0.0.1 ↑ 4. Klausur am 11.7.2006
- a)
Nehmen Sie Stellung zu folgender Aussage und korrigieren oder ergänzen Sie sie so genau wie möglich, falls sie nicht stimmt:
"Lässt man grünes Licht ausreichender Intensität auf ein Gitter mit der Gitterkonstanten b senkrecht einfallen, so sieht man auf einem im passenden Abstand aufgestellten Schirm stets ein Interferenzmuster." (6 P)
[3 P für die korrekte Größenordnung, 3 P für Strahlpräparation}
- b)
Der Abstand Gitter–Schirm in einem Interferenzversuch betrage 1{,}00 \,\mathrm{m}. Die beiden Maxima 2. Ordnung der roten He-Linie (\lambda = 668 \,\mathrm{nm}) haben voneinander den Abstand d = 70{,}8 \,\mathrm{cm}.
Geben Sie mit einer Skizze der Gitterstege die Bedingung für dieses Interferenzmaximum an und berechnen Sie die Gitterkonstante b. (7 P)
Nehmen Sie als Grenzen des Spektrums von Glühlicht die Wellenlängen 400 \,\mathrm{nm} bzw. 800 \,\mathrm{nm}. (11 P)
- a)
Zeigen Sie, dass die Gitterspektren 1. und 2. Ordnung voneinander getrennt sind, dass sich aber die Spektren 2. und 3. Ordnung bereits teilweise überlappen. (5 P)
- b)
Zeigen Sie, dass mit einem Gitter von 600 \,\text{Linien}/\mathrm{mm} nur noch das Spektrum 2. Ordnung ganz zu beobachten ist. (6 P)
- a)
Erläutern Sie, inwieweit ein Kristall mit passendem Netzebenenabstand Röntgenstrahlung genauso reflektiert wie es ein normaler Spiegel mit sichtbarem Licht tut. Warum wäre es trotzdem problematisch, wenn ein solcher Kristall als ein Spiegel für Röntgenstrahlung bezeichnet werden würde? (3 P)
- b)
Berechnen Sie die beiden kleinsten "Glanzwinkel" [> 0^\circ], die bei einem Bragg-Kristall mit dem Netzebenenabstand 282 \,\mathrm{pm} zu erwarten sind, wenn Röntgenlicht der Wellenlänge 7{,}15 \cdot 10^{-11} \,\mathrm{m} eingestrahlt wird. (4 P)
[3 P für einen Winkel, 1 P für den zweiten]
Am europäischen Speicherring LEP werden Elektronen und Positronen auf sehr hohe Energie beschleunigt. Durch magnetische Führungsfelder weden sie auf einer nahezu kreisförmigen Bahn gehalten, die sie entgegengesetzt durchlaufen. Die Teilchen erreichen einen maximalen Impuls von 3{,}2 \cdot 10^{-17} \,\mathrm{Ns}. (9 P)
- a)
Im Bereich der Führungsfelder beträgt der Bahnradius 1{,}5 \,\mathrm{km}. Berechnen Sie, wie groß der Betrag der Flussdichte \mathcal{B} dieser Felder zu wählen ist, um die Teilchen auf ihrer Bahn zu halten! (4 P)
- b)
Berechnen Sie relativistisch die Masse der Teilchen, und geben Sie diese als Vielfaches der Ruhemasse an! (5 P)
[2 P für den Term von m, 2 P fürs Ergebnis von m, 1 P fürs Verhältnis zur Ruhemasse]