Zuletzt geändert: Mi, 21.09.2005

«K12/K13» 5. Hausaufgabe «PDF», «POD»




0.0.1 5. Hausaufgabe

0.0.1.1 Analyse eines verzweigten Stromkreises
.cache/a46c3c25e9dc73cfebc2560a6dce174c.png
Size: 434x224
Scaled to: 434x224
Gegeben

R_1R1 bis R_5R5 betragen 10{,}0 \,\Omega10,0Ω, R_6R6 sei variabel.

U = 9{,}00 \,\mathrm{V};U = 9,00V;

Gesucht

R(R_6)R(R6), I(R_6)I(R6), \\ I_6(R_6)I6(R6), P_6(R_6)P6(R6)

Rechnung

R_{4,5} = R_4 + R_5 = 2R_1;R4,5 = R4 + R5 = 2R1;

R_{3,4,5} = \dfrac{1}{\frac{1}{R_1} + \frac{1}{R_{4,5}}} = \frac{2}{3} R_1;R3,4,5 = 1 1 R1 + 1 R4,5 = 2 3R1;

R_{2,3,4,5,6} = \dfrac{1}{\frac{1}{R_2} + \frac{1}{R_{3,4,5}} + \frac{1}{R_6}} = \dfrac{1}{\frac{1}{R_6} + \frac{5}{2 R_1}};R2,3,4,5,6 = 1 1 R2 + 1 R3,4,5 + 1 R6 = 1 1 R6 + 5 2R1 ;

R(R_6) = R = R_1 + R_{2,3,4,5,6} = R_1 + \dfrac{1}{\frac{1}{R_6} + \frac{5}{2 R_1}} = 10{,}0 \,\Omega + \dfrac{1}{\frac{1}{R_6} + 0{,}250 \frac{1}{\,\Omega}};R(R6) = R = R1 + R2,3,4,5,6 = R1 + 1 1 R6 + 5 2R1 = 10,0Ω + 1 1 R6 + 0,250 1 Ω ;

I(R_6) = I = \frac{U}{R} = \dfrac{U}{R_1 + \dfrac{1}{\frac{1}{R_6} + \frac{5}{2 R_1}}} = \dfrac{9{,}00 \,\mathrm{V}}{10{,}0 \,\Omega + \dfrac{1}{\frac{1}{R_6} + 0{,}250 \frac{1}{\,\Omega}}};I(R6) = I = U R = U R1 + 1 1 R6 + 5 2R1 = 9,00V 10,0Ω + 1 1 R6 + 0,250 1 Ω ;

U_6(R_6) = U_6 = U_2 = \frac{R_{2,3,4,5,6}}{R_1} U_1 = \frac{R_{2,3,4,5,6}}{R_1} R_1 I_1 = R_{2,3,4,5,6} I = \dfrac{I}{\frac{1}{R_6} + \frac{5}{2 R_1}} = \dfrac{U}{\left(R_1 + \dfrac{1}{\frac{1}{R_6} + \frac{5}{2 R_1}}\right) \Biggl(\dfrac{1}{R_6} + \dfrac{5}{2 R_1}\Biggr)} = \dfrac{9{,}00 \,\mathrm{V}}{\left(10{,}0 \,\Omega + \dfrac{1}{\frac{1}{R_6} + 0{,}250 \frac{1}{\,\Omega}}\right) \Biggl(\dfrac{1}{R_6} + 0{,}250 \frac{1}{\,\Omega}\Biggr)};U6(R6) = U6 = U2 = R2,3,4,5,6 R1 U1 = R2,3,4,5,6 R1 R1I1 = R2,3,4,5,6I = I 1 R6 + 5 2R1 = U R1 + 1 1 R6 + 5 2R1 ( 1 R6 + 5 2R1) = 9,00V 10,0Ω + 1 1 R6 + 0,250 1 Ω ( 1 R6 + 0,250 1 Ω);

\renewcommand{\arraystretch}{2.5}\begin{array}{ll}I_6(R_6) = I_6 = \frac{U_6}{R_6} & = \dfrac{U}{\left(R_1 + \dfrac{1}{\frac{1}{R_6} + \frac{5}{2 R_1}}\right) \Biggl(\dfrac{1}{R_6} + \dfrac{5}{2 R_1}\Biggr) R_6} = \\ & = \dfrac{9{,}00 \,\mathrm{V}}{\left(10{,}0 \,\Omega + \dfrac{1}{\frac{1}{R_6} + 0{,}250 \frac{1}{\,\Omega}}\right) \Biggl(\dfrac{1}{R_6} + 0{,}250 \frac{1}{\,\Omega}\Biggr) R_6};\end{array}I6(R6) = I6 = U6 R6 = U R1 + 1 1 R6 + 5 2R1 ( 1 R6 + 5 2R1)R6 = = 9,00V 10,0Ω + 1 1 R6 + 0,250 1 Ω ( 1 R6 + 0,250 1 Ω)R6;

\renewcommand{\arraystretch}{2.5}\begin{array}{ll}P_6(R_6) = P_6 = U_6 I_6 & = \dfrac{U^2}{\left(R_1 + \dfrac{1}{\frac{1}{R_6} + \frac{5}{2 R_1}}\right)^2 \Biggl(\frac{1}{R_6} + \frac{5}{2 R_1}\Biggr)^2 R_6} = \\ & = \dfrac{81{,}0 \,\mathrm{V}^2}{\left(10{,}0 \,\Omega + \dfrac{1}{\frac{1}{R_6} + 0{,}250 \frac{1}{\,\Omega}}\right)^2 \Biggl(\dfrac{1}{R_6} + 0{,}250 \frac{1}{\,\Omega}\Biggr)^2 R_6};\end{array}P6(R6) = P6 = U6I6 = U2 R1 + 1 1 R6 + 5 2R1 2( 1 R6 + 5 2R1 )2R6 = = 81,0V2 10,0Ω + 1 1 R6 + 0,250 1 Ω 2( 1 R6 + 0,250 1 Ω)2R6;

Grenzwertbetrachtungen

\renewcommand{\arraystretch}{1.5} \begin{array}{llcl} {} \lim\limits_{R_6 \to 0 \,\Omega} & R(R_6) & = & 10{,}0 \Omega; \\ {} \lim\limits_{R_6 \to \infty \,\Omega} & R(R_6) & = & 14{,}0 \Omega; \\ {} \lim\limits_{R_6 \to 0 \,\Omega} & I(R_6) & = & 0{,}900 \,\mathrm{A}; \\ {} \lim\limits_{R_6 \to \infty \,\Omega} & I(R_6) & = & 0{,}643 \,\mathrm{A}; \\ {} \lim\limits_{R_6 \to 0 \,\Omega} & I_6(R_6) & = & 0{,}900 \,\mathrm{A}; \\ {} \lim\limits_{R_6 \to \infty \,\Omega} & I_6(R_6) & = & 0 \,\mathrm{A}; \\ {} \lim\limits_{R_6 \to 0 \,\Omega} & P_6(R_6) & = & 0 \,\mathrm{W}; \\ {} \lim\limits_{R_6 \to \infty \,\Omega} & P_6(R_6) & = & 0 \,\mathrm{W}; \end{array}limR60Ω R(R6) =10,0Ω; limR6ΩR(R6) =14,0Ω; limR60Ω I(R6) =0,900A; limR6ΩI(R6) =0,643A; limR60Ω I6(R6) =0,900A; limR6ΩI6(R6) =0A; limR60Ω P6(R6) =0W; limR6ΩP6(R6) =0W;

.cache/03ebc123ad85a9430791565deb9c12b3.png
Size: 453x291
Scaled to: 453x291
.cache/8a4190a4f41f2a427b3b6f307190a024.png
Size: 459x295
Scaled to: 459x295

(Benötigte Zeit: 78 min (inkl. Eintippen, Grafik und Formatierung; reine Arbeitszeit 44 min))