhx9+NwxQ5HWyEJGtw9PT08fHR9G9Zgtad9Vk1DWYvLBH2swqLR5UTfS9urrSse4al6vXQvpnxdUh9PDwkL4eVcwi13p1mSqPuTPoQzRAGI1GKPegy+j40uuolyMRVmUNutbnm/5Bg6MJaDBBhuHnFfaM2IySeXysjoVTdXpyXsmFIKnn5jUspJf1amnlDpIrXoDK/BJi2vViXxoDrHP7WH+rMBVoPp8X8aNms+lBdbQjLxrqdrtIGn1PSEG+EUCjtAKr1aqQLhqoGZRHIn3D/BWTyUTlNQRESUwKq/5OKR0cHHjwNSqgFRpFTTA6gHydog9cIu51SRleDrOBgpKPGCghrkPK8ha+kEAjfapVUDosoru7O8kLgHu3Iu/SAhBKUF2ek0Rshuql/4h4/vrXv8bviAH8TTy7HXAHT8eVpa9OhtQlRs6iEQVDOoCKVbtmFJbu/f19o9Ho9/ugWBLajCzjU0qnp6dMFardiieVDOyyQERToh57SecVR7ArvIFO5e7DlSridTn6QFBWMLoftykO08tMHAWeZy0zzFmr1WJZHNXPT4OzszMPHfCyAGTgxXarl/2ivYOyD5EsXsvxNga368W+QAbYNeTWdc8x7zUej13L1DmIiqwvR6MRskfhem6r5gZ4lOXUQ3lF7LFcXEkONikY+Ke9ohLTraqkkTShHASPyEZWitxTVM0C8imF+ePdnsYX6XiSXhsAu+KDh16Lf4v4WoGUgfLm3ddZ6q2JJCmlTqdTIMAWBccoUdTN7cKhkmmEu5YC7n8HBuCILzxCHvjodDrePlFVrev1uto/WJ+Hw6GEFm7E1WolaUepEVTrdathEAbczX07OLOJJ7D9gDNXm+DSHsqNjbX1GvPjS/yGfR+WxQlVOZQVVfZ6IxrODofDoi1AmMinsLv4Ew91bTMq8b7FYuEuWiLKfnQ8PDyAyOTqWdGnVcPTaas4VAKK5AJx/nw+/90zAOFMDlCsMelFd3d3UkzlSEZHXy6X7PTPP//squRsNnPBI+hSrWYBD3Fzc6P6kjB83Mj+u/l87iqpwxNQl+MSq4ADo9OJG7ieJlQcGlvDsfyWvIPr62uaDsKNMAwSWmYlNWI+f9eqC7BeQuCQB426wmIpupX+RTYzf9mvSHe2LxmKo1MzEBvxLhwqn5jk5u+eAcIMLwdZwSeo4hgSOaUGAN1TdcPd3Nw8e/as2Wz+61//wst+d3fnGoIUVpU1Rg4mUMKPkboV3dG3ECutWMNms+mKxGqz360jjaaUXrx4kfKQXlTN8mcyaNJ+OjkCF9co1z+l9O23397e3uoaeovEtgaYk8nEAVgVdi2CUKSE8L6S3Dc3NzqBb29vFaIqYC8oEQEENioIwa9evdqFQyW8GVVsO5zE754BfF8pZoXgRqPReDxWrQxVGiIUBNXV1dXJyQkrTqVV0ctoMpn0+30dI65/V9vE6zNnOtGGwWDQ6XSKFmY+NAE6RLXb7UKeFc1mBBNf5MwpVQTNYTgcuh0pqtU3gD5EjrVVO/+pPEhdNIXk5S1nNMQAvV6v0+nQ2cChcOVgkKLlCBSxWcAg/f7g4AASx6/NK19dXelAdg+ByjAwrLfiUG0dd3d3v3sGoDEefhJEFP0yrq6ujo6O3HNCLQGvoINYFIZhoBe/ubnx7gcpoxZ7Caxn7LgtweZJGbu7u/NolJpKybYr8nAKTo5s54Gz7RD+VduX3ZGvs9vtAg+IPcpSCKCSW3kGXlifL2kaVGamXIavJCh6gEc+MEnm0XK5DUB6H1JJRxxaVrfbZRk1n5ubG39NSXH0Isz02I1DJaXUi28+HTjubzfIJ3M1NKwUGKOtcCnqpWh8q39rtRoOBITTN998E7m+xH8eORMB+eQqu/aPp7tO4qe5s4q6mDj4JrPyyxzXKYz5RcRQsNQP4gzwkp8qk8nEIbeYvCqKeCJngpiB99Wae3e62WzmxqhrUwp9uJNeP/E07DCwOn3vFUXY7loB7DHd1vENqjhUMJsTSfwbqEBh6ZMEAh0iuNfraUs8CQIxiRsHhUQdijz+cnFxwbZpe6BgkEbxJ7qneblckuQTWVniyGL+mlWn00Ec6ukFSxfe2ypkiEcS/Hwr6uBEUoWTVC5d4ad7nQBTCtPsw+r3aWPqVOViBeWziOACexOb0D1hZj3h/4I/NQoXs86ZPThUGkU2RI0JVcdoNDo+PhYCWcodHVNKx8fHqrLVGbfKfVj/Lcd6vRaWlmg9pXRzc3N6errr+6d6roC6tAWLxaLVao3H42+//ZY24F/Hk4ydzdjeZkun9NNPP0lOoKSqqVa/35dF32g0HI7m32xIIlIrk7Jqu+v7pxpU9qSUWq3Wcrk8Ojr68ccfP/d6/LuNfSdASunu7o76I6lDOsQRS64j/RsPNWW6vLw8OTnxVri7vn+SJwqMkW8mk4lcH1/HE46dJ4AKqQ4PD5U4tVqtms3mw8NDr9eTwqP9bjab/8biP6Wkt6vX68Ph8Pnz53pr2Yhbv3+q56rrcEppOBySfOG9zL6OJxk7TwBZk81mU8quwDppYTsej5XTS1ajy6p/pyET36U72v/W75/w0VJBhSS3Xq//E07aTz/2NWQGhyMZbp7+q6SU8/NzOVKIGv77DVXc67M6TZBmvPX7Jxw4QHgWlWhfx1ONnScArUhx8sgZPBgMdBDL63R7e/uEro8vcCDX3RwS9OLW7wnBPskQNkSz2dRR8+SHzNexczVZaJH73d1du90udld1WMIa+Nwv8lsNyeDJZHJ4eKgAZ8plqVu/f6rnypxot9vSPPWsr9T/5OMdXqCv4+v49x5fJcrX8R89vjLA1/EfPb4ywNfxHz2+MsDX8R89vjLA1/EfPb4ywNfxHz2+MsDX8R89/j9Cw3rnhNwYugAAABp6VFh0SlBFRy1Db2xvcnNwYWNlAAB42jMCAAAzADMRFn5jAAAAKnpUWHRKUEVHLVNhbXBsaW5nLWZhY3RvcnMAAHjaM6ow0jGsMNQxrDAEABGDAukGxMooAAAAAElFTkSuQmCC

Am Bild (von [19]) gut erkennbar sind die Orte maximaler und minimaler Intensität – oder, in der Standardinterpretation gesprochen – der Intensitätsmaxima und -minima.

Die Photonen bewegen sich auf deterministischen und kontinuierlichen Bahnen. In der BOHMschen Mechanik ist die Frage Wo ist das Photon nachdem es den Doppelspalt durchquert, den Schirm aber noch nicht erreicht hat? durchaus sinnvoll und klar beantwortbar.

0.1.2.2 Anfragen an die BOHMsche Interpretation
  • Laut Beschreibung haben Teilchen exakte Positionen und Geschwindigkeiten. Widerspricht dies nicht der HEISENBERGschen Unschärferelation, die besagt, dass Ort und Geschwindigkeit einer Mindestunschärfe unterworfen sind?

    Nein. Die HEISENBERGsche Unschärferelation fundamentalisiert lediglich das Problem des Messens: Niemand kann Ort und Geschwindigkeit beliebig genau messen.

    Dass Ort und Geschwindigkeit nicht beliebig genau messbar sind, bedeutet aber nicht, dass ein Teilchen nicht einen exakt bestimmten Ort und eine exakte bestimmte Geschwindigkeit hat! [15, S. 3]

    Da man also Ort und Geschwindigkeit nicht beliebig genau messen kann, sie in der BOHMschen Intepretation aber durchaus exakte Werte annehmen, wuchs der Begriff der verborgenen Variablen [20]:

    Ort und Geschwindigkeit sind verborgene Variablen; obwohl sie einen exakt definierten Wert haben, kann man sie nicht beliebig genau messen.

    Anders als in der Standardinterpretation geht die BOHMsche Mechanik nicht den Schritt von nicht beliebig genau messbar zu nicht existent.

  • Gibt es ein anschauliches Beispiel für den Begriff verborgene Variable?

    Ja. Nehmen wir an, dass wir nicht scharf sehen können. Nehmen wir weiter an, dass Brillen nicht existieren.

    Unter diesen Annahmen ist die Größe Augenzahl eines Würfels eine verborgene Variable: Obwohl eindeutig (und diskret) definiert, ist sie uns nicht zugänglich.

    Wir können vielleicht erkennen, dass die Oberseite des Würfels "ziemlich schwarz" ist, und somit schließen, dass die Augenzahl nicht 1 oder 2 sein kann, da die Zahl der schwarzgefärbten Punkte in diesen Fällen nicht ausreichen würde, um das Sehempfinden ziemlich schwarz hervorzurufen; wir können aber nicht sagen, ob die Augenzahl nun 3, 4, 5 oder 6 ist.

  • Zeigt die BELLsche Ungleichung nicht, dass eine Theorie mit verborgenen Variablen niemals alle Vorhersagen der Quantenmechanik reproduzieren kann?

    Nein. Die BELLsche Ungleichung zeigt, dass eine lokale Theorie mit versteckten Variablen niemals alle Vorhersagen der Quantenmechanik reproduzieren kann [21, 22]. Eine nicht-lokale Theorie kann dies durchaus. Die BOHMsche Interpretation der Quantenmechanik ist eine solche nicht-lokale Theorie.

    Eine Theorie nennt man lokal, wenn in dem von der Theorie aufgestellten Modell kein Objekt auf ein anderes schneller als mit Lichtgeschwindigkeit wirken kann. Objekte einer nicht-lokalen Theorie unterliegen dieser Beschränkung nicht. [23]

  • Bedeutet das, dass in der BOHMschen Mechanik Informationsausbreitung schneller als mit Lichtgeschwindigkeit möglich ist?

    Nein. Obwohl Objekte schneller als mit Lichtgeschwindigkeit miteinander wechselwirken können, wird eine Ausnutzung solcher über­licht­schnel­len Wechselwirkungen verhindert. (Ich weiß nicht, in welcher Form genau das verhindert wird.)

  • Trifft ein einzelnes Photon auf den Doppelspalt auf, so ist der Ort, an dem es auf dem Schirm auftreffen wird, in der Standardinterpretatation nicht vorhersagbar; man kann lediglich eine Wahrscheinlichkeit angeben, die von der Amplitude der Interferenzwelle abhängt. Laut Beschreibung sind die Photonenbahnen in der BOHMschen Mechanik aber deterministisch. Ist dies nicht ein Widerspruch?

    Nein. Da man die Anfangsbedingungen (Ort und Geschwindigkeit des Photons) nicht beliebig genau kennt, unterliegt auch die Vorhersage einer Unschärfe. Kleinste Veränderungen in den Anfangsbedingungen können einen großen Unterschied ergeben.

    Das Photon hat aber in der Interpretation nach Bohm durchaus einen deterministischen, kontinuierlichen Weg zum Schirm zu­rück­ge­legt; in diesem Beispiel könnte man daher auch dem Bewegungsverlauf den Status, eine verborgene Variable zu sein, zusprechen.

  • Wieso ist es ein Vorteil, dass Messen keine fundamentale Bedeutung in der BOHMschen Interpretation hat?

    Messen ist eine komplexe Tätigkeit, die nur schwer mathematisch formulierbar ist.

    Vergleichbar wäre ein Grundschulunterricht, in dem nach der Ein­füh­rung der Addition gleich Potenzierung gelehrt wird. Potenzierung ist na­tür­lich durchaus sinnvoll – nur sollten zuerst grundlegendere Konzepte beigebracht werden.

0.1.2.3 Anfragen über die BOHMsche Interpretation
  • Welchen Sinn hat eine alternative Interpretation, wenn sich ihre Vorhersagen nicht von der Standardinterpretation unterscheiden?

    Das der BOHMschen Mechanik zugrundeliegende Re­a­li­täts­mo­dell ermöglicht eine deterministische Interpretation. Mit der BOHMschen Mechanik verfügt man also über eine Theorie, die die Vorhersagen der Standardinterpretation reproduziert – also guten Gewissens angewendet werden kann –, und trotzdem eine deterministische Realität unterstellt.

    Je nach subjektivem Empfinden ist dies ein Vorteil.

  • Was ist die allgemeine Einstellung gegenüber der BOHMschen Interpretation?

    Von der Mehrzahl der Physiker wird die BOHMsche Mechanik als unwichtig erachtet, da sie – weil sie ja alle Vorhersagen der Standardinterpretation reproduziert – keine neuen Erkenntnise liefert. [15, S. 2]

    Interessanterweise vertrat auch Einstein, der nie Gefallen an der nicht-deterministischen Natur der Standardinterpretation fand, eine ablehnende Haltung gegenüber der BOHMschen Interpretation: Einstein, als Begründer der Relativitätstheorie, lehnte eine nicht-lokale Theorie verständlicherweise strikt ab. [22, Abschnitt Lokal realistische Theorien]

  • Soll ein Modell nicht einfach nur möglichst passend sein? Wieso stellt man weitere Anforderungen? Speziell: Wieso ist Nicht-Lokalität ein solch großer Nachteil? Um in den Bildern von Matrix zu sprechen: Was hindert die Programmierer darin, zu "cheaten"? Oder, in den Bildern von [24, Ijon Tichys Erinnerungen an Professor Corcoran]: Was hindert Ameisen daran, über die Trommel unseres Universums zu laufen?

    Nichts; da aber Vermutungen solcher Art nicht falsifizierbar sind – es kein Experiment gibt, was demonstrieren würde, dass diese Vermutung falsch sind –, sind sie nicht Gegenstand der Physik.

    Zusätzliche Forderungen, die man an eine Theorie stellt – wie beispielsweise Lokalität oder die Forderung an ein Modell des Gehirns, dass Gefühle nicht nur Folgen chemischer Reaktionen sind –, sind subjektiver Natur.

0.1.3 Zusammenfassung

Mit der BOHMschen Mechanik hat man ein deterministisches Modell, in dem Messen keine grundlegende Bedeutung zukommt. Die teils problematische Beobachterzentrierung der Standardinterpretation (problematisch beispielsweise bei Experimenten mit ver­zö­ger­ter Entscheidung) gibt es in der Interpretation nach Bohm nicht.

Einige wichtige Themen habe ich hier nicht beschrieben, entweder weil ich das betreffende Thema nicht gut genug verstehe oder weil es sich nicht in den Gesamtkontext eingliedern ließ. Dazu gehören quantum eraser experiments [25], eine eingehende Behandlung des Energiebegriffs in der BOHMschen Mechanik (u.a. gibt es ein neues Potenzial, das Quantenpotenzial) und der Trajektorien bzw. Führungswellen [15].

Eine andere, weniger drastische Alternativinterpretation, ist die Viele–Welten-Interpretation [26], derzufolge es statt Über­la­ge­rungs­zu­stän­den jeweils ein Universum für jeden Zustand gibt – in einem Universum lebt Schrödingers Katze, im anderen ist sie bewusstlos. Diese Interpretation ist besonders unter Science-Fiction-Autoren sehr beliebt [27].

0.1.4 Referenzen

  1. Will Keeping. Lifework of David Bohm – River of Truth

  2. Olival Freire Jr. Science and exile: David Bohm, the hot times of the Cold War, and his struggle for a new interpretation of quantum mechanics. HSPS, 36(1), 1-34, 2005

  3. Detlef Dürr. Bohmsche Mechanik als Grundlage der Quantenmechanik Dürr. Springer

  4. Gert-Ludwig Ingold. Quantentheorie Grundlagen der modernen Physik. C. H. Beck

  5. Anton Zeilinger. Spukhafte Fernwirkung – Die Schönheit der Quantenphysik. Suppose

  6. Lord of the Wind Films. What the BLEEP do we know!?

  7. Wikipedia, the free encyclopedia. Double-slit experiment (5.9.2006)

  8. Wikipedia, die freie Enzyklopädie. Doppelspaltexperiment (5.9.2006)

  9. Arndt, Markus, Nairz, Voss-Andreae, Keller, van der Zouw, Zeilinger. Wave-particle duality of C60. Nature 401: 680-682

  10. Joos, Zeh, Kiefer, Giulini, Kupsch, Stamatescu. Decoherence and the Appearance of a Classical World in Quantum Theory

  11. Universität Ulm, Didaktik für Quantenchemie. Grenzen unserer Erkenntnis

  12. Florian Hebenstreit. "Delayed Choice" und Wheelers Paradoxon

  13. Ludwig Zehnder. Z. Instrumentenkunde 11 (1891)

  14. Quantum Theory and Measurement. Princeton University Press (1983)

  15. B. J. Hiley, R. E. callaghan. Delayed-choice experiments and the Bohm approach

  16. Wikipedia, the free encyclopedia. Loopholes in optical Bell test experiments (5.9.2006)

  17. Wikipedia, the free encyclopedia. Wheeler's delayed choice experiment (5.9.2006)

  18. Joachim Wambsganß. Gravitationslinsen – Universelle Werkzeuge der Astrophysik

  19. Wikipedia, die freie Enzyklopädie. Bohmsche Mechanik (5.9.2006)

  20. S. Kochen, E. P. Specker. The problem of hidden variables in quantum mechanics. J. Math. Mech. (17)

  21. A. Aspect. Bell's inequality test: more ideal than ever. Nature, vol. 398, 18 March 1999

  22. Wikipedia, die freie Enzyklopädie. Bellsche Ungleichung (5.9.2006)

  23. Wikipedia, the free encyclopedia. Local hidden variable theory (5.9.2006)

  24. Stanisław Lem. Sterntagebücher

  25. Wikipedia, the free encyclopedia. Quantum eraser experiment (5.9.2006)

  26. Wikipedia, die freie Enzyklopädie. Viele-Welten-Interpretation (5.9.2006)

  27. Douglas Adams. Per Anhalter durch die Galaxis

(Die Skizzen zum Wheeler-Paradoxon habe ich gezeichnet. Alle anderen Bilder sind Wikipedia entnommen.)


1.

Man kann argumentieren, dass die Entscheidung, die beiden vorgeschalteten Detektoren zu entfernen, schon vor Versuchsbeginn durch die Experimentatoren getroffen wurde; somit wäre die Kausalität wiederhergestellt. Dieses Problem nennt man communication loophole und kann durch aufwändigere Versuche geschlossen werden [16].